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Abstract

In this article, an efficient multiuser detector based on the artificial fish swarm algorithm (AFSA-MUD) is proposed
and investigated for direct-sequence ultrawideband systems under different channels: the additive white Gaussian
noise channel and the IEEE 802.15.3a multipath channel. From the literature review, the issues that the
computational complexity of classical optimum multiuser detection (OMD) rises exponentially with the number of
users and the bit error rate (BER) performance of other sub-optimal multiuser detectors is not satisfactory, still need
to be solved. This proposed method can make a good tradeoff between complexity and performance through the
various behaviors of artificial fishes in the simplified Euclidean solution space, which is constructed by the solutions
of some sub-optimal multiuser detectors. Here, these sub-optimal detectors are minimum mean square error
detector, decorrelating detector, and successive interference cancellation detector. As a result of this novel scheme,
the convergence speed of AFSA-MUD is greatly accelerated and the number of iterations is also significantly
reduced. The experimental results demonstrate that the BER performance and the near–far effect resistance of this
proposed algorithm are quite close to those of OMD, while its computational complexity is much lower than the
traditional OMD. Moreover, as the number of active users increases, the BER performance of AFSA-MUD is almost
the same as that of OMD.
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1. Introduction
Ultrawideband (UWB) technology is attractive for its
multiple-access (MA) applications in wireless communica-
tion systems owing to its high ratio of the transmitted sig-
nal bandwidth to information signal bandwidth (or pulse
repetition frequency) [1]. Similarly, power can spread,
because of its information symbols transmitted by short
pulses, over the wide frequency band [2]. There are
mainly two standard schemes formulated by IEEE 802.15
Task Group 3a, i.e., the multi-band-based orthogonal
frequency division multiplexing (MB-OFDM) and single-
band-based direct-sequence UWB (DS-UWB) [3]. The
former is a carrier-based system that divides the wide
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bandwidth of UWB into many sub-bands, while the latter
is a baseband system modulating its input information
symbols with nanosecond pulses, which is different
from conventional code division multiple access (CDMA)
systems [1,4,5]. Compared with MB-OFDM, DS-UWB
scheme has many advantages, which stem from its UWB
nature, such as low peak-to-average power ratio, wide
bandwidth, good information hidden ability, and less
sensitivity to multipath fading [6,7]. Our focus is thus
on investigating the detection algorithms in multiuser
DS-UWB communication systems.
Actually, the idea of UWB MA systems dates back to

the original proposal put forward by Scholtz [8], and with
subsequent analyses in [9-12]. However, as in conven-
tional CDMA systems, these proposed UWB MA sys-
tems also suffer from the multiple-access interference
(MAI) problem, which severely restricts their performance
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and system capacity. This is due to the crude assumption
that the MAI can be modeled as a zero-mean Gaussian
random variable (called “Gaussian approximation”) [13]
for the conventional single-user matched receiver. More-
over, MAI even causes the near–far effect (NFE) [14],
the case that the user with lower received signal power
will be swamped by users with higher power. In order
to solve these problems, multiuser detection (MUD)
technology that can eliminate or weaken the negative
effects of MAI was studied in [15-27]. Among them,
the optimum multiuser detection (OMD), proposed for
CDMA systems by Verdu [15], has the optimal BER
performance [16] and the perfect NFE resistant ability
[17]. But its computational complexity growing exponen-
tially with the number of active users makes it impracti-
cal to use [18]. Yoon and Kohno [19] introduced this
OMD algorithm to the UWB MA system; its high com-
putational complexity problem is yet to be solved.
In recent years, many different sub-optimal MUD algo-

rithms have been studied in literatures. In [20], a multiuser
frequency-domain (FD) turbo detector was proposed that
combines FD turbo equalization schemes with soft inter-
ference cancelation, but its BER performance is unsatis-
factory. A blind multiuser detector using support vector
machine on a chaos-based code CDMA systems was
presented in [21], which does not require the knowledge
of spreading codes of other users at the cost of training
procedure. In [22], a low-complexity approximate SISO
multiuser detector based on soft interference cancellation
and linear minimum mean square error (MMSE) filtering
was developed, but the performance of this detector is
unfavorable at low SNR. As the swarm intelligence is
one of the latest methods in the field of signal processing
[23] (especially for combinatorial optimization problems
[24]), several swarm-intelligence-based MUD algorithms
have been considered in [25-27]. However, the tradeoff
problem between computational complexity and BER
performance still exists.
To solve these issues, we investigate a complexity-

performance-balanced multiuser detector based on the
artificial fish swarm algorithm (AFSA-MUD) for DS-UWB
systems. As a kind of swarm intelligence methods, AFSA
is selected here for its significant ability to search for the
global optimal value and to adapt its searching space
automatically [28,29]. And its basic motivation is to find
the global optimum by simulating the fish’s behaviors,
such as preying, swarming, and searching.
In this proposed AFSA-MUD algorithm, a simplified

