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Extended families of 2D arrays with near
optimal auto and low cross-correlation
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Abstract

Families of 2D arrays can be constructed where each array has perfect autocorrelation, and the cross-correlation
between any pair of family members is optimally low. We exploit equivalent Hadamard matrices to construct many
families of p p × p arrays, where p is any 4k-1 prime. From these families, we assemble extended families of arrays
with members that exhibit perfect autocorrelation and next-to-optimally low cross-correlation. Pseudo-Hadamard
matrices are used to construct extended families using p = 4k + 1 primes. An optimal family of 31 31 × 31 perfect
arrays can provide copyright protection to uniquely stamp a robust, low-visibility watermark within every frame of
each second of high-definition, 30 fps video. The extended families permit the embedding of many more perfect
watermarks that have next-to-minimal cross-correlations.
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1 Introduction
A digital watermark is a kind of marker covertly embed-
ded in a noise-tolerant signal such as an audio, video or
image data. It is typically used to identify ownership of
the copyright of such signal. Images are 2D, so 2D
watermarks are required. Video can be considered as se-
quences of images. Two-dimensional perfect arrays are
fundamental in coded aperture imaging, e.g. phased
array antennas, arrays of sound sources or flashing tom-
ography. Further, arrays are used in higher-dimensional
signal processing applications such as time-frequency-
coding, spatial correlation or map matching, parallel
processing in one-dimensional correlation, arrays for
built-in tests of VLSI-circuits or 2D measuring tech-
niques, e.g. optical systems [1]. They are also useful in
image and watermark registration [2]. Families of 2D
arrays with low off-peak autocorrelation and low cross-
correlation are useful in digital watermarking to identify
the owner of an image, or to embed multiple arrays in
an image to increase the amount of hidden information
in the watermark.
This paper presents methods to construct large fam-

ilies of discrete 2D arrays over the integers, or roots of

unity. This is unusual. Among sparse arrays, Costas
arrays have optimal autocorrelation, but there are no
large families with optimal, or even good cross-
correlation [3]. Among dense arrays, m-sequences have
perfect autocorrelation, but only small families, called
maximal connected sets have good cross-correlation [4].
The full set of m-sequences may have very high cross-
correlations, particularly for composite lengths [5]. This
paper builds on prior work [6] that built optimal families
of p p × p arrays, where p = 4k-1 is prime. Those 2D
families are optimal because each array within a family
has a two-valued periodic autocorrelation, and all of the
cross-correlations between any pair of family members
are the lowest possible. New methods are described here
to find disjoint families of these optimal 2D arrays and
then construct extended families of p × p arrays that ex-
hibit perfect autocorrelation and cross-correlations that
are asymptotically optimal. This means a large fraction
of all cross-correlations between family members are the
lowest possible. The remaining fraction of cross-
correlation values are distributed across a narrow range
of next-to-lowest possible values. This work relies on
two theoretical concepts. The first key is that the process
of discrete projection preserves the correlation proper-
ties of any array [7, 8]. This means the correlation prop-
erties of any nD array are inherited through the
correlation properties of the 1D projections of that nD
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array. The second key is the remarkable structure of
Hadamard matrices [9], which specify how to tile a list
of M elements in M ways so that all M tilings are or-
thogonal i.e. the sum of their dot products is 0. The M
tilings are said to be maximally different. We show that
a family of arrays with low cross-correlation between
matching array projections must be maximally different
in the Hadamard sense.
To achieve perfection in an array requires precise

synchronization between all array elements. Perfect arrays
have the additional useful property that their structure,
superficially, appears to be random. One application for
the new arrays constructed here is to transparently embed
a family of 2D planes in frames of video or any digital
media. Such arrays serve as secure, robust and low-
visibility spatial or transform domain spread-spectrum
watermarks [10]. The cross-correlation between water-
marking arrays embedded in different frames is the lowest
possible. This results in the lowest false positives. In
addition, the off-peak autocorrelation of each watermark
array is −1, resulting in the lowest missed detection rate,
and allows the watermark to be used as a registration
mark [2]. The number of frames with unique marks is
variable, up to p. Each mark can be repeated as needed.
Additionally, because of their low cross-correlation, mul-
tiple arrays can be embedded in the same frame, to in-
crease the data payload.
The array family size is bounded by p to maintain the

optimal correlation performance. However, many more
such families can be generated using different Hadamard
matrices of size p + 1. These can be obtained by negating
rows or columns or by interchanging rows or columns.
Such Hadamard matrices are called equivalent. There
are billions of them for practical values of p. In addition,
there are inequivalent matrices. For p = 31 (the largest
value for which this is known), there are 13,710,027
inequivalent Hadamard matrices [11]. Consequently, the
number of families is virtually inexhaustible. An algorithm
for finding families with lowest mutual cross-correlation is
being investigated.
Our scheme is suited to watermarking to meet the pro-

posed Society of Motion Picture & Television Engineers
(SMPTE) watermarking standard, where high and flexible
data payload and short, variable watermark duration is
required

The binding method must accommodate a payload of a
minimum of 25 bytes (200 bits) to carry simultaneously
Ad-ID (the advertising industry standard unique
identifier for all commercial assets airing in America)
and EIDR (the Entertainment Identifier Registry, is a
global unique identifier system for a broad array of
audio visual objects, including motion pictures,
television, and radio programs) (each of which is 96 bits

long), along with indicator(s) (such as enumerated
values) to label each ID, plus overhead. The binding
mechanism shall allow the transition to or from a
uniquely identified or unidentified piece of content to
be detected within 1 second of the transition. Transition
detection does not necessarily require the recovery of the
content ID [12].

A previous array-based watermarking method developed
by one of the authors [13] uses 3D arrays to watermark
the video. It cannot meet the SMPTE requirements, be-
cause the array is long in the time dimension and requires
3–4 min per watermark. Also, it struggles to meet the data
payload, and the construction is not flexible, as required.
A second application is to encrypt information within

any digital data by encoding multiple arrays within a
local region of the data. The encrypted message content
is decoded by identifying the presence of each individual
array and specifying its exact spatial location. Extended
families of arrays provide unique owner identification
for more users, or encrypt a more diverse information
payload. It is vital for both applications that all embed-
ded arrays can be recovered and uniquely identified.
Successful implementation requires arrays that appear to
be random but simultaneously have a perfectly sharp
autocorrelation and the lowest possible cross-correlation
with all other arrays.
The paper is organized as follows: Section 2 presents

the mathematical background on the construction and
correlation properties of families of arrays suitable for
watermarking. It also introduces maximal and minimal
correlations between 1D sequences and nD arrays and
reviews the link between nD arrays and their discrete 1D
projections using the finite Radon transform. Section 3
presents new results for 2D p × p arrays to extend the size
of disjoint families that retain perfect autocorrelation and
near optimal cross-correlation. Hadamard matrices are
used to make perfect arrays that are maximally different.
Section 4 deals with the embedding and extraction of wa-
termarks in images and video. Section 5 discusses the ex-
perimental method used that presents results and
discusses embedding applications for optimal arrays.

