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Abstract

Compressive sensing (CS) has been a way to lower sampling rate leading to data reduction for processing
in multiple-input multiple-output (MIMO) radar systems. In this paper, we further reduce the computational
complexity of a pulse-Doppler collocated MIMO radar by introducing a two-dimensional (2D) compressive
sensing. To do so, we first introduce a new 2D formulation for the compressed received signals and then
we propose a new measurement matrix design for our 2D compressive sensing model that is based on
minimizing the coherence of sensing matrix using gradient descent algorithm. The simulation results show
that our proposed 2D measurement matrix design using gradient decent algorithm (2D-MMDGD) has much
lower computational complexity compared to one-dimensional (1D) methods while having better performance in
comparison with conventional methods such as Gaussian random measurement matrix.

Keywords: Compressive sensing, Measurement matrix, Multiple-input multiple-output (MIMO) radar, Sensing matrix,
Two-dimensional sparse signal model

1 Introduction
Compressive sensing (CS) is a signal processing method
for reconstructing a signal that is sparse in a specific
domain [1, 2]. In the past two decades, much research
in various disciplines such as mathematics, statistics,
signal processing, and communication systems has been
conducted in CS topic in order to exploit its advantages
for a wide range of applications. For example, analog-
to-information conversion [3], remote sensing [4],
channel estimation in the communication systems [5],
medical imaging [6], and image reconstruction [7] are
some of these applications.
In CS, the main goal is to find the sparsest vector s

that satisfies an underdetermined system of linear equa-
tions y =ΦΨs, in which the number of variables is much
larger than the number of equations, where y is the
measurement vector, Φ is the measurement matrix, and
Ψ is the basis matrix. It can be formulated in mathe-
matic language as, minimize ‖s‖0, subject to y = ΦΨs,
where ‖ ⋅ ‖0 is l0-norm and A =ΦΨ is called the sensing
matrix. The l0-norm calculates the number of non-zero

components of a vector. To solve this problem, we need
a combinatorial search to find the minimum l0-norm,
which is an NP-hard problem. One of the solutions
proposed for this problem is to replace l0-norm with
l1-norm and convert the problem to a convex one. A
famous algorithm that minimizes l1-norm is basis pur-
suit (BP) [8].
Some applications of compressive sensing in radar

systems have been recently studied in [9–11]. In [12],
the direction of arrival (DOA) of the signal is estimated
using CS for communication systems. In order to esti-
mate the desired parameters in CS radar, it should be
assumed that the number of targets to be found is
much smaller than the whole number of radar bins,
which is the case in most practical radar applications.
Multiple-input multiple-output (MIMO) radar systems

have received the attention of many researchers in re-
cent years. There are two different types of MIMO radar
systems which are categorized according to their anten-
nas configuration. In the first type, the antennas are
widely separated from each other relative to their dis-
tance to the target [13]. In the second one, which is con-
sidered in this paper, the antennas are collocated and
located close to each other [14].
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In [15], the sparse signal model of MIMO radar is
derived using only one incoming pulse. Furthermore, a
sparse learning via iterative minimization (SLIM) algorithm
is developed and compared to other sparse methods such
as iterative adaptive approach (IAA) [16]. The main
drawback of SLIM algorithm in [15] is that its compu-
tational complexity will be very high for pulse-Doppler
MIMO radars.
Recently, a new signal model with two-dimensional

(2D) sparse parameters, called 2D sparse signal model,
has been introduced [17, 18], and some algorithms for
2D sparse reconstruction have been proposed [19–24].
Specifically, in [19], the 2D version of IAA is derived in
which its computational cost is drastically reduced in
comparison with the one-dimensional (1D) IAA. The
other 2D sparse recovery algorithm is the smoothed L0
(SL0) algorithm that minimizes an approximated l0-
norm function [20] and has much lower computational
complexity than its 1D counterpart. In [21], a 2D sparse
signal model for a radar is obtained and solved by 2D-
SL0 algorithm with acceptable results. Also, 2D-SLIM
[22], 2D Truncated Newton Interior Point Method (2D-
TNIPM) [23], and 2D Sparse Bayesian Learning using
Laplace Prior (2D-SBL-LP) [24] have been proposed for
pulse Doppler MIMO radars. These papers have demon-
strated that the 2D proposed algorithms have much less
computational complexity compared to corresponding
1D sparse recovery algorithms.
The main goal of sparsity-based methods for MIMO

radar systems ([21–24]) is to achieve accurate estimates
for target parameters, whereas in this paper, we mainly
focus on the CS MIMO radar problem to reduce the
sampling rate lower than the Nyquist criterion by de-
signing a suitable measurement matrix. Therefore, the
main difference between our 2D CS MIMO radar signal
model and 2D sparse model in [21–24] is that we con-
sider the measurement matrices in our model in which
these measurement matrices can be applied on receivers
and received pulses, separately.
In [18], a 2D CS signal model has been proposed for

inverse synthetic aperture radar (ISAR) imaging radar in
which a random sub-sampling in both range and
azimuth dimensions is utilized. Also, a 2D CS image
reconstruction algorithm based on iterative gradient
projection is derived in [25].
Compressive sensing for MIMO radar systems is

proposed and analyzed in [26, 27]. A MIMO radar,
which is one of the most practical applications of
MIMO systems, transmits some independent wave-
forms by its transmit antennas and has superior spatial
resolution compared to traditional radar systems. CS
in MIMO radar has the ability to achieve the same
localization performance as the traditional methods
while using much lower number of measurements,

which is achieved by applying a measurement matrix
to the normally measured samples.
In CS, the measurement matrix has a key role in the