Euclidean solution searching space is constructed by the
use of the solutions of sub-optimal multiuser detectors,
which are MMSE detector, decorrelating (DEC) detector,
and successive interference cancellation (SIC) detector.
Specifically, the center of this space is the result judged
in terms of the average value of all these sub-optimal
solutions, while its radius is defined as the maximum
distance between this center and these sub-optimal solu-
tions. Then, AFSA is applied in this simplified solution
space and these sub-optimal solutions are considered as
the initial states for the artificial fishes (AFs). Simulation
results show that the BER performance and the NFE re-
sistance capability of this proposed algorithm are com-
parable to those of OMD, and significantly better than
those of matched filter (MF), SIC, DEC, and MMSE
detectors. Besides, its computational complexity is much
lower than that of OMD, indicating a better efficiency.
The remainder of this article is organized as follows.

In Section 2, the general multiuser DS-UWB system and
some typical MUD algorithms are described, including
OMD, MMSE, DEC, and SIC. And in Sections 3 and 4,
the basic principles of AFSA and the proposed AFSA-
MUD algorithm are discussed, respectively. In Section 5,
simulation experiments that compare the performance of
different MUD algorithms are made, followed by conclu-
sions given in Section 6.

2. Multiuser DS-UWB system model and some
classical MUD algorithms
2.1. Multiuser DS-UWB system model in additive white
Gaussian noise and IEEE 802.15.3a channels
First, we consider a K-user synchronous DS-UWB system
under the additive white Gaussian noise (AWGN) channel
and each user employs the BPSK direct sequence spread
spectrum modulation [30]. Then, the kth user’s transmit-
ted signal can be expressed in the following form [31]:

S kð Þ
tr tð Þ ¼

X1
j¼�1

XNc�1

n¼0
b kð Þ
j p kð Þ

n wtr t � jTf � nTc
� �

;

ð1Þ
where wtr(t) represents the transmitted pulse waveform
generally characterized as the second derivative of Gaussian
pulse [6,19] in Equation (2), {bj

(k)} are the information
symbols for the kth user, {pn

(k)} denotes the spreading
sequences assigned to this user, Tc is the pulse repetition
period (namely the chip period), Tf is the time duration of
information symbol that satisfies Tf = NcTc, and Nc is the
length of spreading codes.

wtr tð Þ ¼ 1� 4π
t
τm

� �2
" #

⋅ exp �2π
t
τm

� �2
" #

; ð2Þ

where τm is the parameter that determines the width of
the pulse.
If these K users are all active, the total received signal

composed by different signals of all users is

r tð Þ ¼
XK
k¼1

AkS
kð Þ
tr tð Þ þ n tð Þ; ð3Þ
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where Ak is the amplitude of the kth received signal and
n(t) represents the received noise modeled as a normal
distribution N(0, σn

2) [4].
The AWGN channel, in which the performance of dif-

ferent MUD detectors can be discussed and analyzed
easily, is too ideal for practical use. However, the multi-
path channel is in reality used more often, especially in
the indoor environment. In this article, IEEE 802.15.3a
channel model discussed in [30,32,33] is chosen for the
system in discussion. This channel model is slightly
modified from the Saleh–Valenzuela model [34], that is,
a lognormal distribution hypothesis for the multipath
gain magnitude replaces the Rayleigh distribution hy-
pothesis. This multipath channel model can be defined
as follows

h tð Þ ¼ X
XL

l¼0

XM

m¼0
am;lδ t � Tl � πm;l

� �
; ð4Þ

where X is the lognormal shadowing factor, {αm,l} are
the multipath gain coefficients, Tl is the delay of the lth
cluster, τm,l represents the delay of the mth multipath
component (called “ray”) relative to the lth cluster arrival
time (Tl), i.e., τ0,l = 0. L and M denote the number of
clusters and its rays, respectively. In addition, the amp-
litude |αm,l| has a lognormal distribution while the
phase ∠ αm,l is equal to {0, π} with equiprobability [30].
According to the conclusions in [32], there are four

