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Abstract

This article proposes a new method for newborn seizure detection that uses information extracted from both
multi-channel electroencephalogram (EEG) and a single channel electrocardiogram (ECG). The aim of the study is to
assess whether additional information extracted from ECG can improve the performance of seizure detectors based
solely on EEG. Two different approaches were used to combine this extracted information. The first approach,
known as feature fusion, involves combining features extracted from EEG and heart rate variability (HRV) into a
single feature vector prior to feeding it to a classifier. The second approach, called classifier or decision fusion, is
achieved by combining the independent decisions of the EEG and the HRV-based classifiers. Tested on recordings
obtained from eight newborns with identified EEG seizures, the proposed neonatal seizure detection algorithms
achieved 95.20% sensitivity and 88.60% specificity for the feature fusion case and 95.20% sensitivity and 94.30%
specificity for the classifier fusion case. These results are considerably better than those involving classifiers using
EEG only (80.90%, 86.50%) or HRV only (85.70%, 84.60%).

Keywords: Time-frequency representation, Heart rate variability, EEG, Newborn seizure, Seizure detection, Features
fusion, Classifier combination, TFD, MBD, IF
Introduction
Seizures occur when a large number of cortical neu-
rons undergo a sudden, excessive, and synchronized
depolarization. The reported incidence of newborn sei-
zures varies enormously from 0.15 to 15%, depending on
the population studied [1]. Newborn seizures have been
associated with increased rates of long-term chronic neuro-
logical morbidity and neonatal mortality [2]. Hypoxic ische-
mic encephalopathy, intracranial hemorrhage, infarcts or
neonatal strokes, intracranial infection, and biochemical
imbalances within the CNS constitute about 90% of the eti-
ologies of neonatal seizures [3]. Early detection of seizure in
the newborn is, therefore, crucial as prolonged untreated
seizures can result in long-term neurological damage.
Newborn seizure manifestations can be classified as

clinical or electrical (electroencephalogram—EEG). The
clinical signs involve stereotypical physical behaviors
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such as sustained eye opening with ocular fixation, re-
petitive blinking, or fluttering of the eyelids, drooling,
sucking, and other slight facial manifestations [4]. Unlike
in adults and children, these clinical manifestations are
usually subtle in newborns and, therefore, require a con-
stant attention of the medical staff to be detected. As a
result, growing attention has been focused toward devel-
oping computerized methods to automate the newborn
EEG seizure detection process [5-14].
Newborn seizures manifest themselves in the EEG as

repetitive waveforms that are distinctly different from
the normal random-like background cerebral activity.
These characteristics have been exploited by a number
of researchers when designing automated seizures detec-
tion methods. Some of these methods are based on
quantifying this periodicity in (1) the time domain using
correlation function [5,15], changes in model structure
[10,16,17], synchronization between channels [18], and
wave-sequence analysis [3,19], (2) the frequency domain
using power spectral density [11,20,21], and (3) the
time–frequency domain using quadratic time–frequency
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distributions [14,22-24] and atomic decomposition
[25,26]. Faul et al. [27] compared the detection methods
proposed by Liu et al. [5], Gotman et al. [11] and Celka
and Colditz [10] using a common EEG database. The
authors concluded that all three methods failed to reli-
ably identify neonatal seizures.
Other researchers adopted a pattern recognition ap-

proach to the problem of seizure detection. The approach
consisted of extracting and selecting discrete features from
different analysis domains and using them to train classi-
fiers. Different classifiers have been used, namely artificial
neural networks [13,21,28,29], discriminant [30], and sup-
port vector machine [31]. Despite this effort, a reliable and
robust automatic recognition of newborn EEG seizure
remains a challenging task. This is due to a number of fac-
tors such the large inter- and intra-patient variability of
the newborn EEG seizure morphology, the lack of consen-
sus among EEG experts on what constitute an EEG seiz-
ure, and the complete reliance on the EEG as the only
source for information.
Authors had realized the need to take into account

other physiological data [7]. In particular [32-34], the
present authors showed that changes in heart rate vari-
ability (HRV) generally accompany electrical manifest-
ation of newborn seizures. These findings suggest that
HRV provides important information that can be used
in seizure detection. However, apart from few attempts
such as [32-36], there has been little work done using
physiological signals, other than EEG, for automatic
identification of seizure in newborns. Therefore, in this
article, we propose new methods for newborn EEG seiz-
ure detection by exploiting information extracted from
both HRV and multi-channel EEG to improve the accur-
acy and robustness of the detection process, as previ-
ously suggested in [7,37]. The success of this endeavor
would result in a decrease on complete reliance on the
FHRV 
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Figure 1 Newborn seizure detection process based on EEG-HRV featu
are combined as �F before fed into classifier to obtain classification rate, Pz.
EEG as the sole information source for detection of
newborn seizure and, therefore, a reduction of false
detections caused by confounding factors in EEG. Al-
though it uses similar structures as the method proposed
in [38], the present approach differs from [38] in a sig-
nificant number of points, such as the nature of feature
extracted, the use of feature selection, and the rules for
combining the classifiers as detailed within the text.
In this article, we investigate the idea and compare the