performance of sparse signal recovery algorithm. Therefore,
we can improve the performance of target detection in CS
MIMO radar by designing a suitable measurement matrix.
The conventional approach for choosing this matrix is a
Gaussian random measurement matrix (GRMM) which is
not necessarily the best one for CS. According to [28], if
the mutual coherence (MC) that is the maximum value of
pairwise correlation among the columns of A is small, the
sparse signal can be recovered with high probability. Re-
cently, some measurement matrix design methods have
been proposed based on minimizing the MC of the sensing
matrix [29–31]. Elad [29] designed the measurement matrix
based on mutual coherence minimization using a shrinkage
operation. Duarte-Carvajalino [30] optimized the meas-
urement matrix and basis matrix jointly by a KSVD-
based algorithm. However, these methods are adapted
for real signals and also have many parameters that
should be set properly.
In [31], a gradient descent method is used to minimize

the MC of A which is described as the absolute off-
diagonal elements of the Gram matrix. It is shown that
this method can achieve higher sparse reconstruction
performance compared to previous methods. In our
paper, we extend this method to a complex CS MIMO
radar signal and decrease the computational complexity
by proposing a 2D CS MIMO radar signal model. In
[32], a method for optimizing the measurement matrix
of MIMO radar systems is proposed based on two differ-
ent criterions; first one is to minimize the summation of
coherence of cross columns in the sensing matrix plus
maximize the signal-to-interference ratio (SCSM + SIR),
and the second criterion is to maximize SIR by imposing
a special structure on the measurement matrix. How-
ever, both methods are suboptimal solutions and may
not have acceptable performance in different situations.
In this paper, we introduce a 2D signal model in CS

for a collocated MIMO radar with point targets, and
then we improve the efficiency of this 2D MIMO radar
model by proposing a measurement matrix design using
gradient decent algorithm (MMDGD) in which the MC
of sensing matrix is minimized. We call the proposed
method as 2D-MMDGD.
The gradient descent algorithm is popular for very

large-scale optimization problems due to its simplicity of
the implementation and its low computational load. Al-
though our proposed 2D-MMDGD method leads to a
nonlinear problem and there is no guarantee that we
find its global minimum, its performance is always better
than GRMM. The reason is that we use GRMM as an
initial value of our proposed algorithm; therefore, the
designed matrix will have less mutual coherence and
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consequently better performance compared to its initial
value, i.e., GRMM. Simulation results show that our pro-
posed 2D-MMDGD performs much better than GRMM,
SIR, and SCSM + SIR methods.
The rest of the paper is organized as follows. Sections 2

and 3 describe the 1D and 2D CS signal model of the
MIMO Radar, respectively. In Section 4, we propose a
measurement matrix design for 1D and 2D CS model
using gradient decent algorithm. The computational
complexity of the proposed methods is discussed in Sec-
tion 5. Simulation results are given in section 6. Finally,
we have conclusions in section 7.
Notations: Lower case and capital letters in bold de-

note vectors and matrices. Superscripts (.)T, (.)H denote
the transpose and Hermitian transpose of a matrix, re-
spectively. 0M ×N denotes an M ×N matrix with all zero
elements and IN denotes an N ×N identity matrix. Also,
‖. ‖2 and ‖. ‖F denote the square and Frobenius norm of
a vector/matrix, respectively. The operator ⊗, var(.), and
E(.) are the Kronecker product, variance, and expect-
ation of a random variable, respectively.

2 1D-CS signal model of MIMO radar
In this section, we describe the 1D signal model of a CS
pulse-Doppler MIMO radar. In this model, we assume
that one period of Doppler frequencies of targets spans a
duration of several received pulses. It means that fdτ ≪ 1,
where fd and τ are the Doppler shift frequency and the
pulsewidth, respectively. If fc is the carrier frequency,
this assumption can be written as fr≪ B≪ fc, where fr is
the radar pulse repetition frequency (PRF) and B is the
bandwidth of the transmitted signal. Based on this as-
sumption, the Doppler effect on each pulse is simply a
phase shift. We assume that Doppler shift frequency is

in the interval −f r
2 ;

f r
2

h �
and the targets are located behind

the maximum unambiguous range. Suppose that the
Doppler frequency of interest divided into Nd bins:

f d ¼ −
f r
2
þ f r d−1ð Þ

Nd
ð1Þ

where d is the Doppler index and d = 1, 2,⋯,Nd. The
Doppler phase shift over one pulse period for the dth
Doppler bin is obtained as

θd ¼ 2πf d
f r

ð2Þ

The transmitted signal samples of all antennas can be
put together in a matrix as

V ¼ ½v1⋅⋅⋅vMt � ð3Þ

where vi ∈ ℂ
L × 1, i = 1,…,Mt is the samples of the

transmitted signal with length L by the ith antenna (for
a total of Mt transmit antennas).
Without loss of generality, a uniform linear array for

the transmit and receive antenna arrays has been used in
our model and simulations in this paper.
Suppose that the number of range bins is Nr in the

radar surveillance area, then the largest possible delay
between the transmit and receive pulses is (Nr − 1).
We consider the number of the angle bins of the an-

tenna array to be Na and the angle bins are αaf gN a
a¼1. The

transmit and receive antenna array steering vectors of
the ath angle bin are shown, respectively, as aa∈CMt�1 ,
ba∈CMr�1:

aa ¼
1 e

−
j2πΔt sin αað Þ

λ0 ⋯ e
−
j2π Mt−1ð ÞΔt sin αað Þ

λ0

" #T
ð4Þ

and

ba ¼
1 e

−
j2πΔr sin αað Þ

λ0 ⋯ e
−
j2π Mr−1ð ÞΔr sin αað Þ

λ0

" #T
ð5Þ

where Δt and Δr are the distance between elements of
transmit and receive antennas, respectively, and λ0 is the
signal of transmitting wavelength.
The compressed received signal in the mth antenna