typical multipath channel models of different channel
characteristics, namely CM1–CM4. CM1 represents a
line-of-sight (LOS) propagation case with 0–4-m propa-
gation distance, while CM2–CM4 denote three different
non-LOS propagation cases with different propagation
distance or delay spread. The detailed characteristics of
these models are summarized in [32].
Therefore, the transmitted signal passed through this

multipath channel can be expressed as Equation (5),
which is dissimilar with Equation (3)

r0 tð Þ ¼
XK

k¼1
AkS

kð Þ
tr tð Þ⊗h tð Þ þ n tð Þ; ð5Þ

where the symbol ⊗ denotes the convolution operation.
Furthermore, in this case, the pulse repetition period Tc
is chosen large enough to preclude intersymbol and
intrasymbol interference [10]. With the help of Rake
receivers, the MUD algorithms discussed in the AWGN
case can be applied to the multipath case easily.

2.2. Classical multiuser detectors
2.2.1. Single-user MF
Since the MA DS-UWB system is assumed to be syn-
chronous, the output of a bank of single-user MFs is a
K-dimensional vector y, and its kth component is the
output of the filter matched to Str
(k)(t) at the jth symbol

duration

yk jð Þ ¼
Z jþ1ð ÞTf

jTf

S kð Þ
tr tð Þr tð Þdt: ð6Þ

Without loss of generality, we set the case that j = 0
and remove the index j. Thus, Equation (6) turns to

yk ¼
Z Tf

0
S kð Þ
tr tð Þr tð Þdt ¼ Akbk þ

XK

i¼1;1≠k
Aibipik þ nk ;

ð7Þ
where the first term Akbk is the ideal detection result of the
kth user, the second term indicates the MAI to this user,
where ρik =

R
0
TfStr

(i)(t)Str
(k)(t)dt denotes the normalized cor-

relation coefficient, and the last term nk =
R

0
Tfn(t)Str

(k)(t)dt is
the noise interference. Consequently, this K-dimensional
detection vector y can be represented in matrix and vector
forms

y ¼ RAbþ n; ð8Þ
where R is the normalized cross-correlation matrix with
{ρik}(i,k = 1,2,. . .,K), and

A ¼ diag A1;A2;⋯;AKf g;
b ¼ b1; b2;⋯; bK½ �T ;
y ¼ y1; y2;⋯; yK½ �T :

where diag{A1, A2,. . .,AK} represents a diagonal matrix
with diagonal elements A1, A2, . . ., AK . Furthermore, n
is a zero-mean Gaussian random vector with its cova-
riance matrix equal to

E nnT
� � ¼ σ2nR:⋅ ð9Þ

2.2.2. OMD
According to [35], the OMD problem is equivalent to
the maximum a posteriori estimation. The criterion of
OMD is written as follows

b̂ ¼ arg max
b∈ �1;þ1f gK

2bTAy� bTARAb
� �

¼ arg max
b∈ �1;þ1f gK

bT 2Ay� ARAbð Þ� 	
: ð10Þ

It is known that the selection of this optimal solution b̂
in the K-dimensional Euclidean solution space is generally
a non-deterministic polynomial (NP) hard problem [18].
For this reason, the computational complexity of OMD
grows exponentially with the number of active users.

2.2.3. MMSE detector
The purpose of MMSE detector is to minimize the mean
square error between the transmitted signal and the



Figure 1 The local visual range of AF Xi (the two-dimensional
case).
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detected signal transformed by matrix M linearly. This
linear transformation can also maximize the signal-to-
interference ratio [21,36]. Thus, the MMSE algorithm is
equivalent to the choice of the K × K matrix M that
achieves

M ¼ arg min
M∈RK�K

E jjb�My½ j 2


 �: ð11Þ

From [21,36], the optimal matrix M for Equation (11) is

M ¼ A�1 Rþ σn
2A�2

� ��1
; ð12Þ

and the solution of this MMSE detector can be expressed
as

b̂ ¼ sgn Myð Þ ¼ sgn A�1 Rþ σn
2A�2

� ��1
y

� �
: ð13Þ

2.2.4. DEC detector
Assume the cross-correlation matrix R is invertible, and
then the transformation matrix M of the DEC detector
is R–1

b̂ ¼ sgn R�1y
� � ¼ sgn Abþ R�1n

� �
; ð14Þ

where the interference caused by other users is eliminated
completely, but that of background noise is amplified.