performance of fusing the information extracted from
EEG and HRV for newborn seizure detection. This fu-
sion is performed at two different levels, namely feature
level and decision level. In the feature fusion approach,
features derived from EEG and HRV are combined into
a single feature vector before feeding it to a single classi-
fier. In the decision fusion, two classifiers are used; one
based on features extracted from EEG and the other
from features obtained from HRV. The final decision is
obtained by integrating the separate decisions of the two
classifiers. We also compare our detectors to the ones
proposed by Greene et al. [38] and discuss the possible
sources of the differences in performance. We end the
article by discussing different limitations of this study
and how to overcome them in the future.
This article is organized as follows. “Materials and

methods” section addresses the different components
involved in the development of the process for newborn
seizure detection. The performances of the proposed
detectors are evaluated and the results are discussed in
“Data acquisition” section. In the final section, conclu-
sions about this study are presented.

Materials and methods
In this article, two approaches for combining informa-
tion extracted from multi-channel EEG and single-
channel HRV are investigated. Figures 1 and 2 show the
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Figure 2 Flow chart for newborn seizure detection based on EEG–HRV classifier/decision fusion. The optimal feature of EEG, �FEEG , and
HRV, �FHRV are fed into separate classifiers. The independent decisions of these classifiers, PEEG & PHRV, were then, combined to produce an overall
classification rate Pz.
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different components of the two newborn seizure detec-
tion approaches. Both share the following processing
steps: preprocessing, feature extraction, feature selection,
and fusion. Each of these steps is detailed below.
Table 1 Bipolar montage used to acquire the EEG data

Right hemisphere Left hemisphere

1 (F4-T4) 4 (F3-T3)

2 (T4-T6) 5 (T3-T5)

3 (T6-O2) 6 (T5-O1)

7 (F4-C4) 10 (F3-C3)

8 (C4-P4) 11 (C3-P3)

9 (P4-O2) 12 (P3-O1)

13 (T4-C4) 15 (Cz-C3)

14 (C4-Cz) 16 (C3-T3)

17 (T6-P4) 19 (Pz-P3)

18 (P4-Pz) 20 (P3-P5)
Data acquisition
The eight EEG–electrocardiogram (ECG) records used
in this study were acquired from eight full-term new-
born babies (GA: 40–42 weeks) admitted to the Royal
Brisbane Hospital, Brisbane, Australia. Twenty EEG
channels and one ECG channel were simultaneously
recorded using Medelec Profile System (Oxford Instru-
ments, UK). The EEG channels were obtained from 14
electrodes, placed according to the international 10–20
standard, using longitudinal bipolar montage (see
Table 1). The EEG seizures were identified and anno-
tated by a pediatric neurologist from Royal Children
Hospital, Brisbane, Australia. The eight EEG recordings
totaling 2.8 h (mean 21.22 min) contained 13 partial
seizure events of a total duration of 33 min (mean 2.54
min). The EEG and ECG were filtered using an analog
band-pass filter with cut-off frequencies 0.5 and 70 Hz
prior to being digitized at a rate of 256 Hz. A 50-Hz
notch filter was then used to remove the effects of
power line interferences. As the aim of this article is to
combine the information from EEG and ECG data, only
EEG recordings or parts of the recordings accompanied
with ECG have been selected. Also, sections of the
recordings exhibiting large movement artifacts, satur-
ation, or those associated with detached electrodes have
been eliminated from further processing.
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Preprocessing
Preprocessing ECG
To conform with the minimum requirement of the Task
Force of the European Society of Cardiology and the North
American Society of Pacing and Electrophysiology [39], we
divided the ECG into 64-s segments (epochs). In this
study, we randomly selected 21 seizure-related and 13
non-seizure-related non-overlapping ECG segments col-
lected from the eight recordings. In a first step, the raw
ECG was filtered using a 60th-order band-pass finite im-
pulse response filter with cutoff frequencies of 8 and 18
Hz. This was done to allow frequencies associated with
the QRS waveforms to pass while stopping artifacts and
non-QRS waveforms such as the P and T waves. A reli-
able QRS detection algorithm was used to locate the R
points in the ECG [33]. Errors in the R point detection
were corrected using timing analysis. The RR interval
time series was obtained by taking the time difference be-
tween consecutive R points. The instantaneous heart rate
(IHR) was then computed as the inverse of the RR inter-
val. The IHR time series was transformed into an evenly
time-sampled one using cubic spline interpolation fol-
lowed by resampling at 4 Hz and detrending. The result-
ing signal constituted the HRV used in this study. More
details can be found in [33,34].
Preprocessing EEG
The multi-channel EEG was filtered using a low-pass fil-
ter with a cutoff frequency of 8 Hz and resampled at 20
Hz. This choice has been done for different reasons: (1)
It has been shown that more than 95% of spectral energy
in the newborn EEG is concentrated in the delta and
theta frequency bands (0.4–8 Hz) [40], (2) selecting this
sampling rate significantly reduces the computational
burden, and (3) this filters out high-frequency noise and
artifacts such as EMG. For the sake of synchronization
with the HRV, the EEG from the different channels was
segmented into non-overlapping 64-s EEG epochs.
These epochs were further divided into five non-
overlapping windows of 12.8 s each. The reason for
using shorter EEG windows is that many researchers
consider that the minimum acceptable duration for an
EEG seizure to be around 10 s [11]. The synchronization
of HRV and EEG epochs was needed to achieve the fu-
sion between the two signals as illustrated in Figure 3.
Feature extraction
HRV features
A total of 96 features were extracted from the time and
the TF domains for each HRV epoch. A brief description
of the extracted features is given below. More details can
be found in [33].
Time domain features The mean, standard deviation,
and Hjorth parameters (which describe the signal char-
acteristics in terms of activity, mobility, and complexity)
were computed.

