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Abstract

In communication systems, efficient use of the spectrum is an indispensable concern. Recently the use of
compressed sensing for the purpose of estimating orthogonal frequency division multiplexing (OFDM) sparse
multipath channels has been proposed to decrease the transmitted overhead in form of the pilot subcarriers which
are essential for channel estimation. In this article, we investigate the problem of deterministic pilot allocation in
OFDM systems. The method is based on minimizing the coherence of the submatrix of the unitary discrete fourier
transform (DFT) matrix associated with the pilot subcarriers. Unlike the usual case of equidistant pilot subcarriers,
we show that non-uniform patterns based on cyclic difference sets are optimal. In cases where there are no
difference sets, we perform a greedy method for finding a suboptimal solution. We also investigate the
performance of the recovery methods such as orthogonal matching pursuit (OMP) and iterative method with
adaptive thresholding (IMAT) for estimation of the channel taps.

1 Introduction
In wireless communications, orthogonal frequency divi-
sion multiplexing (OFDM) is a well-known solution for
overcoming the problem of multipath fading channels
[1,2]. However, this solution is effective only when the
receiver is provided with tools to estimate the channel
frequency response (CFR). To this end, the transmitter
should send some predefined data in a predefined order
that the receiver is a priori aware of. These predefined
data are usually called pilots.
There are two main approaches for inserting pilot data

in OFDM signals. In block-type pilots, all the subcarriers
in some OFDM blocks (the whole spectrum) are
reserved as pilot tones. In comb-type pilot models, some
predefined subcarriers in each block serve as pilots.
Hence, CFR at these subcarriers can be estimated using
methods such as least square (LS) or minimum mean
square error (MMSE). Now for estimating the CFR at
non-pilot subcarriers, interpolation methods ranging
from simple linear or second order techniques [3] to
time domain [4] and even more complex approaches are
used. It is clear that by decreasing the frequency gap
between the adjacent pilot subcarriers, the performance

of the interpolation techniques improves. Therefore, the
pilots are preferably put at equidistant subcarriers to
provide uniformity.
Considering the inherent sparsity in the impulse

response of the wireless channels which is due to the
sparse structure of the scattering objects, it is possible
to estimate the channel impulse response (CIR) more
accurately even from non-uniform pilot patterns. The
common estimation techniques in this case are those
introduced in the field of compressed sensing such as
basis pursuit [5] and orthogonal matching pursuit
(OMP) [6]. Unlike the interpolation case, equidistant
pilot locations are not the best choices here. In [7],
using the results of [5] for sparse signal recovery, it is
mentioned that uniformly random pilot locationsa can
provide the possibility of perfect channel reconstruction
with overwhelming probability. Although this is an
important theoretical result, it is not practical. In this
article, we suggest a deterministic structure for the pilot
locations in sparsity-based channel estimation methods
which minimizes the inter-atom interference in discrete
fourier transform (DFT) submatrices. Simulation results
confirm the efficiency of the proposed pilot allocation
method when greedy methods are used for channel esti-
mation. Also, we propose an iterative thresholding
method for channel estimation which results in
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appropriate performance in time-variant frequency
selective OFDM channels.

2 Problem statement
In OFDM systems with comb-type pilot arrangement,
ignoring the effects of inter-symbol interference (ISI)
and inter-carrier interference (ICI), the received data at
the kth subcarrier (1 ≤ k ≤ N) of the nth OFDM frame
can be formulated as:

Y(n, k) = X(n, k) · H(n, k) +W(n, k), (1)

where X(n, k) is the transmitted OFDM symbol, H(n,
k) is the CFR and W(n, k) is the AWGN noise. If P
denotes the set of all pilot indices, at a given pilot sub-
carriers kp ∈ P and using the LS method, the CFR can
be estimated as:

H̃(n, kp) =
Y(n, kp)

X(n, kp)
= H(n, kp) +

W(n, kp)

X(n, kp)
. (2)

As explained earlier, conventional methods for estima-
tion of the CFR at non-pilot subcarriers (given the noisy
measurements at pilots) are interpolation-based techni-
ques which require relatively high sampling rates (num-
ber of pilots) to produce acceptable mean squared error
(MSE). Also, the optimum structure of the pilot loca-
tions for these techniques which minimizes the MSE of
the estimated channel, is the uniform distribution (equi-
distance) of the pilots in the spectrum.
In the sparsity-based channel estimation methods,

instead of finding the CFR, the goal is to estimate the
inherently sparse CIR in each OFDM frame from lim-
ited number of noisy measurements of the CFR
obtained at pilot locations. The estimated CIR is then,
translated into the frequency domain by means of FFT
which results in an estimation of the CFR that can be
used for data equalization process. In these methods, we
are dealing with the following system of equations:

H̃p = Fp · h + np, (3)

where Fp is the DFT submatrix with Np = |P | rows
associated with the pilot locations, H̃p is the vector of
LS-estimated CFR at pilot locations, h is the sparse CIR
vector, and np is the vector of noise values.
Generally, there are two main categories of sparsity-

based methods to solve the set of equations presented
in (3). One approach is to minimize the ℓ1 norm of h
subject to (3), either directly or iteratively (such as
SPGL [8]). Although the performance of such methods
are considered among the bests, they are extremely slow
for real-time implementation. The other approach
which is considered in this article, is to use fast greedy
methods such as OMP which iteratively detect and

estimate the location and value of the channel taps.
These methods are usually faster than ℓ1 minimization
techniques by orders of magnitude while they may fall
short of performance. Our simulation results confirm
that their performance is acceptable for the purpose of
OFDM channel estimation.
The main advantages of sparsity-based approaches can

be categorized into two parts:

(1) Decreasing MSE: Generally, the purpose of
using compressed sensing methods in solving a lin-
ear set of equations with the sparsity constraint is to
achieve the Cramer Rao lower bound on MSE [9]. In
extreme cases, the structured LS estimator [9] which
knows the location of nonzero taps (support)
through an oracle, and estimates their corresponding
values using LS estimation is the best estimator. The
MSE of this estimator is called CRB-S [9]. However,
in general, there is no information about the location
of the nonzero coefficients of h at the receiver and
the structural LS estimator is not realizable. Simula-
tion results indicate that we can get close to this
bound by using proper sparsity-based methods.
(2) Reducing Overhead: Although the pilot subcar-
riers occupy a fraction of the spectrum, they do not
convey any data. By reducing the number of pilot
subcarriers, we increase the utilization efficiency of
the spectrum while we may degrade the performance
of the channel estimation block. As mentioned in
[7], by considering the sparsity of the CIR, it is pos-
sible to capture the necessary information in the fre-
quency domain in fewer number of pilots. The
results in [5] show that ℓ1 minimization technique
almost perfectly reconstructs the sparse CIR from
(3) when the number of pilots is proportional to the
number of channel taps. Furthermore, the recon-
struction performance is independent of the location
and value of the taps; i.e., unlike the interpolation-
based methods, the number of required pilot subcar-
riers does not depend on the delay spread and
degree of frequency selectivity of the channel.

3 Iterative thresholding method for sparse
channel estimation
In this section, we propose an iterative method with
adaptive thresholding (IMAT) [10] for the purpose of
estimating the sparse CIR. In other words, we aim to
identify non-zero channel taps and estimate their corre-
sponding values using IMAT.
In our general OFDM channel estimation problem

presented in (3), our main goal is to estimate h from H̃p

given the fact that h has a few non-zero coefficients. To
obtain an initial estimate, we multiply the sides of (3) by
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Moore-Penrose pseudo-inverse of Fp to find the solution
with minimum ℓ2-norm:

h̃0 = F †
p H̃p = F †

p Fph + F †
p np. (4)

Using the properties of the Moore-Penrose psuedo-
inverse for underdetermind set of equations we have:

F †
p = F H

p (FpF H
p )

−1

︸ ︷︷ ︸
1
N INP×Np

=
1
N
F H
p .

(5)

Now we can rewrite (4) as:

h̃0 =
1
N
F H
p Fp︸ ︷︷ ︸

GN×N

h +
1
N
F H
p np. (6)

The elements of the N × N non-negative matrix G
which is usually referred to as the distorting matrix, are
given by:

gi,j =

⎧⎪⎨
⎪⎩

1
N

〈
fi, fj

〉
i �= j

Np

N
i = j

, (7)

where fi represents the ith column of Fp. If the col-
umns of Fp are orthogonal and there is no additive
noise, h̃0 will be a scaled version of h; in general case
where the columns are not orthogonal, h̃0 is a distorted
estimate of h. Now through a series of iterations and by
employing the sparsity constraint, we try to improve this
estimate. In each iteration, we perform one step of the
iterative method studied in [11] followed by a threshold-
ing operator:

˜̃hk = λ(h̃0 − G · h̃k−1) + h̃k−1, (8)

h̃k(i) =

⎧⎨
⎩

˜̃hk(i)
∣∣∣ ˜̃hk(i)∣∣∣ > βe−αk

0 otherwise
, (9)

where l and k are the relaxation parameter and the
iteration number, respectively, G · h̃k is the output of the
distorting operator to the input h̃k and h̃0 is defined in
(6). The steps (8) are known to compensate for the non-
orthogonality of the columns of Fp while the threshold-
ing operator takes the sparsity constraint into account.
We employ adaptive thresholds in (9) which can be
tuned through the parameters a and b, and decrease
exponentially with respect to the iteration number. The
optimality of the exponential function in our method
can be derived in a similar manner as in [12]. The block
diagram of the proposed channel estimation method is
shown in Figure 1.

In the proposed method, the ideal but unrealistic case
would be when there is no distortion; i.e., when G is a
scaled version of the identity matrix. Although this
never happens, it shows that when G is a good-enough
approximation of the identity matrix, we can expect
satisfying results. Thus, a given set of pilot locations is
considered as good if the off-diagonal elements of the
matrix G are relatively small compared to the diagonal
elements. In the following section, we will investigate
the problem of selecting the DFT submatrix Fp which
results in a suitable distorting matrix G.

4 Pilot allocation by minimizing the coherence in
partial DFT matrices
As mentioned before, the performance of a channel esti-
mation block depends on both the reconstruction tech-
nique and the set of pilot locations. In this section, we
will study the sub-optimum pilot locations when greedy
sparsity-based methods such as OMP and the intro-
duced IMAT are employed.

4.1 Cyclic difference sets: minimum coherence
To begin with, consider the following underdetermined
set of equations:

ym×1 = �m×nxn×1 (10)

where y is the observed vector, x is an s-sparse vector
(contains at most s non-zero elements) and F is an
m×n (m ≪ n) measurement matrix which in our case is
the partial DFT matrix formed by selecting Np rows. In
this section, we seek to find a proper location for pilots
in each OFDM block, using the following definition.
Definition 1: The coherence of a measurement matrix

F Î ℂm×n is the maximum absolute cross-correlation
between the normalized columns:

μ� = max
1≤l,k≤n
l�=m

|〈ϕl,ϕk〉|
‖ϕl‖2 · ‖ϕk‖2

. (11)

Although the so called restricted isometry property
(RIP) [5] is the best known tool for characterizing the
performance of a given matrix F in sampling the sparse
vectors, there is currently no polynomial time algorithm
to check this property [13]. The common alternative for
measuring how well a matrix preserves the information
of the sparse vectors (x) in the produced samples (y) is
the coherence; the smaller the better. In addition, the
performance of the greedy methods is more influenced
by the coherence of the measurement matrix rather
than its RIP order [6]. One of the well-known results
demonstrates that the sparsity-based methods such as ℓ1
minimization and greedy methods, are guaranteed to

perfectly recover the s-sparse vectors when μ� <
1
2s
[6].
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Returning to our main problem stated in (3), we aim
to choose pilot indices in such a way that the coherence
of the resulted measurement matrix, Fp, becomes as
small as possible. Considering the unit-norm property of
the elements of Fp, we have:

μFP = max
1≤l,k≤n

l�=k

∣∣〈fl, fk〉∣∣
Np

. (12)

If the pilot indices are P = {P1, . . . ,PNP }, Fp becomes:

Fp =

⎡
⎢⎢⎢⎢⎢⎣

1 e−j 2π
N P1 · · · e−j 2π

N P1(N−1)

1 e−j 2π
N P2 · · · e−j 2π

N P2(N−1)

...
...

...
...