2.2.5. SIC detector
This method is motivated by a natural and simple idea
that if a decision has been made for an interfering user’s
information bit, then its interfering signal can be recreated
at the receiver and subtracted from the original received
signal [37]. Thus, the decision of the kth user is [36]

b̂k ¼ sgn yk �
XK

j¼kþ1
Ajρjk b̂j

� �
; ð15Þ

where the decisions of users k + 1, k + 2, . . ., K are
assumed to be correct. Since the reliability of this as-
sumption affects performance drastically, the order of
demodulating users becomes the problem. Here, we set
users in order through Equation (16), which can be esti-
mated easily from the MF outputs [36]

E
Z T

0
y tð ÞS kð Þ

tr tð Þdt
� �2

" #
¼ σ2n þ Ak

2 þ
X

j≠k
A2
j ρ

2
jk :

ð16Þ
Notice that all these MUD algorithms introduced

above can be applied to the multipath situation easily by
Rake receivers with channel estimators [33] (which is
outside the scope of this article).

3. The basic principles of AFSA
AFSA is a random-searching optimization algorithm
inspired by fish’s behaviors, such as searching for food,
swarming, and following others. It is good at avoiding
the local optimum and searching for the global optimum
owing to its adaptive capacity in the parallel search of
solution space through simulating these behaviors in
nature [27-29]. In this section, the general AFSA is dis-
cussed below.

3.1. Some definitions for AFSA
In the AFSA, let the searching solution space is K-
dimensional and there are N AFs in this space. Like other
swarm-intelligence methods, AFSA searches this solution
space based on the cooperation and competition among
its AFs [28]. As is shown in Figure 1, there are some im-
portant definitions for AFSA.
The state of each AF can be modeled as a K-dimensional

vector:

X ¼ x1; x2;⋯; xKð ÞT ; ð17Þ
where xi (i = 1, 2, . . ., K) is the ith component of X.
Moreover, Y = f(X) denotes the food concentration level
of this state, where f(.) is also called the fitness function
or the objective function for specific issues.
The distance between the states Xi and Xj is formu-

lated as

di;j ¼ jjXi � Xjjj
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi1 � xj1
� �2 þ xi2 � xj2

� �2 þ⋯ xiK � xjK
� �2q

:

ð18Þ
In addition, Visual denotes the local visual (or search)

distance of AFs, δ is the factor of crowdedness that
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affects the number of AFs in the local space, step is the
movement size of AFs, and try_number is the random-
searching times in searching behavior described below.

3.2. The behavior descriptions of AFSA
3.2.1. Searching behavior
Suppose that Xi is the current state of a certain AF. This
AF then selects a new state Xj within its visual distance
randomly. If Yj = f(Xj) > Yi = f(Xi), this AF will move
from Xi to Xj as

Xinext ¼ Xi þ rand 0; 1ð Þ � step� Xj � Xi

Xj � Xi



 



 

 ; ð19Þ

where the calculation of (Xj – Xi)/||Xj – Xi|| gives the
orientation to move. Otherwise, select a new Xj ran-
domly again and determine whether it satisfies the
movement condition (Yj > Yi). If no one can satisfy this
condition after testing try_number times, this AF will
move one step randomly at final as

Xinext ¼ Xi þ rand 0; 1ð Þ � step: ð20Þ

3.2.2. Swarming behavior
Let Xi is the current state of a certain AF, and nf is
the number of companions within its visual range, which
is the number of elements in the set of B = {Xj |di,j <
Visual}. Then Xc is calculated by Equation (21) as the
central state of its companions in its visual range:

Xc ¼
Xnf

j¼1
Xj=nf : ð21Þ

Meanwhile, Yc = f(Xc) is the food concentration of this
central state. If Yc/nf > δYi and Yc > Yi, which means the
food concentration of Xc is sufficient while this area is
not crowded, then this AF will move one step to the
central state as Equation (22). Otherwise, the searching
behavior is executed.

Xinext ¼ Xi þ rand 0; 1ð Þ � step� Xc � Xi

Xc � Xij jj j : ð22Þ

3.2.3. Following behavior
Assume that Xi is the state of a certain AF at present,
and then within the visual scope of Xi, search the state
Xmax whose food concentration Ymax is maximum. If the
conditions Ymax/nf > δYi and Ymax > Yi satisfy, this AF
will move one step to Xmax:

Xinext ¼ Xi þ rand 0; 1ð Þ � step� Xmax � Xi

Xmax � Xij jj j ;

ð23Þ
Otherwise, the searching behavior is executed.
3.3. Bulletin board
The bulletin board is designed to prevent the optimization
results from degradation, that is, it is used to record and
renew the best food concentration and its corresponding
state during the iteration of AFSA. After the maximum
number of iterations has been achieved, the final records
on this bulletin board will be output as the result of AFSA.