returned from the pth transmitted pulse can be arranged
in an observation vector, ypm ∈ ℂM × 1 as follows:

ypm ¼ φpm

XNr

r¼1

XNa

a¼1

XNd

d¼1

sr;a;de
jðp−1Þθd J rVaae

−j2πðm−1ÞΔr sinðαaÞ
λ0 þ npm

ð6Þ

where φpm∈ℂ
M�~L is the measurement matrix applied on

the pth pulse and mth receive antenna for p = 1,…, Np

and m = 1,…, Mr, and Le ¼ Lþ Nr−1 . The parameters
M, Np, and Mr are the length of observation vector
(compressed observations), the number of pulses, and
receive antennas, respectively. It is noted that for com-
pressive sensing scenario, we have M < ~L.
The vector npm = φpmepm is the additive noise for the

mth receive antenna and pth pulse and epm∈ℂ
~L�1 is the

receiver noise with complex Gaussian random distribu-
tion, with zero mean and covariance matrix I ~L . As it is
noted, the noise covariance matrix npm is φpmφ

H
pm.

The matrix J r∈ℂ
~L�L is a time-shift matrix which

returns the shifted version of the transmitted signal for
the rth range bin. In fact, Jr time-shifts the transmitted
signals and extends them up to the maximum received
signal duration (by zero-padding) and it is defined as
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J r ¼
0 r−1ð Þ�L

IL
0 Nr−rð Þ�L

24 35: ð7Þ

Parameters {sr,a,d} (r = 1,…, Nr , a = 1,…, Na and d = 1,
…, Nd) denote the return coefficients from targets in the
radar interest area, where sr,a,d = βk if the kth target is lo-
cated at the (r, a, d)th bin and sr,a,d = 0 otherwise. In gen-
eral, βk is a complex number corresponding to the radar
cross section of the kth target (k = 1, 2,…, Nt), and Nt is
the number of targets.
Now, the received signal samples from the mth receive

antenna returned from the pth transmitted pulse can be
written as

ypm ¼ φpm ψpmsþ npm ð8Þ
where s ∈ℂN × 1 is a sparse vector which has Nt≪N non-
zero elements, N =NrNaNd, and ψpm ¼ θTp⊗Hm∈ℂL˜�N is
the basis matrix for the mth receiver during the pth pulse,
⊗ is the Kronecker multiplication, and

hm r;að Þ ¼ J rVaae
−j2π m−1ð ÞΔr sin αað Þ

λ0 ∈ℂ~L�1; ð9Þ

Hm ¼ hm 1;1ð Þ hm 1;2ð Þ ⋯hm Nr ;Nað Þ
� �

∈ℂ~L�NrNa ; ð10Þ
sd ¼ s1;1;d s1;2;d ⋯ sNr ;Na;d

� �
; ð11Þ

s ¼ s1 s2 … sNd½ �T ; ð12Þ

θp ¼ e j p−1ð Þθ1 e j p−1ð Þθ2 ⋯ e j p−1ð ÞθNd

h iT
∈ℂNd�1:

ð13Þ
We can also arrange the observations for all receive

antennas for the pth pulse in vector form yp∈ℂ
MMr�1 as

yp ¼ yp1
T⋯yTpMr

h iT
¼ Tp Ψpsþ np ð14Þ

where np = Tp ep is the additive noise of all receivers and
ep ¼ ep1

T⋯eTpMr

h iT
ℂ

~LMr�1. The matrix Tp is a block di-
agonal matrix in which the mth block is a measurement
matrix used for mth receive antenna and defined as

Tp ¼ blkdiag φp1; φp2;…; φpMr

� �
∈ℂMMr�~LMr : ð15Þ

The matrix Ψp in (14) which is the basis matrix for all
antennas, and the pth pulse is defined as

Ψp ¼
ψp1

ψp2
⋮

ψpMr

264
375∈ℂ~LMr�N : ð16Þ

For all the pulses, we have

y ¼ yT1 ⋯ yTNP

� �T ¼ ΦΨsþ n ð17Þ

where Φ ¼ blkdiag T 1; T 2; …; TNp

� �
∈ℂMMrNp�~LMrNp is

the measurement matrix which is applied to all
observations in order to decrease the number of re-
ceived signal samples, Ψ ¼ ΘT⊗H∈ℂ~LMrNp�N is the
basis matrix for our pulse-Doppler MIMO radar system,
Θ ¼ θ1 ⋯ θNP½ �∈ℂNd�Np is the MIMO radar diction-
ary matrix containing the Doppler information of targets in
different situations, and n ¼ Φe∈ℂMMrNp�1 is the additive

noise of all receivers and pulses after compression,

where e ¼ eT1 ⋯ eTNp

h iT
. The matrix H is defined as

H ¼
H1
H2

⋮
HMr

264
375: ð18Þ

Generally, H∈ℂ~LMr�NrNa is the MIMO radar dictionary
matrix containing the whole range and angle informa-
tion of targets. Also, Ψ can be given by:

Ψ ¼
Ψ1
Ψ2

⋮
ΨNp

264
375 ¼ ΘT⊗H : ð19Þ

Our goal in this paper is to design the measurement
matrix Φ such that the CS MIMO radar has better per-
formance in target detection compared to conventional
approaches.
To optimize Φ, four different cases can be considered:
Case 1 (general case): All sub-blocks φpm (p = 1,…, Np

and m = 1,…, Mr) located in Φ are different with each
other, and thus, they are optimized, separately.
Case 2: We assume that the measurement matrix is

equal for all receivers,

φp1 ¼ φp2 ¼ … ¼ φpMr
¼ φp : ð20Þ

Therefore, Tp ¼ IMr⊗ φp , where φp∈CM�~L is the
measurement matrix applied on the pth received pulse,

and Φ ¼ blkdiag T1; T 2; …; TNp

� �
∈ℂMMrNp�~LMrNp .