2 Algebraic arrays for watermarking
Digital watermarking using spread-spectrum techniques
started in 1992, with the first publication appearing in 1993
[14]. This used m-sequences embedded in images line by
line. Considerable interest was generated by this, mainly
centered on the methods of embedding and extraction, re-
sistance to compression, compatibility with Human Visual
System, resistance to incidental distortions and deliberate
attacks and diversification to other media, such as audio
and video. Our group focused on ‘what to embed’. It was
clear that 2D arrays were needed. The requirements were:

Svalbe and Tirkel EURASIP Journal on Advances in Signal Processing  (2017) 2017:18 Page 2 of 19



1 Sizes commensurate with image format
2 High peak autocorrelation and low off-peak

autocorrelation to reduce missed detection and
false alarm rate respectively

3 Large and flexible family size, with all cross-
correlations being low

At the time, the only known 2D arrays that partially
satisfied these criteria were the small and large Kasami
sets of sequences folded into 2D. Our group then
focused on Costas arrays, invented by John Costas to
resolve radar ambiguities, and independently by Edgar
Gilbert. These were unsuitable, because of their sparsity,
resulting in low peak autocorrelation. Also, families with
low cross-correlation were tiny. It took one of the
authors 20 years, and collaboration with T.E. Hall and
the late O. Moreno to overcome the sparsity issue and
the small family size. The sparsity was addressed by
using the method of composition. A Costas array or re-
lated pattern of dots, with one dot per column was used
as a shift array to compose a 2D array whose columns
were shifts of a binary sequence with ideal autocorrel-
ation. This method of composition and column sub-
stitution was then generalized by finding shift arrays
which produced large families, with optimal cross-
correlation. The method was extended further, to
higher dimensions, and in fact, 3D arrays were suc-
cessfully embedded in and extracted from video and
survived H264 and H265 compression [13]. A limita-
tion of such arrays is their size p × p × (p2-1). The p2-
1 is difficult to adapt to video watermark require-
ments, as discussed in Section 3. Also, while roots of
unity alphabets are commensurate with finite field al-
gebra, apart from the binary case, they are not readily
accommodated in image data. It is possible to trans-
form image data to accept higher roots of unity, as in
[15], but such transformations are cumbersome. By
contrast, greyscale arrays are naturally suitable for
embedding in images.
In this paper, we introduce a different array construc-

tion which overcomes the above limitations and provides
p × p arrays for watermarking of individual video frames.
p such arrays exhibit optimal cross-correlation. This per-
mits the embedding of more arrays in a single frame to
increase data payload or to satisfy the watermark dur-
ation requirements. The method we use in this paper
is different from the method of composition and col-
umn substitution. It relies on projective geometry.
We partition a p × p array into p + 1 projections and
assign +1 or −1 values to these projections according
to rows of a commensurate Hadamard matrix. Such
arrays are ideally suited to image and video water-
marking, and we show how they can be adapted to
greyscale and extended to larger families.

2.1 Definition of correlations
Our concern here is correlations between discrete arrays
in n-Dimensions (nD). We define arrays A(k, l) and B(k,
l) to be 2D discrete arrays, with integer indices 0 ≤ k, l <
N. The value at input array location (k, l) is usually a
signed integer, or a root of unity. The periodic cross-
correlation (CCp) between arrays A and B, measured at
location (r, s) is defined as:

CCp r; sð Þ ¼ A⊗B ¼
XN−1

k¼0

XN−1

l¼0

A k; lð Þ⋅B k þ r; l þ sð Þ

¼ F−1 A u; vð Þ⋅B u; vð Þ½ �

ð1Þ

where A(u, v) = F[A(k, l)], B(u, v) = F[B(k, l)], and F, F−1

denotes forward and inverse discrete Fourier transform
(DFT), respectively, and ‘·’ denotes the element-by-
element dot product. The cross-correlation CCp(r,s) is an
array with N×N values under periodic boundary condi-
tions. For aperiodic (zero-padded) boundary conditions,
the array Ca(r,s) has size (2 N–1) × (2 N–1). When B = A,
ACp = A⊗ A denotes periodic autocorrelation (AC), ACa

denotes aperiodic autocorrelation.

2.2 Review of perfect autocorrelations
A 1D sequence of length N that has a periodic autocorrel-
ation with a single peak with value N and all N-1 off-peak
values being 0 is a perfect sequence. Such sequences are
unbalanced, and fail most randomness criteria such as
Golomb’s postulates [16]. The values of a pseudo-noise
(pn) sequence are distributed about 0, preferably symmet-
rically, and have random, noise-like structure. A pn
sequence of length N is comprised of signed integers,
roots of unity or other alphabets. The mean of these se-
quences is 0 for even length or ±1 for odd length. The
periodic autocorrelation of perfect or pn sequences for in-
teger shifts is a delta function. Equivalently, perfect and
pseudo-noise sequences are spectrally flat.
For higher dimensions, we use arrays instead of se-

quences. Perfect arrays exist for selected sizes, but re-
main unbalanced. The periodic autocorrelation of
perfect and pn arrays is an nD δ function. Perfect and
pn arrays are spectrally flat in nD. Here, we restrict the
arrays to be p × p planes in 2D, with integer values, usu-
ally 0, ±1. The merit factor (MF) is one measure of the
quality of correlations. It is defined as the ratio of the
squared peak correlation value to the sum of all squared
off-peak correlation values. The merit factor can be peri-
odic (MFp) or aperiodic (MFa). A second metric for cor-
relations is the periodic correlation ratio Rp (and
aperiodic ratio Ra) defined as the peak value divided by
the next largest correlation value. R is often called the
‘peak-to-side-lobe’ ratio. For perfect arrays, MFp =∞, Rp

=∞. For pn hypercube arrays of size N in nD, the
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maximum periodic values are MFp = Nn-1 and Rp = Nn-1.
Non-periodic data must deal with aperiodic correlations.
Generally, the aperiodic MFa and Ra values are signifi-
cantly lower than MFp and Rp values for the periodic case.
The above measures relate to the array itself. When an

array is embedded in noise-tolerant data, the cross-
correlation of the array with the marked data exhibits a
peak when the reference array is aligned with the embed-
ded array. The off-peak values are typically Gaussian dis-
tributed, as discussed in Section 4, and shown in Fig. 1a.
Figure 1b shows the time sequence of the correlations.
The distribution is characterized by standard deviation

σ. The peak to σ ratio (signal to noise ratio or SNR) de-
termines the probabilities of missed or false detection,
based on the cumulative normal distribution. The SNR
indicates how easy it will be to recover an array that has
been embedded in digital data, where the host data can
be regarded as noise. The SNR scales with both the size
N and the dimension (n) of the embedded signal.
Arrays chosen for embedding should be spectrally flat

while having apparently random structure to minimize
their perceptibility. They should utilize a limited alphabet,
preferably with using +1 or −1, except for an occasional 0.
Such arrays are easy to embed and are highly efficient.

2.3 Review of cross-correlations
Tirkel et al. [6] gives constructions of pn arrays of size
p × p, where p = 4k-1 is prime. The elements are a single
0 and equal numbers of ±1. The autocorrelation MFp is
p2-1. The more challenging aspect is to constrain the
cross-correlations between pairs of arrays to be opti-
mally low and to then construct a family of arrays with
as many members as possible. The lowest possible peri-
odic cross-correlation values between a family of p of
these p × p arrays in 2D can be shown [6] to be 0 at zero
shift, and either +p or −p at all other shifts. Correlation
bounds for families of sequences have been studied for
an arbitrary alphabet by Welch [17] and for roots of
unity by Sidelnikov [18]. These concepts can be ex-
tended to arrays. The peak correlation of the family of p
p × p arrays in [6] is consistent with the Welch bound
[17], making these families optimal.
A conjecture of Golay [19], that the highest aperiodic

merit factor for sequences is achieved by Legendre se-
quences of length p at shift p

4, is now extended to two di-
mensions, where the maximum MFa is obtained for
Legendre p × p arrays occurs at or near shift p

4 ;
p
4

� �
.

Much of the initial work on constructing arrays used
finite field theory to expand or fold 1D m-sequences se-
quences into higher dimensions [20]. There is clear link
between folding sequences and discrete projection. We ex-
ploit the geometric insights offered by discrete projection
theory to construct perfect or pn arrays in nD from their

lower dimensional projected views. Discrete projection
theory [21] quantizes the continuous space Radon trans-
form used for the tomographic reconstruction of images
from projected views. A short review of discrete projection
is given in the next section.