3.4. The selection of different behaviors for AFs
As for the optimization problems, such as the maximum
problem, the selection of these different behaviors is
based on the trial method [38], which simulates the
swarming behavior and the following behavior of each
AF and the better one of them that can increase the food
concentration of this AF will be implemented actually. If
none of them can improve the former state of this AF,
the searching behavior will be selected. Hence, the whole
flowchart of AFSA can be summarized in Figure 2 (the
sections in the dashed border are not necessary).

4. The proposed AFSA-MUD algorithm
4.1. The AFSA for MUD problem
It is clear that OMD is a combinatorial optimization
problem, and AFSA has a strong global searching ca-
pability to solve this problem. Therefore, here AFSA is
applied to the MUD problem with some additional expli-
cations in the discrete Euclidean solution space EK,
where K is the number of active users

(1) The expression of AF’s state. In this solution space,
the state of each AF is encoded by −1 or +1. If there
are K active users in this DS-UWB MA system,
thus the state is a K-dimensional vector, like
X0 = (x1,x2,. . .,xK)

T, where xi∈ {−1, + 1} and
i = 1,2,. . .,K.

(2) Initialization. The initial state of each AF is selected
randomly in the discrete space with 2K likely
solutions.

(3) The distance between different states. In this case, the
operator XOR is used to calculate this distance. For
example, if Xi = (1,1,–1,1,1) and Xj = (1,–1,1,–1,1),
then the distance di,j = Xi XOR Xj = 3.

(4) The food concentration or the fitness function for
AFs is the criterion of OMD in Equation (10).

(5) The operations in Equations (19), (22), and (23) are
be modified as follows, respectively:

Xinext ¼ Xj;
Xinext ¼ Xc;
Xinext ¼ Xmax:

ð24Þ

4.2. The improved scheme for the selection of initial
states and the simplification of solution space
Since AFSA is a kind of random-searching swarm-
intelligence algorithms, its convergence speed and



Figure 2 The whole flowchart of AFSA.
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computational complexity mainly depend on its initial
states and searching space. This suggests that, in order
to enhance the speed of convergence and decrease the
computational complexity of AFSA-MUD, the initial
states should be selected with a priori knowledge, rather
than selected randomly, and the K-dimensional solution
space should be simplified.
Hence, a novel AFSA-MUD method is proposed here,

whose a priori knowledge is the detection results of some
sub-optimal detectors, such as MMSE, DEC, and SIC
detectors. Besides, its Euclidean solution space defined by
its center and radius is constructed by these sub-optimal
results, which is more condensed than the former whole
space. As a result, this mechanism cannot only enhance
the convergence speed and search accuracy for the global
optimum, but also reduce the time or complexity it takes.
The details are described as follows.

(1) Initialization. Let the detection results of MMSE,
DEC, and SIC detectors be the K-dimensional
vectors X1, X2, and X3. Thus, the number of AFs
can be set as 3 and their initial states are assigned
by X1, X2, and X3, respectively. Notice that this
initialization can be expanded to the situation with
more than three sub-optimal detectors effortlessly.

(2) The center of the simplified space. Here, the majority
voting method is applied, which has widely been
used to solve the conflict problem both in
engineering and social fields, to the fixing of the
center point:

X0 ¼ sgn
1
3

X1 þ X2 þ X3ð Þ
� �

: ð25Þ

(3) The radius of the simplified space. In this algorithm,
the radius is determined by the maximum distance
between the center and these initial states (or sub-
optimal solutions):

dradius ¼ max d0;1 X0;X1ð Þ; d0;2 X0;X2ð Þ; d0;3 X0;X3ð Þ� 	
¼ max X0XORX1ð Þ; X0XORX2ð Þ; X0XORX3ð Þf g;

ð26Þ

where dradius denotes the searching radius of AFSA. But
in fact, these sub-optimal detectors are not independent
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of each other absolutely, and their correlation degree
can be estimated [39] as