Case 3: We assume that the measurement matrix is
equal for all received pulses,

φ1m ¼ φ2m ¼ … ¼ φNpm ¼ φm ð21Þ

where φm∈CM�~L is the measurement matrix applied on
the mth receive antenna; therefore, Φ ¼ INp⊗T , where
T ¼ blkdiagðφ1;φ2;…;φMr

Þ.
Case 4: We assume that the measurement matrix is

equal for all receivers and pulses,

φ11 ¼ φ12 ¼ … ¼ φNpMr
¼ φ: ð22Þ

Therefore, we have Φ ¼ INp⊗T , where T ¼ IMr⊗φ ,

and φ∈CM�~L is the measurement matrix applied on all
receivers and pulses.
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3 2D-CS signal model of MIMO radar
In this section, we derive the 2D-CS signal model for
MIMO radar and explain its relationship to the classical
1D-CS signal model.
Among all cases discussed in the last section, only case

3 and case 4 can be converted to 2D model. To do so,
we arrange the received signals for all pulses into a
matrix as

Y ¼ y1 ⋯ yNP

� � ¼ THSΘþ N ð23Þ

where S ¼ sT1 sT2 … sTNd

� �
, N = TΕ, and Ε ¼

e1 ⋯ eNP½ � . This equation is the 2D model of CS
MIMO radar. We can present the relationship be-
tween 1D and 2D sparse signal model for MIMO ra-
dars transmitting a trail of pulses by using the
following property [33]:

vec THSΘð Þ ¼ ΘT⊗TH
� �

vec Sð Þ ð24Þ

If we apply Eqs. (24) to (23), we re-derive the 1D CS
model shown in Eq. (17), where we have

y ¼ vec Yð Þ; s ¼ vec Sð Þ; n ¼ vec Nð Þ ð25Þ

and

A ¼ ΦΨ ¼ ΘT⊗TH∈ℂMMrNp�N : ð26Þ

Also, we can rewrite matrix A as a block matrix whose
pmth block is the measurement matrix φpm applied on
pth received pulse and mth receive antenna multiplied
by pmth basis matrix ψpm:

A ¼
A11
A12

⋮
ANpMr

264
375 ¼

φ11ψ11
φ12ψ12

⋮
φNpMr

ψNpMr

264
375 : ð27Þ

Figure 1 shows the block structure of the 2D-CS signal
model implementation for MIMO radar. As noted be-
fore, two dictionary matrices H and Θ are constructed
based on potential situations of range, angle and Dop-
pler frequency of targets in MIMO radar surveillance
area. Also, the sampling of signal is conducted based on
measurement matrix T which is optimized in the follow-
ing section using gradient descent algorithm.

4 Measurement matrix design using gradient
decent algorithm for CS model
In this section, first we discuss the conditions that a
measurement matrix should have, and then we propose
a new measurement matrix for CS MIMO radar that is
suitable for our 1D and 2D CS models.
The mutual coherence (MC) of sensing matrix A that

shows the maximum value of the pairwise correlations
of the column vectors of A is defined as follows [28]

μ Að Þ ¼ max
i≠j

ρi;j
aik k2 aj

�� ��
2

ð28Þ

where ρi;j ¼ aHi aj

		 		 and ai is the ith column of A. The
mutual incoherence property (MIP) is one of the best
conditions for sparse signal reconstruction [28]. Accord-
ing to the MIP, for a small value of μ(A), the sparse sig-
nal can be reconstructed with high probability. In fact,
the exact reconstruction of s will be guaranteed if the
following inequality holds [29]:

Fig. 1 Block diagram of 2D-CS signal model implementation for MIMO radar
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s0k k <
1
2

1þ 1
μ Að Þ


 �
: ð29Þ

The statistical analysis of MC of sensing matrix is per-
formed in Appendix 1 for the aforementioned four cases.
The following results are concluded:

E μcase 1ð Þ ¼ E μcase 2ð Þ ¼ E μcase 3ð Þ ¼ E μcase 4ð Þ ð30Þ
var μcase 1ð Þ≤var μcase 3ð Þ≤var μcase 4ð Þ ð31Þ
var μcase 1ð Þ≤var μcase 2ð Þ≤var μcase 4ð Þ: ð32Þ

As it is seen, case 1 has the least variance of MC, and
therefore, it is expected that it has better performance
compared to other cases. On the other hand, case 4 has
the biggest variance of MC, and therefore, it is expected
that it has the worst performance.
Also, as shown in [34], (28) might not have a good behav-

ior for the case that coherence of cross columns is small. In
[29], Elad proposes the average mutual coherence as an al-
ternative criterion because of its lower computational com-
plexity compared to (28). Therefore, the new measurement
matrix optimization can be expressed as:

Φ̂¼ arg min
Φ

∥G−IN∥2
F ð33Þ

where G is the Gram matrix defined as G =AHA. Thus,
we propose an algorithm to decrease the mutual coher-
ence of A which is determined by minimizing the whole
elements of G except the main diagonal elements.

4.1 Measurement matrix design for 1D-CS model
As mentioned before, among the four cases we dis-
cussed, cases 1 and 2 cannot be converted to 2D model.
We consider the optimization of these two cases as
measurement matrix design for 1D-CS model.
Therefore, the following cost function can be defined

for our problem:

C ¼ G−INk k2F
¼ trace AHA−IN

� �
AHA−IN
� �Hn o

: ð34Þ

Thus, the optimization problem is formulated as

Φ̂ ¼ arg min
Φ

C.