2.4 Discrete projections as pn sequences
Traditionally, arrays have been analysed as concatena-
tions of sequences using a row by row approach [22], or,
for relatively prime dimensions, by a single pass diagonal
[20], equivalent to the application of the Chinese Re-
mainder Theorem. Our approach uses discrete projec-
tions. We utilize the finite Radon transform (FRT) to
obtain discrete projections for nD arrays of size p, where
p is prime [22]. The FRT permits any nD array to be
represented exactly as a set of 1D projections, with each
projection having length p. The number of 1D FRT pro-

jections of an nD array is
Xn
i¼0

pi. The FRT has a very sim-

ple inverse transform, the un-filtered back-projection,
whereby any nD array can be reconstructed exactly from
its 1D projections (see Fig. 2). Black = +1, red = −1 and
white = 0.
We present a 2D example. FRT projection of a p × p

array results in a set of p + 1 1D sequences. Applying the
inverse FRT to these 1D sequences re-assembles the
same p × p array. The FRT, R(t, m), of array A(k, l), is de-
fined (2) as the sum of the array elements that intersect
p parallel digital straight lines, k =ml + t, where k, l, m
and t are all integers and <n> means the value of n mod-
ulo p. The back-projected inverse FRT (3) is similar to the
forward-projected FRT (2), with re-projection done at the
complemented projection angle (p-m), adding an extra
plane from re-projecting m= p and normalizing by the
sum, obtained from any m, of all projected values.

R t;mð Þ ¼
Xp−1

k;l¼0

A ml þ t; kð Þ ð2Þ

A k; lð Þ ¼
Xp−1

m;t¼0

R −ml þ t; kð Þ þ
Xp−1

t¼0

R p; tð Þ ð3Þ

Here, t is the line intercept. The starting position of
the line traditionally is defined along the top row of the
data, 0 ≤ t ≤ p. The slope of each line is a rational frac-
tion, m:1 i.e. stepping m pixels across for each pixel
down and (0 ≤m ≤ p). The line m= 0 is traditionally the
column direction, m= 1 is the diagonal 45° line, and m
= p means lines in the row direction.
The key concept is that discrete projection preserves

correlation properties. The discrete central slice theorem
[7, 8] proves that the 1D discrete projection of any 2D
autocorrelation array is the same as the 1D autocorrelation
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of the same 1D projected view of the original 2D array.
Autocorrelation of discrete projections, and by ana-
logy, cross-correlation, follows definition (1), where
role of array values is replaced by the projected sums
of array values.
The FRT reconstructs a unique 2D array from any

fixed set of p + 1 1D projections. The joint correlation
properties of a set of p + 1 1D projections determines
the correlation properties of the 2D array that is recon-
structed from those projections.

The spectral content of any 2D array can be assem-
bled, one projection at a time, according to the spectral
content of the p + 1 1D projections from which the array
is reconstructed. Any 1D sequence with δ function auto-
correlation is spectrally flat i.e. equal magnitude at each
discrete frequency. A 2D array built from p + 1 such pro-
jected views will also be spectrally flat and exhibit per-
fect 2D autocorrelation.
In the opposite direction, a low cross-correlation will

result between any pair of arrays whose 1D projections,

Fig. 1 a Histogram of correlations between template array and watermarked video. b Time sequence of correlation of template array with
watermarked video
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taken along matching directions, all have low 1D cross-
correlations. The discrete central slice theorem also en-
sures that the p + 1 1D Fourier transforms of the 1D
FRT projections tiles each frequency of the p × p 2D
Fourier space exactly and only once. An array, its FRT
and DFT are bijective mappings, see (1). If all the 1D se-
quences have 0 sum, then the 0 frequency term also has
0 amplitude, producing a 2D pn array.

2.5 Families of arrays with optimally low cross-correlation
A 0 cross-correlation implies a 0 dot product for the Fou-
rier transforms of these arrays i.e. A(u, v) × B(u, v) = 0.
This, in turn, requires at least one of the Fourier coeffi-
cients in either array to be 0 at each frequency. This con-
dition is inconsistent with the requirement that an array
must be spectrally flat to have a perfect autocorrelation.
The cross-correlation between a pair of perfect arrays or
between projections of these arrays cannot be 0. As a cor-
ollary, any array that has all 1D projected rays sum to 0 in
any direction cannot have perfect autocorrelation. As a
further corollary, all 1D discrete projections of an nD
array must be spectrally flat for the array to be spectrally
flat and have perfect autocorrelation. Any given fixed set
of 1D projections can only reconstruct one, unique array:
an array and its set of FRT discrete projections is bijective.
To construct a different array, one or more of these pro-
jections must change. If we change just the sign of one pn
projection, that 1D projection autocorrelation remains

perfect, but the array that is reconstructed from this chan-
ged set of projections still has perfect autocorrelation, but
now has a different spatial structure. The cross-
correlation between the changed array and the original
array will be strong, but less than perfect.
We can change the signs of the 1D projections of a

perfect autocorrelation array A1 to produce a perfect
autocorrelation array A2, such that A1⊗A2 has the low-
est possible values. This means the sum of all the values
that are re-projected across the 2D array from each 1D
projection should be as low as possible. That means half
of the p + 1 projections used to reconstruct array A1

must have opposite signs to those of the p + 1 projec-
tions used to reconstruct array A2. The 2D FFT of A1⊗
A2 is partitioned by signs that match the signs of the 1D
FRT projections. All of the signs of the 1D projections
in A1 need to be orthogonal (or maximally different) to
all of the signs of the 1D projection for A2. Under these
conditions, A1⊗ A2 has optimally low cross-correlation.
To construct a family of three perfect autocorrelation

arrays (A1, A2 and A3) with A1⊗A2, A1⊗A3 and A2⊗A3

each being orthogonal requires that 50% of the signs of
the p + 1 projections assigned to build array A1 and array
A2 must be opposite, as must be 50% of those between A1

and A3, as must be 50% of those between A2 and A3.
This brings us to invoke our second key theoretical

concept: the Hadamard matrix [5]. An orthogonal as-
signment can be achieved, for up to p arrays, by using

Fig. 2 a A Hadamard matrix, H8. b H8*H8
T is diagonal: each row of H8 is maximally different. c An FRT for p = 7. The eight rows are spectrally flat

1D projections. The seven sign patterns on rows 2–8 of (a) build seven distinct FRTs like (c). d The 7 × 7 array reconstructed from FRT (c). All seven arrays
exhibit perfect autocorrelation (e). Their 21 cross-correlations are all optimally low, like (f)
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the non-trivial rows of anM×M Hadamard matrix, where
M=p + 1. This is possible for p = 4k−1, since Hadamard
matrices only exist in sizes that are multiples of 4 [9].
There are several inequivalent forms of Hadamard matri-
ces: Sylvester, Paley, Walsh and Tonchev [9]. Williamson
matrices have some unbalanced rows and are avoided.
We can construct a family of perfect autocorrelation,

low cross-correlation arrays by using the non-trivial
rows of an M×M Hadamard matrix as p orthogonal
ways to select the pattern of sign changes for each of p
sets of M= p + 1 1D projections. This construction gen-
erates a family of p p × p arrays, A = {A1, A2, …Ai, …Ap},
where each array inside family A has perfect autocorrel-
ation Ai⊗ for all i, and optimally low cross-correlations
Ai⊗Ajfor i ≠ j. Figure 2 shows one member Ai from a
family A of 7 × 7 arrays, the 7 × 8 1D FRT projections
used to make Ai and the 8 × 8 Hadamard matrix used to
generate the 7 FRT projection sets that make A.

2.6 Families of perfect arrays
Constructing a family of p perfect autocorrelation and
optimally low cross-correlation p × p arrays is possible in
2D for any p = 4k−1, since the projection set has size p
+ 1 = 4k. For prime p = 4k + 1, we can construct a bal-
anced p × p perfect array by flipping the signs of 2k + 1
spectrally flat 1D projections. But Hadamard matrices of
size 4k + 2 do not exist.
However, we show in Section 3 that the cross-correlation

between different families of p × p arrays can be engineered
to produce arrays with asymptotically low correlation.

3 Correlations between perfect array families
Section 2 reviewed how to construct families of p p × p
arrays with perfect autocorrelation and optimally low
cross-correlation between all p family members. Now,
we examine the cross-correlations between arrays from
different families.