1 e−j 2π
N PNp · · · e−j 2π

N PNp(N−1)

⎤
⎥⎥⎥⎥⎥⎦ . (13)

According to the periodic structure of the DFT sub-
matrix FP, the inner product of fl and fk used in (12)
only depend on r = k - l:

μ̃FP = NpμFP = max
1≤r≤N−1

∣∣〈fl, fl+r 〉∣∣

= max
1≤r≤N−1

∣∣∣∣∣∣
Np∑
i=1

e−j 2π
N Pir

∣∣∣∣∣∣ .
(14)

Here we aim to choose the set P with |P | = NP in
order to minimize μ̃. For the simplicity of analysis, let

us define f (x) =
∑Np

i=1 x
Pi. Hence, (14) turns into:

μ̃FP = max
1≤r≤N−1

∣∣∣∣f
(
e−j

2π
N r

)∣∣∣∣ . (15)

Since we are interested in the modulus values of the
function f(.) on the unit circle, instead of |f(x)| it is sim-
pler to work with |f(x)|2 = f(x)f*(x) = f(x).f(1/x). This
shows that the optimum set P which minimizes the
coherence, is found by:

Popt = argmin
P

max
1≤r≤N−1

f (e−j 2π
N r)f (ej

2π
N r)

≡ argmin
P

max
1≤r≤N−1

Np∑
l=1

NP∑
k=1

e−j 2π
N r(Pl−Pk).

(16)

If the set of cyclic differences of P is defined as
D = {Pk − Pl(mod N)|1 ≤ l, k ≤ Np; l �= m}, and ad
denotes the number of repetitions of the number 0 ≤
d≤ N - 1 in the set D, we have:

Np∑
l=1

NP∑
k=1

e−j 2π
N r(Pl−Pk) = NP +

N−1∑
d=1

ade
−j 2π

N rd � g(r, {ad}). (17)

Therefore, it is clear that we should look for the set of
indices P which minimizes the maximum value of the
function g(r, {ad}) over all 1 ≤ r ≤ N. Since

N−1∑
r=1

g(r, {ad}) = Np(N − 1)−
N−1∑
d=1

ad = Np(N − Np),(18)

it is obvious that

max
1≤r≤N−1

g(r, {ad}) ≥ NP(N − NP)
N − 1

, (19)

and the equality happens when

g(1, {ad}) = · · · = g(N − 1, {ad}) = NP(N − NP)
N − 1

, (20)

which is valid only for

a1 = a2 = · · · = aN−1 =

∑N−1
i=1 ad
N − 1

=
Np(N − 1)

N − 1
. (21)

Hence, if there exists an index set P for which a1= ...
= aN-1 happens, it is for sure the best possible choice
for minimizing the coherence. Such index sets are
already known as cyclic difference sets [14]; unfortu-
nately, the existence of difference sets are limited to
some specific pairs (N,Np).

4.2 Greedy coherence minimization for improper pairs of
N and Np

Cyclic difference sets described in Section 4.1 are the
optimal choices for the OFDM pilot locations with
respect to the coherence criterion. In fact, if we make a
DFT submatrix based on a cyclic difference set, the
resultant matrix meets the Welch lower boundb [15]. In
other words, not only is such a submatrix optimum
among all DFT submatrices of its size, but also is the
optimum code-book in the sense of minimum

Figure 1 Block diagram of the IMAT method.
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coherence among all the matrices with the same size.
Nevertheless, for many pairs of N and Np, there is no
cyclic difference set. Therefore we have to find proper
indices for pilot allocation, using efficient search meth-
ods. In [16], it is suggested to use random exhaustive

search among all

(
N
Np

)
DFT submatrices to find the

one with the minimum coherence. As N increases, the
cardinality of the search space grows exponentially and
the results of the random search in relatively small steps
might not be satisfactory. Here we propose a greedy
method to find suitable pilot index set.
As stated in 4.1, it is important that the set of cyclic

differences D of the set of pilot indices P has equal
number of repetitions (ad) for its different elements; i.e.,
the variance of the set of repetitions {ad}d is equal to
zero. In our greedy method, we choose Np pilot indices
in the following Np stages: since rather than the exact
value of the indices, their cyclic difference are impor-
tant, we initialize the index set by P (1) = {1} (1 is arbi-
trary). The rest of the stages are summarized in the
following:
For the ith pilot index allocation:

1. Form all N - i + 1 possible i-element subsets by
adding an element to P (i−1):

{P (i)} =
{
P (i−1) ∪ s|s ∈ {1, . . . ,N}\P (i−1)

}
(22)

2. For each i-element set generated in step (1), form
the set of cyclic differences and the set of repetitions
({ad}).
3. Choose the set (or one of the possible sets) with
the minimum variance in the elements of the respec-
tive repetition set ({ad}).
4. If i < Np, go to step (1).