Time-Frequency features As HRV is a non-stationary
signal, we decided to extract features from the time–fre-
quency domain to account for this. This process was not
as straightforward as in the case of the time domain fea-
tures. The time-frequency (TF) representation was
obtained using the Modified-B distribution (MBD) with
its parameter β set to 0.01 [41]. The MBD has been
chosen to represent the HRV in the TF domain as it was
previously found to realize the best compromise in terms
of cross-term reduction and TF resolution among a num-
ber of quadratic time-frequency distributions (TFDs) [34].
The MBD of a real signal, s(t), is given by [41]

p t; fð Þ ¼ ∬∬�1g v; τð Þz uþ τ=2ð Þ�z u� τ=2ð Þ
� ej2π vt�vu�f τð Þdvdudτ∞ ð1Þ

where z(t) is the analytic associate of s(t) and �z tð Þ its
complex conjugate. The function g(v,τ) is a kernel
defined in the Doppler-lag (v,τ) domain as [41]

g v; τð Þ ¼ Γ βþ jπvð Þj j2
Γ βð Þj j2 ð2Þ

where Γ stands for the complex-valued gamma function,
β is a real positive number that controls the trade-off be-
tween TF resolution and cross-terms suppression [41],
and :j j is the absolute function operator.
Figure 4a,b represents the MBD of the HRV associated

with non-seizure and seizure epochs, respectively. Accur-
ate low-frequency (LF), mid-frequency (MF), and high-
frequency (HF) components of HRV were extracted using
a recently proposed TF-based multicomponent IF estima-
tion technique [42]. The TFD of the HRV represents its
energy distribution in the joint TF domain where the
most valuable information is encoded in the instantan-
eous frequency (IF) and instantaneous amplitude (IA) of
the different components. The IF shows the TF region
where the signal energy is concentrated while the IA is
the amplitude envelope of each TF component; that is the
magnitude of the peak of the TF component as a function
of time. The spread of each TF HRV component away
from the IF is measured by means of the instantaneous
bandwidth (IB). The article [43] provides an in-depth re-
view and visual illustration of the concepts of IF, IA, and
IB. Their computational aspects are covered in [44]. Here,
the IB refers to the bandwidth of instantaneous spectrum
at every time instant when the energy density of the re-
spective component drops by 50% from its maximum.
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Figure 4 The modified B distribution of HRV and the components, i.e., LF, MF, and HF related to (a) non-seizure and (b) seizure epoch.
The energy in LF is significantly greater compared to MF and HF that makes the components unnoticeable (see the power spectral density at the
bottom of the TF plot). These figures were produced using a TFSA package [41]; a toobox for MATLABW).
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The HRV TF features comprised:

i. Statistical quantities extracted from the IF, IB, and
IA of the LF, MF, and HF components: mean,
standard deviation, median, RMS, min, max,
coefficient of variation, skewness, and kurtosis.