3.1 Extending the family of perfect p × p arrays
Consider family A of p p × p pn arrays, for p = 4k−1, de-
rived from a Hadamard matrix. The array of optimally
low cross-correlation values that is obtained by a peri-
odic correlation between any two members from A, for
example Bij = Ai⊗Aj, is itself a scaled pn array. This was
noted in [6] and is easy to prove using Fourier trans-
forms or finite field theory. Dividing the correlation
array Bij by p restores the ±1 values.
Periodic cross-correlation of a pair of nD arrays is

equivalent to multiplying their nD Fourier transforms
(1). 1D projections of the FRT tile all non-zero frequen-
cies in the nD Fourier space exactly once, because of the
discrete central slice theorem and the prime array size.
Hence, performing an nD correlation is equivalent to

taking the dot product of the 1D FT of matching 1D
projections in FRT space.
As pn arrays are always spectrally flat, this dot product

only toggles the sign of the matching projection in the
product array where the input array projection signs
were different. As exactly half of each of the projection
signs were originally matched and half were different,
their product can flip exactly and only half of the signs
and hence the correlation result is another perfect array.
The new pn array Bij is made by correlating the ith and
jth arrays of A:

Bij ¼ 1
p
Ai⊗Aj ð4Þ

or, in the Fourier domain,

F Bij
� � ¼ F Ai½ � � F Aj

� � ð5Þ
In (5), F denotes the 1D DFT of each of the p + 1 FRT

projections of a 2D array.
The in-place dot-product over all spatial domain ele-

ments of any two zero-aligned 2D p × p perfect arrays is
an alternative but equivalent and simple generating
method (i.e. Cij = Ai ·Aj). The product of in-place array
elements also flips exactly half of the opposite signs
within the two input arrays to produce a distinct pn
array. We can show that, for all i ≠ j, Bij = Cij.
The full set of cross-correlations between all p members

inside a perfect family of p × p arrays will generate a set of
p(p-1)/2 perfect arrays. A new family, B, of size p-1, of
arrays with perfect autocorrelation and optimal cross-
correlations can be selected from this set as Bi = Ai

⊗ {A1…Aj…Ap} for j ≠ i.
The family B is disjoint from family A, meaning that

there is no array Ai from A that is replicated as Bi in B.
The cross-correlation between any pair of member ar-
rays of family B is optimally low, because Ai⊗ Ai = 1, as
Ai has perfect autocorrelation (a delta function) and Aj

⊗Ak has optimal cross, because Aj and Ak are, by design,
all maximally different arrays. Thus

Bj⊗Bk ¼ Ai⊗Aj
� �

⊗ Ai⊗Akð Þ
¼ Ai⊗Aið Þ⊗ Aj⊗Ak

� � ¼ Aj⊗Ak ð6Þ
Of special interest here is the spectrum of cross-cor-

relation values that are possible between the two original
arrays, Ai and Aj and their product Bk (i.e. Cm = Ai⊗ Bk

and Cn = Aj⊗ Bk). Of the p(p-1) possible cross-
correlations between members of C =A⊗ B, we find that,
for all but very low values of p, the spectrum of individual
cross-correlations, Cm and Cn, turns out to be either opti-
mal or very close to optimal.
Such families of arrays are ideal for watermarking,

where multiple arrays are embedded in the host media,
for higher data payload, increased security or lower
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perceptibility. The cross-correlation between arrays
embedded in the same media must be optimal to enable
them to be extracted by correlation. The cross-
correlation between arrays embedded in different host
media can be relaxed slightly, because higher cross-
correlation can only increase the probability of false
positive detection. A small number of false positives are
insufficient to cause mistaken identity of the host media.
Also the assignment of arrays can have an error correc-
tion feature built in.
For families of p × p arrays, the spectrum of cross-

correlation values C between family A and its derived
family B was computed. The distribution within C turns
out to be fixed for each p, independent of how family A
was generated. The array that results from the lowest
(optimum) possible cross-correlation has a center value
of 0 and is elsewhere an equal distribution of ±p.
The second lowest cross-correlation array has a center

0 and off-peak array values of ± (p−4), because two pairs
of projections from each array have their signs toggled.
The third lowest correlation array has off-peak values of
± (p-8), the fourth ± (p-12). The ith lowest correlation
has a center 0 and off-peak array values of ± (p–4(i-1)).
At correlation level i = (p + 5)/4, the off-peak array values
all become −1. At this point, the cross-correlation
reaches the same value as the autocorrelation and the
two spatial domain arrays must be identical, up to a
change of sign.

Table 1 shows the distribution of correlation results
for C = A⊗ B, for 4k-1 primes p = 7 to 127. The
spectrum of cross-correlation values within C has opti-
mally low values on the left, and the cross-correlation
value worsens with each column to the right.
For p = 7, the entry in the third level of correlation

values in Table 1 shows that 14.3% of the cross-
correlations are worst case, generating identical copies
by producing perfect autocorrelations. For p = 7, these
worst-case cross-correlations occur at the third lowest
level, i = 3, where all off-peak values change by 4(3–1) =
8, so all cross-correlation values are either +7 − 8 = −1 or
−7 + 8 = −1. Constructing low cross-correlation arrays
for p = 7 by this mechanism appear to have limited use.
Note the very compact form of these distributions,

and the difference pattern for the primes that are 8k ±
1or 8k ± 3. For some primes (e.g. p = 23 and 31), the
number of optimally low cross-correlations (level 1)
forms a high percentage of all possible cross-
correlations, and the next most frequent correlations are
level 3 values. For p = 23, statistically 0 entries occur at
and beyond the 4th lowest level of cross-correlations.
The worst case result for cross-correlations at p = 23 lies
at the 7th level (7 = (23 + 5)/4). Cross-correlation be-
tween any array chosen from A and B here is either opti-
mally low, or very close to optimally low.
As p increases, the sharp cut-off in the distribution of

correlation values becomes more statistically certain: for

Table 1 Distribution of cross-correlation values between the p members of two p × p arrays

7 0.52 0.452 0.03 0 0 0

11 0.432 0.488 0.08 0.002 0 0 0

19 0.344 0.477 0.16 0.022 0 0 0 0

23 0.316 0.464 0.18 0.036 0 0.0001 6E-06 0 0

31 0.276 0.435 0.21 0.064 0.01 0.001 5E-05 9E-07 0

43 0.236 0.396 0.24 0.098 0.03 0.005 0.0006 0.0001 0 0

47 0.228 0.386 0.24 0.106 0.03 0.0075 0.0013 0.0001

59 0.204 0.357 0.24 0.127 0.05 0.0154 0.0033 0.0005 0 0

67 0.191 0.342 0.24 0.136 0.06 0.0211 0.0058 0.0012 2E-04 4E-05 5E-06

71 0.186 0.334 0.24 0.14 0.06 0.0243 0.0071 0.0017 3E-04 0 0

79 0.177 0.321 0.24 0.146 0.07 0.0301 0.01 0.0027 6E-04 0.00011 1E-05

83 0.172 0.315 0.24 0.149 0.08 0.0337 0.0115 0.0034 0.008 0.00136 2E-04 2E-05

103 0.155 0.289 0.23 0.157 0.09 0.0467 0.0201 0.0072 0.002 0.00061 1E-04 0.0002 1E-05

127 0.14 0.264 0.22 0.161 0.1 0.06 0.0302 0.0135 0.005 0.0018 6E-04 0.0001 3E-05

131 0.138 0.261 0.22 0.162 0.11 0.0626 0.0315 0.0144 0.006 0.002 6E-04 0.0002 6E-04

139 0.134 0.253 0.21 0.162 0.11 0.0645 0.0349 0.0166 0.007 0.0026 1E-04 0.0003 6E-04

151 0.128 0.244 0.21 0.159 0.11 0.0718 0.0395 0.0189 0.009 0.0035 0.001 0.0005 2E-04

199 0.112 0.217 0.19 0.157 0.12 0.0832 0.0537 0.0325 0.018 0.0091 0.004 0.0017 6E-04

Family B is made from the cross-correlation or dot products of A. The strength of the correlation is optimally low in the second left column and increases with
each column to the right. The entries in italics mark the level at each p where the cross value becomes that of a perfect periodic autocorrelation. The sum of the
entries on each row is normalized to 1. Bold entries mark the array size p where each correlation level has maximum frequency
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p = 31, 0 events are observed at and beyond level 4.
The maximum statistically observable periodic cross-
correlations have low values. For p = 31, cross-correlation
are seen up to level 3, where MFp = 0.066, while the opti-
mally low (level 1) cross-correlation has MFp = 0.001. The
peak periodic autocorrelation MFp is 31

2-1 = 960, this oc-
curs at level 9.
Choosing a sensible value for p means we can then

generate many perfect auto families B from a perfect
family A and be confident that the cross-correlations be-
tween A and B will be asymptotically close to optimally
low. Within family A or within family B, the array cross-
correlations are exactly optimally low, and A and B are
disjoint families.