ρn ¼
nNf

N � Nf � Nr þ nNf
: ð27Þ

In [39], n is the total number of classifiers, N is the
total number of testing samples, Nf is the number of
samples that are misclassified by all classifiers, and Nr

means those samples that are classified correctly by all
classifiers. But here, n is regarded as the total number of
sub-optimal detectors, N is the total number of testing
information bits, Nf denotes the number of bits that are
detected wrongly by all detectors while Nr is the bits
detected correctly by all. Figure 3 depicts the correlation
ρ3 of SIC, DEC, and MMSE detectors versus Eb/N0.
From it, we can see as the Eb/N0 increases, their correl-
ation degree rises obviously before Eb/N0 = 16 dB (from
0.52 to 0.98), but after that, it stands at nearly 1 all the
time. In general, the lower the Eb/N0 is, the more diver-
sity these sub-optimal detectors will have, and also the
bigger the space-searching radius is. Furthermore, this
correlation degree is quite significant if there are many
sub-optimal detectors to choose from.
Considering the analysis above, when the case X1 =

X2 = X3 occurs, the radius calculated by Equation (26)
is zero, which means the solution space is null. In order
to avoid this problem, the radius is set as 1, if X1 = X2 =
X3 is satisfied.
To sum up how to determinate the center and the radius

of the simplified space, three situations are considered.

i. none of these sub-optimal solutions equals to
another (X1 ≠ X2 ≠ X3);
Figure 3 The correlation degree of SIC, DEC, and MMSE
detectors.
ii. two of these solutions are equal, but not three
(X1 =X2 ≠ X3);

iii. all of these solutions are equal (X1 = X2 = X3).

Figure 4 shows these three situations in a two-
dimensional solution space, which can be generalized
into K-dimensional solution space easily (K > 2).

4.3. The proposed AFSA-MUD algorithm
In consideration of the statements above, the overall
structure of this proposed AFSA-MUD detector is
shown in Figure 5. And the implementation of this de-
tector is summarized as follows.

(1) The output of a bank of single-user MF receivers is
fed to sub-optimal detectors, such as SIC, DEC, and
MMSE.

(2) The detection results of these sub-optimal detectors
are used to construct a simplified solution space and
initialize the states of AFs.

(3) The AFSA is executed in this space.

5. Numerical results
In order to test and verify this proposed AFSA-MUD al-
gorithm, Monte Carlo simulations are utilized and the
majority parameters used for these simulations are sum-
marized in Table 1. The performance of MF, SIC, DEC,
MMSE, AFSA-MUD, and OMD detectors is compared
in both AWGN and multipath channels (only the energy
of the first path is received, that is, without Rake diversity
combining) as follows, including the BER performance
versus Eb/N0, the BER performance versus the number of
active users K, and also the NFE resistant capability. Fi-
nally, the computational complexity of AFSA-MUD is
compared with those of other detectors to demonstrate
its efficiency.

5.1. The BER performance versus Eb/N0 comparison
The BER versus Eb/N0 curves with perfect power control
in the AWGN and multipath IEEE 802.15.3a CM2 chan-
nels are depicted in Figures 6 and 7, respectively, when
there are ten users in the system. Besides, the BER ver-
sus Eb/N0 performance curves of AFSA-MUD condi-
tioned in the different multipath channels, which is
CM1–CM4, are displayed in Figure 8.
It can be seen from Figure 6 that the BER performance

of AFSA-MUD is superior to those of other sub-optimal
detectors including MF, SIC, DEC, and MMSE, and it
even coincides with that of OMD. The reason is that this
proposed AFSA-MUD algorithm can make a search
within a simplified solution space constructed by the
solutions of these sub-optimal detectors, rather than a
random search. Therefore, all these sub-optimal solu-
tions are certainly contained in this searching space.



Figure 4 Three situations in a two-dimensional solution space.

Table 1 Simulation parameters

System DS-UWB
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Although all the performances of these algorithms are
aggravated in the multipath environment (Figure 7), the
BER performance of AFSA-MUD is still close to that of
OMD, both of which are the best.
From the simulation results in Figure 8, we can see

that, as the communication channel condition deteriorates
from CM1 to CM4, the BER performance of AFSA-MUD
also deteriorates. In detail, CM1, compared with CM2–
CM4, is LOS and its transmission distance is the short-
est, so that the power of its received signal is larger than
others.