In our proposed method, first we optimize matrix A
using gradient descent algorithm [31], then the measure-
ment matrix Φ is obtained form A by using least square
(LS) estimator. In the gradient descent method, the gra-
dient of cost function C needs to be computed with re-
spect to the unknown variable A, denoted as

∇C ¼ ∂C
∂A

¼ 4A AHA−IN
� � ð35Þ

then, the equation A =A − η∇C is updated in an iterative

process, where η > 0 is the stepsize that can be fixed or
updated iteratively by backtracking line search algorithm
[35]. Before the execution of descent algorithm, the col-
umns of matrix A need to be normalized as:

ai ¼ ai= aik k2: ð36Þ
The algorithm can be stopped when the stopping cri-

terion ‖∇C‖F ≤ ε for a small and positive constant ε or
after a several number of iterations (NGD).

4.1.1 Case 1
After obtaining A for case 1, the measurement matrix of
pth pulse and mth receiver (φpm) is given by solving the
following linear equation:

Apm ¼ φpmψpm ð37Þ

where Apm is defined in (27). From Eqs. (6) to (13), it
can be noted that some parts of matrix ψpm is filled with
0, and consequently ψH

pmψpm tends to be ill-conditioned.

Therefore, the LS estimator which needs to calculate

ψH
pmψpm

� �−1
cannot be exploited, directly. To resolve

this problem, we use the economy-size singular value

decomposition (eSVD) of ψpm∈ℂ
~L�N given by

ψpm ¼ U1;pm
Δ1;pm 0
0 0


 �
DH

1;pm ð38Þ

where U1;pm∈ℂ
~L�~L and D1,pm ∈ ℂN ×N are unitary matri-

ces, and Δ1,pm = diag(λ1,pm, …, λr,pm) is the singular
values matrix of ψpm that λi,pm ≠ 0 for i = 1,…, r. In fact,
r is the number of non-zero singular values of ψpm. The
measurement matrix φpm can be obtained as follows:

φbpm ¼ U1;pm
Δ−1
1;pm 0
0 0


 �
DH

1;pmA
H
pm

� 
H
:

ð39Þ
Table 1 shows all the steps of the proposed method for
optimizing measurement matrix in case 1.

4.1.2 Case 2
Here, the measurement matrix is equal for all receivers.
Therefore, we have redundant data that can be exploited
to estimate φp.
In this case, we can reshape the equation Ap = TpΨp to

Aep ¼ φpΨ
e
p , where Aep∈CM�NMr is the reshaped form of

Ap∈CMMr�N , and

Ψe p ¼ ½ψp1ψp2…ψpMr
�∈CLe�NMr

: ð40Þ

Now, the eSVD of Ψe p is computed, and then φp can

be obtained similar to (39).
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4.2 Measurement matrix design for 2D-CS model
In our 2D-model, we have A =ΘT⊗B, where B =TH. It is
demonstrated in Appendix 2 that the MC of A is equal to

μ Að Þ ¼ μ ΘT
� �

μ Bð Þ ð41Þ
According to (41), to optimize measurement matrix T

based on minimizing μ(A) with respect to T, it is only

needed to minimize μ(B) with respect to T. Therefore,
the optimization problem becomes:

T̂ ¼ arg min
T

THð ÞHTH−INrNa

�� ��2
F ð42Þ

By using gradient descent optimization algorithm

for cost function C ¼ BHB−INrNa

�� ��2
F , we can obtain

B∈ℂMMr�NrNa similar to 1D model.

4.2.1 Case 3
In this case, the measurement matrix is equal for all re-
ceived pulses. After obtaining B, the measurement
matrix of mth receiver (φm) is calculated by solving the
following linear equation:

Bm ¼ φmHm ð43Þ

where B ¼
B1
B2

⋮
BMr

264
375.

Similar to case 1, the eSVD of Hm is computed, and
then φm is calculated.

4.2.2 Case 4
As noted for case 4, the measurement matrix is equal
for all received pulses and receivers, i.e., T ¼ IMr⊗φ .
Therefore, we can use the redundant data of all re-
ceivers in optimization of measurement matrix φ. To
do so, the linear equation B = TH should be reshaped

to Be¼φ He , where Be∈CM�MrNrNa is the reshaped form
of B∈CMMr�NrNa , and

H~¼ ½H1H2…HMr �∈CLe�MrNrNa
: ð44Þ

Now, the eSVD of He ∈CLe�MrNrNa is computed as
follows:

H~¼ U4
Δ4 0
0 0

 !
DH

4 ð45Þ

where U4∈ℂ
~L�~L and D4∈ℂMrNrNa�MrNrNa are unitary

matrices and Δ4 = diag(λ ' 1, …, λ ' r) is the singular values
matrix of H that λ ' i ≠ 0 for i = 1,…, r. Also, r is the
number of non-zero singular values of H. The measure-
ment matrix φ can be given as follows:

φb¼ "U4

 
Δ4
−1 0
0 0

!
DH

4 B~
H

#H
: ð46Þ

Table 2 shows all the steps of the proposed method to
optimize measurement matrix in case 4. In this table, bi
is the ith column of B.

Table 1 Designed measurement matrix algorithm for 1D
model (case 1)
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5 Computational complexity comparison
The cases 1 and 2, called 1D proposed MMDGD methods,
have almost the same computational complexity because
the gradient descent algorithm for calculating matrix A is

the same for both cases. Also, the computational complex-
ity of cases 3 and 4, called as 2D proposed MMDGD
methods, are almost equal due to the similarity of their
gradient descent algorithm. The main computational cost
in each iteration of 1D and 2D proposed MMDGD
methods belong to matrix product AAHA and BBHB,

respectively. The complexities of AAHA and BBHB are O

M2M2
rN

2
pN

� �
and O M2M2

rNrNa
� � ¼ O M2M2

rN=Nd
� �

,

respectively. Thus, the ratio of 2D-MMDGD load over
that of its 1D equivalent is 1

N2
pNd

.