3.2 Generalized array families, p = 4k-1
We next consider the shape of the distribution of cross-
correlations between a perfect family A and a second, in-
dependently generated perfect family, A′. We can generate
independent families by choosing a different Hadamard
matrix to change the maximally different pattern of signs
for the 1D FRT projections from which each family of ar-
rays is built. The number and structure of possible unique
and inequivalent Hadamard matrices is an ongoing re-
search issue, and those numbers vary strongly with the
matrix size 9.
However, an equivalent Hadamard matrix is easily

formed by a random shuffling of any existing Hadamard
matrix rows (or columns), provided that no row (or col-
umn) ends up back in its original place. The balance of
signs is preserved, but their ordering across the rows is
different. These shuffled versions are called equivalent
Hadamard matrices.
There are p!! = (p-1)(p-3)(..)(5)(3)(1) ways to do these

shuffles for any (p + 1)*(p + 1) Hadamard matrix. This
number rises very rapidly with p: for p = 7, 11, 19 and 23,
p!! is of order 105, 10,395, 6 × 108, and 3 × 1011 respect-
ively. Each of these shuffled variations makes a Hadamard
matrix from which a p × p perfect family A can be built.
We computed the distribution of all possible cross-

correlations between large numbers (several hundred) of
pairs of families C = A⊗ A′, where each family of p p × p
arrays was produced by a random shuffling of a particu-
lar Hadamard matrix. We repeated this process for p =
4k-1 primes between 7 and 199. Table 2 shows that shuf-
fling the generating Hadamard matrix produces disjoint
sets of families that have near optimal cross-correlations
between all family members.
The worst-case cross-correlations (statistically) reach

towards the autocorrelation value (at level i = (p + 5)/4)
at which results in exact copy or sign-matched arrays)
only for p < 23.
The bold entries in Table 2 (in the columns for cross-

correlation levels i = 1 to 4) mark the primes p at which

the maximum frequency occurs for each cross-correlation
level.
Many different families of p p × p arrays can be built

that have perfect autocorrelation and optimal cross-
correlations within each family. More significantly, with
a very high probability, the cross-correlation between
any array chosen from one family and any array chosen
from a second family will be asymptotically low, particu-
larly for p > 23.
Shuffling a Hadamard to produce equivalent Hadamard

matrices is a statistical process. We want to find equiva-
lent Hadamard matrices that apply a similar number of
toggles to the elements of the arrays. The number of tog-
gles can be counted by summing the dot product of the
‘parent’ Hadamard matrix (HP), with its shuffled version,
the ‘child’ (HC). Any single shuffle always produces ±M
toggle differences with respect to its parent for an M×M
equivalent Hadamard matrix.
This result explains the fixed spectrum of cross-

correlation values observed in Table 1, between the p
members of a p × p family A and the (p-1) members
of family B made from the dot product or cross-
correlations of the arrays in A. Family B is the result
of a child Hadamard HC produced by one shuffle of
the parent Hadamard HP of family A.
The spectrum of values in Table 2 arises from cross-

correlations between unconstrained equivalent Hada-
mard matrices that generate unconnected families. A
parent Hadamard matrix, HP, is randomly shuffled to
produce a child equivalent Hadamard matrix, HC1, giv-
ing rise to family A1. Then the same parent HP is
randomly shuffled again to produce another child
equivalent Hadamard matrix, HC2, giving rise to family
A2. The cross-correlations between these families, A1⊗
A2 drives the distributions of Table 2.
We examined the variation in the number of toggles

for different equivalent Hadamard children HC from
shuffling HP. We computed the absolute value of
∑(HC1 · HC2) for up to 108 random shuffles and tabu-
lated these results, as shown in Table 3. For p = 4k-1, the
number of toggle differences between child-to-child
Hadamard matrices is quantised into discrete steps as
i(p + 1), where, statistically, 0 ≤ i ≾ 9.
Consequently, we can select, from a random set of

equivalent Hadamard matrices shuffles that remain clos-
est to the parent child set. This ensures that families are
more likely to contain members whose cross-correlation
values with other families will be close to optimally low.
Statistically, the effect is only important for low values of
p, where the spread between optimal and worst correl-
ation levels is smallest. For larger primes, it is hard to
not produce low correlation p × p sets by random shuf-
fling of the parent Hadamard, as the gap between lowest
and worst cross-correlation values is so large, and 91%
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of random shuffles have either 0 or ± (p + 1) toggle
differences.

3.3 Generalized array families, p = 4k + 1
The distribution of cross-correlation values for pn arrays
drops so sharply in Table 2, that it is worth considering
what happens for pn arrays where the primes p are 4k +
1. We can make individual p × p arrays for p = 4k + 1
that have perfect autocorrelation, but far from lacking
Hadamard matrices, not even one pair of 4k + 1 arrays

can be made with optimum correlation. However, a large
number p+1C(p+1)/2 of perfect autocorrelation arrays can
be made by pseudorandom inversion of the signs of half
of the 1D projections, and we can examine the distribu-
tion of cross-correlations for these sub-optimal cases.
The results are surprisingly similar to the p = 4k-1 case.
The distribution of cross-correlations is more complex,
as there are no orthogonal binary sequences of length
4k + 2. As the cross-correlations are no longer equally
balanced in sign, the center cross-correlation value is

Table 2 Distribution of cross-correlation values between family A and p p × p equivalent Hadamard variant

p = 4k-1 Frequency of increasing cross-correlation level

1 2 3 4 5 6 7 8 9 10

7 0.5182 0.4519 0.0299 0 0 0

11 0.4324 0.4879 0.0774 0.0023 0 0 0

19 0.3443 0.4769 0.1556 0.0222 0.001 0 0 0

23 0.3158 0.4639 0.1812 0.0358 0.0032 0.0001 6E-06 0 0

31 0.2755 0.4354 0.2135 0.0635 0.011 0.001 5E-05 9E-07 0

43 0.2356 0.396 0.2381 0.0979 0.0275 0.005 0.0006 0.0001 0 0

47 0.2283 0.3857 0.2373 0.1064 0.0335 0.0075 0.0013 0.0001

59 0.2041 0.3571 0.2416 0.1271 0.0508 0.0154 0.0033 0.0005 0 0

67 0.1913 0.3419 0.2417 0.1361 0.0606 0.0211 0.0058 0.0012 0.0002 4E-05

71 0.1862 0.3342 0.2416 0.1397 0.0648 0.0243 0.0071 0.0017 0.0003 0

79 0.1766 0.3206 0.2393 0.1464 0.0736 0.0301 0.01 0.0027 0.0006 0.0001

83 0.1721 0.3148 0.2386 0.1486 0.0764 0.0337 0.0115 0.0034 0.0079 0.0014

103 0.1546 0.2888 0.2302 0.1567 0.0924 0.0467 0.0201 0.0072 0.0024 0.0006

127 0.1404 0.2637 0.2189 0.1614 0.1042 0.06 0.0302 0.0135 0.0052 0.0018

131 0.1375 0.2606 0.2166 0.1622 0.1059 0.0626 0.0315 0.0144 0.0058 0.002

139 0.1342 0.2531 0.2147 0.1618 0.109 0.0645 0.0349 0.0166 0.0072 0.0026

151 0.1278 0.2438 0.2109 0.1586 0.114 0.0718 0.0395 0.0189 0.0094 0.0035

199 0.1118 0.2168 0.1927 0.1565 0.119 0.0832 0.0537 0.0325 0.0178 0.0091

The correlation is optimally low in the second left column and increases with each column to the right. The entries in italics mark the level at each p where the
cross-correlation becomes an autocorrelation. The sum of the entries on each row is normalized to 1. Bold entries mark the array size p where the maximum
frequency for level i occurs