5 Simulation results
In order to give an insight toward theoretical results
presented in Sections 3 and 4, we conduct several com-
puter simulations using MATLAB. The simulations are
presented in two parts:

5.1 IMAT method for sparse channel estimation results
The IMAT presented in the block diagram of Figure 1 is
simulated in an OFDM system based on DVB-H stan-
dard with slight modifications. All the parameter specifi-
cations are presented in Table 1. For the channel, we
have considered a Rayleight multipath fading channel
with 4 significant nonzero taps at normalized (to carrier

spacing) doppler frequency of 1%; the average delay and
power of the taps are presented in Table 2.
The IMAT method is compared with the linear inter-

polation method which estimates the channel at pilot
frequencies using LS estimate (2) and then uses a linear
interpolation function to estimate the CFR at data sub-
carriers. Also OMP is simulated as a proper sparse
reconstruction method for channel estimation. The
obtained curves of the obtained Bit Error Rate (BER)
and Symbol Error Rate (SER) shown in Figures 2 and 3
indicate that the IMAT method outperforms the other
competitors.

5.2 Pilot allocation in sparsity-based estimation methods
In this part, we compare the MSE and perfect recon-
struction percentage in channel estimation for pilot allo-
cation methods presented in this article. For our
simulations in this part, we generated a random 3-tap
channel with varying fading parameters in each OFDM
block and averaged the results over 5000 runs. Figure 4
shows the MSE of the estimated channel for two differ-
ent methods of pilot allocation. In the first scenario, the
pilots are chosen uniformly at random for each block; in
our proposed scheme, the pilots are arranged according
to a (73,9,1) cyclic difference set and its cyclic shifts for
different OFDM blocks. The MSE of the structured LS
estimator is also presented in the figures as CRB-S to
give us a meaningful goal standard. This bound is given
by [9]:

CRB-S = σ 2 trace
((

F H
p,� Fp,�

)−1
)
, (23)

where s2 is the noise variance and Fp,Λ is the subma-
trix of Fp obtained by keeping the columns correspond-
ing to the channel taps. This lower bound is a fair
criterion to measure the quality of our pilot allocation
method, since it is the MSE of an estimator that knows
the exact location of the channel taps. Therefore, in
OMP channel estimation, if we select pilot locations
properly, the maximum cross correlation between the

Table 1 Simulation parameters

Parameter Specifications

Number of subcarriers 256

Number of pilots 16(6.25%)

OFDM symbol duration 224 (μs)

Cyclic prefix length 32(1/8)

Table 2 Fading channel parameters

Delay (μs) 1.7 3.5 5.2 11.3

Power (dB) -2 0 -5 -7
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columns of Fp becomes small. Hence, the columns of
the resultant measurement matrix in (3) become less
correlated which makes it easier to detect and estimate
the CIR. Similarly for IMAT, decrease in the off-diago-
nal elements of the distorting matrix results in the
decrease of the MSE values of the estimated channel
(Figure 5).
Finally, we compare successful channel recovery per-

centage in noiseless case for different pilot allocation
methods. For this purpose, we have considered the
OFDM communication with N = 256 subcarriers and
Np= 16 pilots. Since there is no cyclic difference set for
this pair of N and Np, we have employed the proposed
greedy search in Section 4.2 to find a pattern for pilots
with small coherence. The recovery percentage which is
the percentage of exact channel recovery without error
for various number of channel taps and OMP recon-
struction method is presented in Figure 6.

6 Conclusion
In this article, we investigated the problem of OFDM
pilot allocation in sparsity-based channel estimation
methods. First, we proposed an IMAT which detects
channel nonzero taps and their corresponding values
iteratively for the purpose of OFDM channel estimation.
As it was shown in the simulation results, this method

outperforms typical interpolation methods such as Lin-
ear Interpolation and greedy algorithms in sparse chan-
nel estimation. We derived the optimum pilot location
for greedy methods in sparse channel estimation, based
on minimizing the coherence in DFT submatrices.
Simulation results show the improvement in the MSE of
the estimated channel for our proposed pilot allocation
method compared to uniformly random insertion of
pilots.

Endnotes
aThat means all possible choices of pilot indices are
equally likely. bIn this article, we have used a different
mathematical approach to prove the optimality of such
a submatrix.
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