The complexity of SCSM + SIR method that uses
CVX package to optimize measurement matrix is

OðNe3Þ, where Ne ¼ Le2 [35]. It can be approximated that

OðM2M2
rNrNaÞ≪OðLe6Þ due to the facts that M≪ Le ,

Na≈Nr < Le , and Mr < Le in our application. Therefore,
the computational complexity of our proposed 2D-
MMDGD is much less than the SCSM + SIR method.
The computational complexity of 1D and 2D sparse

recovery algorithms are discussed in [22] and [24]. As
noted there, the computations of 1D and 2D algorithms
for CS are O(MMrNpN) and O(MMrN) +O(MMrNpNd),
respectively. Therefore, the ratio of 2D processing load
over that of its 1D equivalent is 1

Np
þ 1

NaNr
.

In the next section, CPU time is used as a rough esti-
mate of computational complexity of the algorithms.

6 Simulation results
For simulation, we consider a pulse-Doppler MIMO
radar with Mt transmit (TX) and Mr receive (RX) anten-
nas having uniform linear array (ULA) with Δt = 2.5λ0
and Δr = 0.5λ0. The transmitted waveforms are obtained
from efficient cyclic algorithm [36] that can produce
sequences with very low auto- and cross-correlation
sidelobes. We consider the length of sequence L = 32
with unit power. The number of transmit and receive
antennas are Mt = 3 and Mr = 3, respectively. The
number of pulses is Np = 3. The carrier frequency, the
pulse bandwidth, and PRF are fc = 1 GHz, B = 10 MHz,
and fr = 2kHz, respectively. The area under the radar
includes Nr = 6 range bins, Nd = 6 Doppler bins, and
Na = 6 angle bins between 0° to 35° with 7° resolution.
We use the 1D-SLIM [15] and 2D-SLIM [22] algo-

rithms to reconstruct ŝ and Ŝ from the received com-
pressed measurements in (17) and (23). Over 100
independent trials were run. In each trial, the locations
of targets are generated randomly following a uniform
random distribution.
The signal-to-noise ratio (SNR) is defined for each tar-

get located at the (r, a, d)th range-angle-Doppler bin and
the noise variance σ2 as

Table 2 Designed measurement matrix algorithm for 2D model
case 4
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SNR ¼ 10 log10 sr;a;d
		 		2=σ2� �

: ð47Þ

The SNRs of all targets are considered equal.
At first, we compare the performance of four cases

when the GRMM is used. In fact, GRMM is a com-
plex Gaussian random matrix with zero mean and

covariance matrix I. The reconstruction error ( ŝ−sk k22
= sk k22 ) for all cases versus the number of measure-
ments, SNRs, and the number of pulses are shown in
Fig. 2a–c, respectively, where ŝ and s are the esti-
mated and true vectors containing the return complex
reflection coefficients of targets, respectively. As seen
in these figures, cases 1 and 3 have almost the same
reconstruction error while outperforming two other
cases.

It can be concluded from the simulation results that
case 3 is the best choice for MIMO radar under the con-
dition of low SNR, small number of measurements, and
pulses. The reason is that the reconstruction error of
case 3 is less than that of cases 2 and 4 while it is as
small as the reconstruction error of case 1. It should be
noted that the computational cost of case 3 is much less
than that of case 1 as shown in Section 5.
As depicted in these figures, by increasing the num-

ber of measurements, SNRs, and number of pulses,
the reconstruction errors of cases 2 and 4 decrease
and get close to cases 1 and 3. As a result, under the
condition of high SNR, large number of measure-
ment, and pulses, case 4 can be considered for
MIMO radar due to its ease of implementation. By
the above discussion, one can easily find the effective-
ness of our 2D proposed MMDGD methods com-
pared to 1D ones.
The convergence of the gradient descent algorithm is

demonstrated for convex and non-convex problems in
[35] and [37, 38], respectively. Here, to show the conver-
gence rate of the proposed method, we define the RMSE

of convergence curve as B jþ 1ð Þ−B jð Þk k2F , where j is the
iteration index.
Figure 3 shows the convergence curve of this algo-

rithm for our proposed measurement matrix design for
500 Monte Carlo runs. As it is clear, the proposed algo-
rithm can converge after 20 iterations for M = 4 and
after 40 iterations for M = 8.
Now, we compare the detection performance of the

proposed method with GRMM, SIR, and SCSM + SIR
methods using receiver operating characteristic (ROC)
curve. Since in the SIR and SCSM + SIR methods, the
measurement matrix is designed only for case 4 (because
this matrix optimization will be very time consuming for

Fig. 2 Reconstruction error of four cases versus a the number of
measurements, b SNRs, and c the number of pulses Fig. 3 Error of convergence versus the number of N_GD iterations
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cases 1, 2, and 3 especially in SCSM + SIR), we consider
only case 4 for comparison with these two methods.
In ROC curve, the probability of detection (Pd) is plot-

ted versus the probability of false alarm (Pf ). We con-
sider any local maximum of the absolute value of S that
is larger than a selected threshold τi as a target. Then,

we vary the threshold τi within an interval [τL τH] and
for each τi, we count the number of detected actual or
false targets. The empirical probability of detection Pd
of actual targets and the empirical probability of false
alarm Pf of false targets for different values of τi is ob-
tained by repeating Nitr trials of the experiment as:

Fig. 4 Comparison of ROC curves for different measurement matrix in CS MIMO radar (resolution 7°)

Fig. 5 Comparison of ROC curves of different measurement matrix in CS MIMO radar (resolution 2°)
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Pd ¼
1