Table 3 Frequency distribution for the number of sign changes between equivalent Hadamard matrices

p 0 1 2 3 4 5 6 7 8

19 0.367167 0.54284 0.067909 0.017541 0.003751 0.000664 0.00011 0.000017 0.000001

23 0.36764376 0.54392703 0.06669008 0.01737125 0.00362844 0.00063027 0.00009564 0.00001197 0.00000136

31 0.368055 0.545614 0.065292 0.016755 0.003587 0.000598 0.000084 0.000014 0.000001

71 0.367799 0.548824 0.063183 0.0162 0.003383 0.000518 0.000077 0.000015 0.000001

127 0.367731 0.550441 0.062346 0.015706 0.003159 0.000544 0.000061 0.000011 0.000001

199 0.36784095 0.55094903 0.06192199 0.01555615 0.00312504 0.0005226 0.00007395 0.00000912 0.00000103

307 0.367281 0.551637 0.061785 0.015528 0.003128 0.000551 0.000082 0.000007 0.000001

419 0.368032 0.551334 0.0616 0.015369 0.00306 0.000521 0.000072 0.000011 0.000001

499 0.367942 0.551026 0.061757 0.015476 0.003181 0.000536 0.000075 0.000007 0

The sum of the entries on each row is normalized to 1. For p = 23, at level 2 there are 3 × 24 = 72 sign changes between equivalent Hadamard matrices and this
happens for 6.67% of shuffles. Note that the most frequent result, for all p, is when the number of toggles is the same as for a parent to child shuffle (level 1,
which happens in about 55% of all shuffles)
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not 0, as it is for p = 4k-1. The off-peak entries for p = 4k
+ 1 come from arrays with unbalanced pairs of projections
hence the cross-correlation values can be ± (p-2i) apart,
leading to a wider range of cross-correlation values. The
distribution of these values falls to 0 at a similar rate to
4k-1 primes. There is a penalty in building families of 2D
perfect arrays from p = 4k + 1 primes, but it is not prohibi-
tive, as demonstrated in Section 3.
Figure 3 shows one member Ai from a family of 5 5 ×

5 arrays, the 5 × 6 set of 1D FRT projections used to
make this array and the pseudo-Hadamard 6 × 6 matrix
used to generate a family of perfect arrays. All 4k + 1
pseudo-Hadamard matrices generated in this way have
balanced off-diagonal entries of ±2 (apart from the trivial
leading row and column). The cross-correlations be-
tween family members for p = 4k + 1 arrays are all
next-to-optimal (optimal values in Fig. 3 (f ) would be
±5 and 0 center).

3.4 Correlations between extended families
Cross-correlations between two extended families of ar-
rays were examined to verify the construction method
developed in Section 2. Two independent extended fam-
ilies (A and B) of 31 × 31 arrays were generated. Each
extended family comprised 16 sets of 31 perfect autocor-
relation, optimal cross-correlation, making a total of
16 × 31 = 468 2D arrays per family. Each 31 × 31 × 468
array could uniquely watermark every frame in 16 s of
30 fps video.

There are 246,016 cross-matched possible between
members of family A with members of family B. Table 4
gives the result observed for two pairs of such families,
the first pair generated by random selection of equiva-
lent Hadamard matrices. The second pair had the
equivalent Hadamard matrices selected to have match-
ing number of sign toggle differences. This was repeated
for pairs of extended families containing 121 11 × 11 ar-
rays. The results in Table 4 are consistent with the stat-
istical distributions in Table 2.

4 Watermark embedding and extraction
Imperceptible spread-spectrum watermarks are typically
embedded by adding a conveniently scaled watermark
value to the raw data or in a transform domain. Some
transforms are more useful than others, especially if they
make use of the masking properties of the human visual
system or the human auditory system. This makes em-
bedded watermarks less perceptible. Also, embedding in
some transform domains makes the watermark more
compatible with common compression algorithms and
consequently, more robust. A typical embedding scheme
for images is illustrated in Fig. 4.
The watermark data is embedded as cyclic shift of the

embedded array. For example, for p = 257, an array can
contain two ASCII characters. We mark our images and
video in the Luma channel only. This is because some
images or video are greyscale only. Also, the watermark
should survive conversions of colour format and Luma
is the most robust.

Fig. 3 a The 6 × 6 pseudo-Hadamard H6. b The matrix product H6*H6
T is quasi-orthogonal (c.f. Fig. 2a, b). c A set of six spectrally flat 1D FRT projections for

p = 5. Here, the pattern of signs for each 1D projection is fixed by row 2 of (a). Four other distinct FRTs can be built using rows 3–6 of (a). d The inverse
FRT of (c) is a perfect pn array. Each of the 5 5 × 5 arrays exhibits perfect autocorrelation, as shown in (e), but the 10 cross-correlations
between these arrays, (f), are next-to-optimal (c.f. Fig. 2f)
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Watermarks are typically extracted by correlating a
template of the mark with the watermarked data. The
extraction process is illustrated schematically in Fig. 5.
The process of correlation is described in equation 1

Watermarks also depend on the dimensionality of the
data, or the transform domain. Video can be considered
as 3D as in [13] or 2D if individual frames are marked in-
dependently. Watermarks may be used for different pur-
poses—copyright protection or proof of ownership or
authentication, audit trail, proof of tampering, etc. Conse-
quently, watermarks can be classified as robust, fragile or
semi-fragile [23]. An ideal robust watermark is one that
resists all distortions and other attempts to remove it. A
fragile watermark, on the other hand, can act as a check-
sum, so that any change will render it unreadable. This
would apply to authentication. Many semi-fragile image
watermarks are still recoverable after change, but will
reveal the regions of an image that were changed. This
might be useful, for example, in newsreel photograph-
s—indeed, digital cameras now exist which embed such a
watermark automatically. Many of the watermarking

algorithms initially published required that the original
data be available to the detector. It would typically be sub-
tracted from the watermarked data to reveal the water-
mark itself. These are referred to as private watermarks.
Watermark detectors that do not need the original have
been called blind detectors.
The extraction process can be augmented by matched

filtering for the watermark. This is because, ideally, the
correlation of the watermark should be a delta function.
A Laplacian kernel is a good example. 2D and 3D ker-
nels are shown below

L2D ¼ 1
8

−1 −1 −1
−1 8 −1
−1 −1 −1

2
4

3
5

L3D ¼ 1
26

−1 −1 −1
−1 −1 −1
−1 −1 −1

⋮
−1 −1 −1
−1 26 −1
−1 −1 −1

⋮
−1 −1 −1
−1 −1 −1
−1 −1 −1

2
4

3
5

It is also possible to suppress the image contribution
to the correlation by performing averaging functions.
The objective perceptibility of a watermark is usually

measured by PSNR (peak signal to noise ratio), which is
defined for images

PSNR ¼ 10log10
MAX2I
MSE

Where MAXI is the maximum possible value of the
image and MSE is the mean square error. The PSNR is
dependent on the video data, and the compression and
decompression implementation. This is because intra-
frame and inter-frame compression introduce different

Table 4 Cross-correlation statistics, ordered by increasing levels of
cross-correlation value, between two families that each contain

Level 1 2 3 4 5 6 7 8 9

(a) 67,614 107,373 52,510 15,512 2715 279 13 0 0

(b) 67,444 107,512 52,528 15,548 2695 276 9 0 0

(c) 6284 7193 1138 26

(d) 6269 7223 1117 32

a 468 random 31 × 31 arrays, b 468 matched equivalent Hadamard 31 × 31
arrays, c 121 random 11 × 11 arrays, d 121 matched equivalent Hadamard
11 × 11 arrays