5.2. The BER performance versus K comparison
The BER performance curves of these detectors with
different number of active users K are analyzed in this
Figure 5 General schematic diagram of the AFSA-MUD
detector.
experiment, considering two cases: (i) the AWGN channel
with the Eb/N0 set as 5 dB for all detectors; (ii) the multi-
path CM2 channel with the Eb/N0 set as 10 dB (to distin-
guish these curves clearly) for all detectors.
Figures 9 and 10 show the results corresponding to

Cases one and two, respectively. As a whole, the BER
becomes higher when the number of users increases, and
the performance of OMD is the best. The reason for the
performance gap between AFSA-MUD and OMD is that,
as the number of users increases, the simplified solution
space also expands, and as a result of this, the parameters
Modulation mode BPSK

Spreading codes (SC) m sequences

The length of SC 31

Communication channel AWGN or IEEE 802.15.3a

(CM1–CM4)

The number of testing information bits 50000

The width of UWB pulse 0.7531 ns

The pulse repetition period ≈2 ns

Visual 2

Try_number 5

The iterative times 5



Figure 6 BER performance comparison when K = 10 in the
AWGN channel.

Figure 8 BER performance comparison for AFSA-MUD when
K = 10 in CM1–CM4 channels.
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(Visual, Try_number, and the iterative times) should be
bigger, but in this experiment, they remain unchanged as
in Table 1.
In addition, there are some conspicuous differences

between these two figures. The performance of SIC is
better than that of MF in Figure 9 but worse in Figure 10,
which is because the interfering user’s bits estimated in
AWGN environment are much more accurate than in
multipath environment. That is, SIC cannot improve the
BER performance of MF in low Eb/N0 environment.
Then, limited by its ability to amplify the interference of
background noise, DEC cannot achieve the optimal
Figure 7 BER performance comparison when K = 10 in the IEEE
802.15.3a CM2 channel.
performance, especially in Case two where its perform-
ance is the worst when K = 5, 10.

5.3. The NFE resistant capability comparison
The BER performance of these detectors with imperfect
power control, called the NFE, is discussed in this simu-
lation. Also we give two cases: (i) the AWGN channel
with the number of users set as 10, when the transmit-
ted energy per information bit of the first user Eb1 keeps
the same with its Eb1/N0 = 5 dB while that of other users
Eb2–10/N0 varies from 0 to 15 dB synchronously; (ii) the
multipath CM2 channel with the number of users set as
10, when Eb1/N0 = 10 dB (to separate these curves
clearly) while that of other users Eb2–10/N0 also varies
Figure 9 Case one: BER performance versus K.



Figure 10 Case two: BER performance versus K. Figure 12 Case two: BER performance versus Eb2–10/N0.
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from 0 to 15 dB synchronously. Notice that only the
BER of the first user is analyzed and depicted.
From Figure 11 (Case one), it is obvious that DEC,

MMSE, AFSA-MUD, and OMD have the stronger NFE
resistant ability (no sense with Eb2–10/N0) than MF and
SIC detectors. However, in consideration of the BER per-
formance of them, AFSA-MUD and OMD are the best.
Furthermore, the BER performance curve of SIC has an
inflexion at the point where Eb2–10/N0 = 5 dB, due to its
detection method in Equations (15) and (16). On one
hand, when the energy of users 2–10 calculated by
Equation (16) is smaller than that of user 1, which is
Eb2–10/N0 < 5 dB, then the information bits of user 1 will
be detected at first, which is the same as MF does. This
Figure 11 Case one: BER performance versus Eb2–10/N0.
is the reason that the BER performance of SIC is identi-
cal with MF until Eb2–10/N0 = 5 dB. On the other hand,
when Eb2–10/N0 > 5 dB, the information bits of users
2–10 will be detected before those of user 1 with more
reliability. As a result, after the interfering signal sub-
tracted from the original received signal by Equation
(15), the BER performance of SIC is improved, agreeing
with those of AFSA-MUD and OMD.
Figure 12 shows the almost same conclusion for the

NFE resistant ability comparison in the multipath case,
except for a little diverse. Due to the effect of multipath,
especially when Eb2–10/N0 is larger than 8 dB, the inter-
fering users’ bits are not estimated correctly enough
(here, BER > 10–1). From Equation (15), it can be seen
that if the estimation of the interfering users’ bits is in-
accurate, the interfering signals can be enhanced per-
versely, resulting in the worse BER performance of SIC
even than that of MF, which is different from the AWGN
case in Figure 11.