N itr

X
i¼1

N itrndi

Nt
ð48Þ

Pf ¼
1

N itr

X
i¼1

N itrnf i

N−Nt
ð49Þ

where ndi is the number of true targets and nfi is the
number of false targets estimated at ith iteration.
Figure 4 shows ROC curve at SNR = 0 and 10 dB, M =

8 and 4, and Nt = 4 with angle bins between 0° to 35°

with 7° resolution in CS MIMO radar. As it is obvious,
2D-MMDGD has the better performance compared to
SIR, SIR + SCSM, and GRMM. The reason is that in the
SIR method, only the signal-to-interference ratio is max-
imized and the increase of sparse recovery performance
is not considered. On the other hand, in the SCSM +
SIR method, to convert its non-convex problem to a
convex one, some approximations are considered that
lead to a sub-optimal solution, and thus, it may not have
acceptable performance in all situations. Furthermore,
the performance of our proposed method is always
better than GRMM because the designed matrix has
less mutual coherency compared to its initial value,
i.e., GRMM.
Figure 5 shows ROC curve for angle bins between 0°

to 10° with 2° resolution and the same conditions as
Fig. 4. As expected, by decreasing the resolution from 7°

to 2°, the performance of all methods deteriorate due to
the increase in MC. Also, our proposed method has bet-
ter performance in low SNR and for lower number of
measurements compared to other methods.

Fig. 6 Comparison of reconstruction error for different methods
versus the SNR in CS MIMO radar for a M = 4 and b M = 8

Fig. 7 Angle-Doppler estimates for targets that fall off the grid points in CS MIMO radar (Nt = 4)
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The reconstruction error versus the SNRs is shown in
Fig. 6. As we see in Fig. 6a, the proposed method has bet-
ter performance compared to other methods for small
number of measurements in CS MIMO radar. Also, as
depicted in Fig. 6b, our method and SCSM + SIR have
nearly the same reconstruction error by increasing the
number of measurements while outperforming SIR and
GRMM methods.
The second scenario that we considered is the one that

the targets fall off the grid points. In this scenario, a ran-
dom non-integer multiple of the angle resolution and a
random non-integer multiple of the Doppler resolution
are chosen as the angle and Doppler of each target. For
simulation, we consider M = 4, Np = 5, Nd =Na = 11, Nr

= 6 with a resolution of 7°.

The number of targets for Figs. 7 and 8 are Nt = 4 and
Nt = 10, respectively. In these figures, the circles show
the targets’ true locations and the estimated amplitudes
are shown with color-coded rectangles in decibel. It is
demonstrated that our proposed method are able to cap-
ture the targets that fall off the grid points with lower
sidelobes compared to other methods.
Figure 9 shows the runtime of measurement matrix

design for different methods versus the number of mea-
surements. The experiment is performed in MATLAB
8.1 environment using an Intel Core i7, 2.7 GHz proces-
sor with 4 GB of memory, and under Microsoft windows
7 operating system. This figure demonstrates the effect-
iveness of our proposed 2D method, and it shows clearly
that the 2D-MMDGD has much lower computational

Fig. 9 Comparison of runtime of measurement matrix design for different methods versus the number of measurements in CS MIMO radar

Fig. 8 Angle-Doppler estimates for targets that fall off the grid points in CS MIMO radar (Nt = 10)
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cost compared to the 1D one. Also, as explained in Sec-
tion 5, SCSM + SIR has more runtime compared to our
proposed 2D-MMDGD, and also the other methods.

7 Conclusions
We have introduced a new 1D and 2D CS model for a
pulse-Doppler collocated MIMO radar. Then, we di-
vided the measurement matrix design into four cases in
which the measurement matrices applied to receivers
and pulses can be equal or different. The measurement
matrix design for all cases was proposed based on min-
imizing MC of sensing matrix using gradient descent
algorithm. Looking at the performance comparison be-
tween 1D and 2D methods shows that case 3 can be
the algorithm of choice for practical CS MIMO radar
systems. The simulation results show that our proposed
2D-MMDGD, even in case 4 scenario outperform
GRMM, SIR, and SCSM + SIR methods while having
much lower computations.

8 Appendix 1
8.1 The statistical analysis of MC of sensing matrix A:
In this appendix, we analyze the MC of four cases from
a statistical point of view. To do so, we obtain the mean
and variance of MC for all cases and then compare their
results. Let the components of measurement matrix φpm

be considered as random variable.
The MC of A is proportional to μðAÞ∝ maxi≠j ρi;j ,

where ρi,j can be given as:

ρi;j ¼ < ai;aj >
		 		 for i; j ¼ 1; 2; …; N ð50Þ

where

ai ¼
XNp

p

XMr

m

φpmψpm :; ið Þ ð51Þ

ψpm :; ið Þ ¼ ej2π −1
2þ di−1ð Þ=Ndð Þ p−1ð Þe−jπ sin aið Þ m−1ð ÞJ riVaai

ð52Þ
Now, ρi,j can be extended as:

ρi;j ¼ j
XNp

p

XMr

m

e
j

2π dj−dið Þ
Nd

� �
p−1ð Þ

ejπ sin aið Þ− sin ajð Þð Þ m−1ð ÞaH
aiVJHri φ

H
pmφpmJ rjVaaj

			
¼

XNp

p

XMr

m

Cp;ij Cm;ijδpm;ij

					
					

ð53Þ
where

δpm;ij ¼ aHaiVJHri φ
H
pmφpmJ rjVaaj ð54Þ

Cp;ij ¼ e
j

2π dj−dið Þ
Nd

� �
p−1ð Þ ð55Þ

Cm;ij ¼ ejπ sin aið Þ− sin ajð Þð Þ m−1ð Þ: ð56Þ
Since the statistical properties of measurement

matrix φpm is independent of the number of pulses
and antennas, and also it can be approximately inde-
pendent of (i, j) as shown in [32], we can conclude
that the mean and variance of δpm,ij for all cases are
equal, i.e.,