Fig. 4 Watermark embedding scheme
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artefacts. In our experiments, we used H264 compres-
sion. We found that an MS Windows-based decompres-
sion introduced variable frame delays before stable
acquisition of motion vectors, and this caused fluctua-
tions in PSNR measurements. Analysis of the PSNR of
our video watermark will be undertaken elsewhere. Our
scheme affects a variable proportion of all pixels, by add-
ing or subtracting an LSB. Consequently, the PSNR for
uncompressed video is always above 48.13 dB. Not all
the image frames are marked, to reduce motion vector
artefacts. Each image frame is marked in blocks com-
mensurate with H264 compression, with some blocks
remaining unmarked. Also, the block boundaries are
graded, to reduce intra-frame compression artefacts. A
pseudorandom selection of about 50% of pixels within a
block are marked, to increase effective PSNR to above
51 dB. However, as Fig. 6. shows, the effects introduced
by the watermark in compressed video are commensur-
ate with those introduced by compression artefacts
alone. It was not known if the choice of marking blocks
commensurate with compression blocks could cause the
portions of our arrays to appear in compressed video.
This would be of concern, because it could reveal our
array constructions to an attacker. Fortunately, as Fig. 6
demonstrates, that is not the case.
This is as expected, because our watermark is confined

to LSB modification. We plan to implement a similar
strategy to our video watermarks as to our still image
version (https://watermarking-print-and-scan.fireba-
seapp.com/opening). This involves the embedding of
two watermarks—a robust one in pixel domain to act as
proof of watermarking and registration/synchronization
for a frequency domain mark, which is fragile. Detection

of the robust one alone indicates tampering, detection of
both is proof of authenticity. The original concept of the
dual mark is explained for audio watermarks in [24].
There are few genuine video watermarks. The ATSC is

effectively relying on the audio component of video to
provide copyright protection, on the assumption that
video is always accompanied by audio. Of course, audio
can be substituted, dubbed or otherwise remixed. The
video watermark in the standard is a token—confined to
the first two lines of the video, which are made inaccess-
ible to the user. The principal objective of such a water-
mark is to provide content identification and monitoring
for set top boxes.

The video watermarking technology specified herein
involves modulation of the luma component of
video within the top two lines of active video in
each video frame. Two encoding options are offered,
one providing a watermark payload of 30 bytes per
video frame (a “1X”version), and the second “2X”
version offering double that capacity. Visibility of
this video watermark is not anticipated to be an
issue because ATSC 3.0-aware receivers are
expected to be designed with the knowledge that the
top two lines of active video may include this
watermark, and will thus avoid displaying (by any
means desired). The majority of HD TV display
systems in use at the time of publication operate by
default in an “overscan” mode in which only the
central ~95% of video lines are displayed. Thus, if
watermarked video is delivered to a non-ATSC 3.0-
aware receiver, the watermark would not normally
be seen [25].

Fig. 5 Watermark extraction process
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There are companies offering video watermarks which
are not separable from the video stream. Most if not all
rely on a concept introduced by Digimarc®, a pioneer in
the commercial watermarking area, embodied in patents
such as [26, 27]. Typically, these embed a pseudorandom
sequence generated by a random number generator
(RNG) in the video stream or a transform of it. This sto-
chastic method has a fundamental limitation. There is no
guarantee that any pseudorandom sequence generated by
a RNG is unique. Licensees of the Digimarc method test
pseudorandom sequences using cross-correlation to en-
sure that their watermarks are sufficiently distinct.
By contrast, our algebraic method guarantees that all

our watermarks are unique by construction. Families of
sequences or arrays have correlations whose maximum
value has a lower bound, which depends on sequence
length/array size (L), family size (F) and type of symbol
used (alphabet). For binary and other roots of unity
alphabet, the Sidelnikov bound applies [18], while for
general complex valued alphabet, the Welch bound is
appropriate [17]. These bounds are complicated, but a
graphical interpretation is possible as shown in Fig. 7.
Our arrays meet the bound, as indicated in the figure.

Consequently, our watermarks attain the lowest possible
false detection rates because of the low cross-correlation,
and the lowest missed detection rate, because of the off-
peak autocorrelation being −1. The low cross-correlation
also permits the embedding of multiple arrays in the same
media, to increase data payload.
Of course, false or missed detection can still occur,

due to high cross-correlation with image data, but it is
very unlikely that the image resembles our arrays, and
anyway the image content is outside our control. Our
online watermarking app (https://watermarking-print-
and-scan.firebaseapp.com/opening) has an image ana-
lysis package which tests the suitability of an image for

watermarking, and images with high cross-correlation
with our arrays are rejected. As mentioned, our image
and audio watermarks are composed of two compo-
nents—spatial and Fourier domain for images and time
domain and frequency domain for audio. It is extremely
unlikely for the media to resemble our arrays in both do-
mains simultaneously.
Also, there are some advantages to the stochastic

watermark using a RNG. It is more difficult to reverse
engineer, because the search space for the RNG seed can
be prohibitive. We have developed a method of combin-
ing our arrays constructed using Finite Field algebra with
stochastically generated ones, to match the security of the
RNG method. This will be described in a future paper.
Our algebraically generated families of arrays are scal-

able in size and available for all even dimensions. Video
can be considered as three dimensional, with time, or
frame number taking the role of the third dimension.
The audio stream can be folded and appended as a
fourth dimension. Such a 4D multimedia watermark can
be useful in determining if the video, audio or audio
sync has been tampered with. The authenticity of audio-
visual evidence, including audio synchronization has
been a critical and contentious issue in criminal trials
and investigations, such as in (https://www.tamilsa-
gainstgenocide.org/Docs/DublinTribunal/TAG-PPT-
Extra-judicial%20Executions.pdf ).

5 3D video watermarking
Online video piracy costs premium entertainment com-
panies over $ 6 billion each year. SMPTE (Society of
Motion Picture & Television Engineers) and ATSC (Ad-
vanced Television Systems Committee) have identified
video watermarking and fingerprinting as a frontline
defense against such piracy. Content monitoring is an
additional benefit of watermarks and fingerprints, and

Fig. 6 Left unmarked frame, right marked frame
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advertising companies are becoming aware of this as a
means of offering directed advertising. SMPTE is in the
process of developing a video watermarking standard
through their competition to establish a standard for the
movie industry ‘24 TB Open binding technology for per-
sistent content identification in A/V essence’. ATSC is
further down the track into adopting standard A/335 for
video watermarks and A/334 for audio watermarks.
The anti-piracy and directed advertising objectives im-

pose challenging requirements on the video watermark.
The watermark must be imperceptible, and yet capable of
extraction from a 2-s video clip. Originally, the SMPTE
watermark was required to be extracted from a 30-s video
clip. In response to the original 30-s requirement, our
group developed an embedding, extraction and analysis
package for 3D video watermarking of H264 videos. De-
tails of these will be presented elsewhere.
The arrays used for embedding and extraction were

the two types described by the patent [28]. They were
constructed using Finite Field algebra and were of the
form p × p × (p2 − 1). p = 17 was chosen to be commen-
surate with the largest intra-frame macroblock sizes
used in H264 compression. The long dimension was the
frame index. For a 25-fps rate, the complete array fills a
time slot of 11.52 s, assuming no averaging is involved
i.e. every frame is marked with a different plane of the
3D array. This is far too long for the current require-
ment of a 2-s clip.
The large families of small cubic arrays presented in

this paper solve this problem. Here, we show how we
propose to do this. First, we present some results dem-
onstrating the feasibility and effectiveness of our method
of watermarking and use of arrays produced by our con-
structions. The first requirement of watermarking is im-
perceptibility. The left of Fig. 3 shows a frame from an

unmarked video, while the right shows the same frame
after marking with the array described above. The com-
pression artefacts due to H264 processing in the left
frame are not too dissimilar to the patterns due to the
watermark, which are superimposed on the compression
artefacts in the watermarked frame on the right. The
frames were quite dark, and the intensity curves had to
be adjusted to bring out the patterns. This resulted in a
mismatch in contrast and hue. There were also H264
synchronization issues, due to variable buffer delays in
Windows, which resulted in loss of sync between I
frames within a GOP. All the same, Fig. 6. demonstrates
that the watermark was unobtrusive or even impercept-
ible. The second requirement of watermarking is that
the watermark can be successfully extracted from the
media in which it was embedded with sufficiently low
probability of missed or false detection. Figure 1 shows an
unmistakable autocorrelation peak, which is clearly distin-
guishable from the cross-correlation with the video. These
results were obtained without matched filtering.
Here, the array is of the form 17 × 17 × 288 i.e. a

volume of 83,232. Analysis suggests that this is charac-
teristic of a Peak/σ ratio (SNR) of 7.2. Consequently, an
off-peak autocorrelation, or a cross-correlation (RMS) of
the order of 1/96.3 of the peak autocorrelation i.e.
(1936) has insignificant effect on the probabilities of
false or missed detection. This changes the SNR from
7.2 to 7.18. This changes the probability of missed/false
detection from 2.2E-12 to 2.54E-12.