5.4. The computational complexity comparison
The total number of calculating the K-dimensional vector
inner products (after the output of MFs in Equation 8)
Table 2 The computational complexity comparison

MUD algorithms Computational complexity

MMSE K (From Equation 13)

DEC K (From Equation 14)

SIC K (From Equation 15)

AFSA-MUD
K þ K þ 1ð Þ K

0

� �
þ K

1

� �
þ⋯þ K

Li

� �� �
(From Appendix)

OMD 2K(K + 1) (From Equation 10)



Figure 14 The average Li/K versus Eb/N0 curves when K = 10.
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for all these detectors at each symbol duration is listed
in Table 2, where K is the number of active users in this
multiuser system and Li is the upper bound for the ra-
dius of solution space in the current information
symbol duration ((i – 1)Tf < t < iTf ). The detailed
derivation of the computational complexity of AFSA-
MUD is given in Appendix. Note that in our discussed
problem, the communication system is static (i.e., the
number of active users is fixed, such as K = 5, 10, 15) so
that the matrix inversion in Equations (13) and (14)
need not be performed at each symbol period. In other
words, the computational complexity of inversion ope-
ration is negligible.
As is shown in Table 2, the computational com-

plexity of AFSA-MUD is much lower than that of
OMD evidently, because only if Li = K and K is large

enough, that Kþ Kþ 1ð Þ K
0

� �
þ K

1

� �
þ⋯þ K

K

� �� �
¼

K þ K þ 1ð Þ2K≈ K þ 1ð Þ2K is satisfied. However, the case
Li ≥ K/2 is meaningless for a certain communication
system. To make it clear, the computational complexity of
all these detectors is compared in Figure 13, when Li/K =
0.1, 0.3, and 0.5.
In addition, the average Li/K versus Eb/N0 curves

(K = 10) conditioned on the AWGN case and multipath
CM1–CM4 cases are depicted in Figure 14. As it shows,
Li/K will decrease when the variable Eb/N0 increases,
which also means the upper bound for the radius of solu-
tion space has a self-adaption capability in accordance
with Eb/N0. Besides, the average ratio Li/K is about 0.2
for CM1–CM4 cases, which implies that AFSA-MUD
can save at least 94.4% of the computational com-
plexity of OMD (in Table 2 with K = 10). In AWGN case,
AFSA-MUD will save even more than 98.8% of the
complexity.
Figure 13 The computational complexity of all detectors.
6. Conclusion
In this article, the focus has been on the MUD techno-
logy used in the DS-UWB system. In consideration of
the high-computational complexity of OMD, and the low
BER performance of sub-optimal multiuser detectors, a
complexity-performance balanced MUD algorithm is pro-
posed on the basis of AFSA, named AFSA-MUD. This
method executes the different behaviors of AFs in a sim-
plified Euclidean solution space, which is built by the
detection results of sub-optimal detectors. Simulation
results have indicated that the BER performance and
the NFE resistant ability of this novel algorithm are
quite close to those of OMD, and they are also superior
to those of MF, SIC, DEC, and MMSE; furthermore, it
takes much lower computational complexity to achieve
this performance.

Appendix
The computational complexity of AFSA-MUD
Let the detection results of SIC, DEC, and MMSE be
three K-dimensional vectors:

X1 ¼ x11; x12; . . . ; x1Kð ÞT ;
X2 ¼ x21; x22; . . . ; x2Kð ÞT ;
X3 ¼ x31; x32; . . . ; x3Kð ÞT ;

and in consideration of the parallel execution of these
detectors (from Figure 5), the number of calculating the
K-vector inner products for this parallel execution is
considered K here.
According to Equations (25) and (26), the center of its

simplified solution space is

X0 ¼ x01; x02; . . . ; x0Kð ÞT ;
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while the radius is dradius. An arbitrary solution in
this space is X = (x1, x2, . . ., xK)

T, which satisfies the
condition

d X0;Xð Þ ≤ dradius
¼max d0;1 X0;X1ð Þ; d0;2 X0;X2ð Þ; d0;3 X0;X3ð Þ� 	
¼max X0XORX1ð Þ; X0XORX2ð Þ; X0XORX3ð Þf g ≤ Li;

ð28Þ
where Li is the upper bound for the radius of this
solution space in the current information symbol du-
ration ((i – 1)Tf < t < iTf ), and it can be determined
by the number of discordant components in these
three K-dimensional vectors

Li ¼
3K �

XK

i¼1
x1i þ x2i þ x3ij j
2

: ð29Þ

Then, the total number of K-vector inner products
for AFSA-MUD is equivalent to counting the number
of K-vector inner products for all discrete solutions in
this space (its radius is Li), and plus the number for
the parallel execution of SIC, DEC, and MMSE, that is

Li ¼
3K �

XK

i¼1
x1i þ x2i þ x3ij j
2

: ð30Þ

where the term
K
i

� �
(i = 0, 1, . . ., Li) means the

number of all solutions that satisfies d(X0,X) = i.
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