E δpm
� � ¼ E δp

� � ¼ E δmð Þ ¼ E δð Þ: ð57Þ

var δpm
� � ¼ var δp

� � ¼ var δmð Þ ¼ var δð Þ ¼ ϑ2: ð58Þ

Therefore, we have

E μcase 1ð Þ ¼ E μcase 2ð Þ ¼ E μcase 3ð Þ ¼ E μcase 4ð Þ: ð59Þ

Now, we analyze the variance of MC for all cases.
Variance analysis of MC for case 1:

σ2ρcase 1
i;j

¼ var
XNp

p

XMr

m

Cp;ijCm;ijδpm

 !

¼
XNp

p

XMr

m

Cp;ij

		 		2 Cm;ij

		 		2 var δpm
� �

: ð60Þ

Due to |Cp,ij| = 1 and |Cm,ij| = 1, we have

var μcase 1ð Þ ¼ NpMrϑ
2: ð61Þ

Variance analysis of MC for case 2:

σ2ρcase2i;j
¼ varðXNp

p

XMr

m

Cp;ijCm;ijδpÞ
¼ jXMr

m

Cmj2XNp

p

jCpj2varðδpÞ

¼ jXMr

m

e jπ
�
sinðaiÞ−sinðajÞ

�ðm−1Þj2Npϑ
2

¼ j sin 1
2Mrπ

�
sinðaiÞ−sinðajÞ

�� �
sin 1

2π
�
sinðaiÞ−sinðajÞ

�� � j2Npϑ
2:

ð62Þ

Due to |Cp,ij| = 1, and max
XMr

m

Cm

					
					
2 !

¼ M2
r , we have

var μcase 2ð Þ ¼ max
i;j

var ρi;j

� �� �
¼ NpM

2
r ϑ

2: ð63Þ

Variance analysis of MC for case 3:
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σ2ρcase3i;j
¼ var

XNp

p

XMr

m

Cp;ij Cm;ijδm

 !

¼
XNp

p

Cp

					
					
2XMr

m

Cmj j2 var δmð Þ

¼
XNp

p

e
j

2π dj−dið Þ
Nd

� �
p−1ð Þ

						
						
2

Mrϑ
2

¼
sin Np

π dj−dið Þ
Nd


 �
sin

π dj−dið Þ
Nd


 �
								

								
2

Mrϑ
2

ð64Þ

Due to |Cm,ij| = 1 and max
XNp

p

Cp

					
					
2

0@ 1A ¼ N2
p, we have

var μcase 3ð Þ∝ max
i;j

var ρi;j

� �� �
¼ N2

pMrϑ
2: ð65Þ

Variance analysis of MC for case 4:

σ2ρcase 4
i;j

¼ var
XNp

p

XMr

m

CpCmδ

 !
¼
XNp

p

Cp

					
					
2 XMr

m

Cm

					
					
2

var δð Þ

¼
sin Np

π dj−dið Þ
Nd


 �
sin

π dj−dið Þ
Nd


 �
								

								
2

sin 1
2Mrπ sin aið Þ− sin aj

� �� �� �
sin 1

2π sin aið Þ− sin aj
� �� �� �					

					
2

ϑ2:

ð66Þ

Due to max
XNp

p

Cp

					
					
2

0@ 1A ¼ N2
p and max

XMr

m

Cm

					
					
2 !

¼ M2
r , we have

var μcase 4ð Þ∝ max
i;j

var ρi;j

� �� �
¼ N2

pM
2
rϑ

2: ð67Þ

9 Appendix 2
9.1 The relationship between the MC of A, B, and Θ:
Consider the following Kroneker product properties [33]:

� if A =ΘT⊗ B, then ai ¼ Θð Þrd
� �T⊗ Bð Þcn, where ai is

the ith column of A, Θð Þrd is dth row of Θ, and
Bð Þcn is the nth column of matrix B.

� Θð Þrd
� �T⊗ Bð Þcn
��� ���

2
¼ Θð Þrd
�� ��

2 Bð Þcn
�� ��

2

� Θð Þrd
� �T⊗ Bð Þcn
� �

H Θð Þr
d
0

� �T
⊗ Bð Þcn0


 �				 				
¼ Θð Þrd
� �H⊗ Θð Þr

d
0

			 			 Bð Þcn
� �H⊗ Bð Þcn0
			 			

Then, the MC of A is obtained as,

μ Að Þ ¼max
i≠j

ρi;j
aik k2 aj

�� ��
2

¼ max
i≠j

jaHi ajj
aik k2 aj

�� ��
2

¼ max
d≠d

0

n≠n
0

			 Θð Þrd
� �T⊗ Bð Þcn
� �H

Θð Þr
d
0

� �T
⊗ Bð Þcn0


 �			
Θð Þrd

� �T⊗ Bð Þcn
��� ���

2
Θð Þr

d
0

� �T
⊗ Bð Þcn0

���� ����
2

¼ max
d≠d

0

			 Θð Þrd
� �H⊗ Θð Þr

d
0

			
Θð Þrd

�� ��
2 Θð Þrd
�� ��

2

max
n≠n0

			 Bð ÞcnH⊗ Bð Þcn0
� �			
Bð Þcn

�� ��
2 Bð Þcn0
�� ��

2

¼ μ ΘT
� �

μ Bð Þ
ð68Þ

where d, d' = 1,…,Nd and n, n' = 1,…,NrNa. Also, we
have i = (d − 1)NrNa + n and j = (d' − 1)NrNa + n'.
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