5.1 Implementation
We developed three modules to implement and test our
watermarking scheme.

1 A watermark array generator.

Fig. 7 Normalized correlation bound versus family size and alphabet (adapted from [30])

Svalbe and Tirkel EURASIP Journal on Advances in Signal Processing  (2017) 2017:18 Page 15 of 19



This was developed using Wolfram Mathematica 10 ®
and subsequently implemented in C++ and VHDL for
ready transfer into FPGA’s. The generator also produces
other proprietary arrays and sequences for audio, image,
video watermarking and for wireless communications,
radar, UWB and MIMO systems. This generator is a
general utility for evaluation of all these sequences and
arrays. In terms of the specific implementation of the
arrays described in this paper, it is trivial. It relies on a
look-up table (LUT) of binary Hadamard matrices
commensurate with the size of the image and apply-
ing the rows of such a Hadamard matrix to the pro-
jections of the array.

2 A video watermark embedding module using an
Avisynth platform as illustrated in Fig. 8.

3 This user-friendly interface permits the user to
embed chosen arrays in chosen video frames.

A screen capture of the GUI is shown in Fig. 9. The
watermark embedding strength, persistence and the antic-
ipated video compression are all user adjustable. Most of
the controls in this screen are self-evident and are com-
monly used. This includes the REC, STOP, PAUSE, PLAY
buttons, except that here the PLAY button also shows the
extraction result of an embedded watermark as superim-
posed text, and the REC button also embeds a watermark.

4 A video watermark analyser module.

This displays frame by frame correlation of the water-
marked video with the reference array and the statistics
regarding the correlation peak height and its detailed
statistics. This is also based on Avisynth platform.

Examples of the analytics available from this utility are
shown in Fig. 10.

5.2 Proposed cubical construction
We propose to use cubical arrays using p = 37. At 25 fps,
this corresponds to 1.48 s assuming no averaging. This is
in line with the SMPTE and ATSC standard being nego-
tiated currently. The volume is 50,653. It is expected that
the cross-correlation behavior with the marked video will
be similar to that described in Section 3.3.. Consequently,
the Peak/σ ratio (SNR) is expected to be 5.6. The corre-
sponding probability of error is 6.6 × 10− 7. Let the effect
of including an off-peak autocorrelation or cross-
correlation with another array to affect the probability of
error by less than 5%. The RMS autocorrelation cross-
correlation should be constrained to less than 1

82:8 of the
peak. This is commensurate with the array for p = 31 in
Fig. 7, which shows a normalized RMS autocorrelation
and cross-correlation of approximately 1%.

5.3 Constructed versus random arrays
A random array of volume 83,232 has an autocorrelation
with standard deviation σ = 288.5. A video can accom-
modate 3σ before any measured deterioration of the de-
tection statistics is observed. For a random array, the
probability of an autocorrelation exceeding 3σ is
0.00443. The cross-correlation is expected to behave in a
similar manner. Our construction can use a spectrum
which includes 3 levels before it runs out of family
members. Each of our levels is of order σ. The number
of our arrays with autocorrelation and cross-correlation
bounded by 3σ is of order of 24 million. The probability
that a RNG will deliver that number without exceeding

Fig. 8 The frame-serving process as implemented by Avisynth
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the threshold is of order 10−46,061 i.e. it is certain that it
will fail. In fact, it takes 156 runs of a RNG for a 50%
probability of exceeding the threshold. The RNG users
cannot ‘filter’ based on bad correlations, because they
cannot perform that many correlations. By contrast, we
can deliver nearly 24 million arrays by construction, with
absolute certainty that they will not significantly degrade
the probability of correct detection.

6 Conclusions
6.1 Conclusion
Previous work [6] presented a method to construct a
family of p × p arrays that contained p members. These
arrays have perfect autocorrelation and optimally low
cross-correlation between any pair of family members.
The array size p was a 4k-1 prime. This paper presents
new methods to extend the size of these families of 2D
arrays. Large families of arrays having this combination
of properties are highly unusual. We first show how to
produce disjoint families from an existing family, where
each new family contains p-1 members. We then show
that multiple disjoint families, each of size p, can be con-
structed using equivalent Hadamard matrices. The
members of these families all retain perfect autocorrel-
ation and optimally low intra-family cross-correlation.
The inter-family cross-correlations are then shown to

be next-to-optimally low. This means the distribution of
periodic cross-correlation values shifts from full occupa-
tion of the lowest possible values to partial occupation
of that level and partial occupation of the adjacent next-
to-lowest levels. For aperiodic cross-correlations, the

shift in this distribution has marginal statistical signifi-
cance. We exploit the stability of these statistics to con-
struct families of size np, where n can be of order p. The
risk of creating accidental strong cross-correlations
between the extended families of these arrays is excep-
tionally small for p > 11. We show that nearly optimal
families of size p, with p = 4k + 1 prime, can be generated
using pseudo-Hadamard matrices. These constructions
make use of discrete projective geometry, Hadamard
matrices and Finite Fields. We have prospective applica-
tions for these families of 2D arrays to watermark di-
verse forms of digital media.

6.2 Future work
The first idea used in this work is the reconstruction of
a p × p array from sets of p + 1 discrete 1D FRT projec-
tions. Here, each 1D projection is spectrally flat i.e. per-
fect autocorrelation sequence. We could equally well
substitute spectrally flat pseudo-noise sequences in place
of the spectrally flat delta functions used here. The
structure of these families of arrays, which we call
phase-shifted arrays, has some significant differences
from the extended families of arrays presented here.
That work will be presented in a forthcoming paper.
We can also reconstruct 3D perfect arrays from sets of

1D perfect projections. The 3D approach requires p2 + p
+ 1 spectrally flat 1D sequences. We can apply the 3D
inverse FRT to create individual p × p × p arrays that
have perfect autocorrelation. However, to build a family
of such arrays requires application of the second key
idea in this paper: that the 1D sequences be maximally

Fig. 9 Watermark Embedder and Player GUI
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different in the Hadamard sense. As the number of 1D
projections needed for 3D arrays is odd (for all primes),
a family of p × p × p arrays with optimally low periodic
cross-correlations is not possible. We are continuing to
examine the distribution of cross-correlation values ob-
tained after using different methods of making a family
of FRT arrays that are as different as possible. In 4D,
where p3 + p2 + p + 1 discrete FRT projections are needed,
the maximally different approach using Hadamard matri-
ces again becomes possible for any prime size p.
The arrays constructed here have physical counter-

parts as finite 2D planes that contain various arrange-
ments of atoms, where each atom has a quantized spin.
The Bernasconi model [29] showed that 1D binary
chains with maximal autocorrelation correspond to

atoms arranged in their lowest energy levels (ground
states). The real signed integer elements of the 2D arrays
made here can be interpreted to be spins with different
z-projected values that scale the strength of their inter-
actions. The optimally low cross-correlation between
pairs of arrays within a family can be considered to rep-
resent stacks of planes of atoms into 3D structures that
have minimal energy.
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