ii. The energy in LF, MF, and HF components, the total
energy in all the HRV components, and the ratio of
energy in the LF to HF (LF/HF).
iii. The generalized Shannon entropy of the normalized
TFD [33].
EEG features
A number of EEG features were extracted from each
EEG segment of each EEG channel. Some of these fea-
tures have previously been used by different authors in
the context of seizure detection. Our aim here is to show
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that using information from different physiological
sources results in better performing detectors than those
based on information extracted from single sources.
Some of the features have been modified to best suit our
current approach. The features were extracted from time,
frequency, time–frequency, and time-scale domains.

Time domain features These features include the
mean, standard deviation, skewness, kurtosis, coefficient
of variation, RMS and zero-crossings, and the Hjorth
parameters [45]. The total nonlinear score, proposed by
Liu et al. [5] as a measure of periodicity, was also
included.

Frequency domain features The frequency domain rep-
resentation was achieved using an FFT with Hamming
window of length 218 points. The frequency domain fea-
tures adopted here were similar to the one proposed by
Gotman et al. [11]. They include the peak frequency, the
maximum frequency, the bandwidth, and the spectral
power of the dominant spectral peak of the EEG windows.

Time-scale features Discrete wavelet transform has been
used in [13] for EEG seizure detection in newborns. Dau-
bechies 4 wavelet has been used in decomposing the EEG
segment into nine scales. We have extracted the optimal
features identified in [13]. The features are the variance of
cd2, cd3, cd4, cd6, cd7, ca9, and mean of d6, d5, d9, where
cdi and di refer to the detail coefficient and detail compo-
nent of scales, i, respectively.

Time–frequency features The TF representation was
obtained using the MBD with the parameter β set at
0.02. As in the HRV case, the MBD has been shown to
realize a good compromise between cross-term reduc-
tion and TF resolution. The TF features extracted com-
prised the following: total TF energy, the largest and
smallest singular values of the TFD and number of TF
components with prefixed minimum duration. The TF
components were extracted using the same technique
[42] used to extract the HRV components discussed
above.
For ease of comparison, all the extracted features were

normalized to have zero mean and unit standard devi-
ation. To remove redundant features and/or those with
poor discriminatory power, a feature selection process
was used. This process is described below.

Feature selection
Feature selection was used to select a subset from the ori-
ginal extracted feature set in order to avoid performance
degradation and high-computational complexity [46].
This smaller set included features that were both relevant
and non-redundant.
Most existing feature selection approaches belong to
two categories: wrappers and filters [47]. Wrappers are
techniques that include the classifier as an essential
component. The classifier performance is used in the
evaluation of the optimality of the selected features. The
filters, on the other hand, are classifier-independent. For
a pre-selected classifier, wrappers tend to give superior
performance as they select features optimally adapted to
the classifier. This, however, comes with a higher com-
putational cost along with the poor generalization to
other classifiers. Filters, on the other hand, are computa-
tionally efficient but since they are classifier-independ-
ent, they tend to select sub-optimal features [47].
In this article, we used feature selection methods we

previously developed [33,48,49] to select the optimal fea-
ture subset with minimum redundancy and maximum
class discriminability. The feature selection process was
considered successful if the dimensionality of the feature
set was reduced while the accuracy of the classification
was either improved or remained unchanged relative to
the full set.

Feature fusion case
In this approach, as illustrated in Figure 1, the optimal
HRV–EEG feature subsets were selected using the filter-
based selection method described in [48] where it has
been shown to be able to significantly reduce the num-
ber of features while maintaining a high classification
performance. The optimal HRV and EEG feature
selected as a result of employing the filter-based feature
selection method are given below.

Selected HRV features The following nine features
were selected: energy in LF, mean of IA for HF, mini-
mum of IA for MF, TF-based Shannon entropy, STD of
IA for MF, ratio of LF/HF, sum of IA for LF, sum of IA
for HF (TF features), and STD of HRV (time-domain
features).

Selected EEG features Five features were retained: TF
energy, number of TF components (TF features), peak
frequency, bandwidth of the peak frequency (frequency-
domain features), and total score from Liu’s technique
(time-domain feature).

Decision fusion case
In this approach, shown in Figure 2, the extracted HRV
and EEG features were fed to a two-phase filter-
wrapper-based algorithm described in [49]. The rationale
for using here a filter-wrapper feature selection, instead
of a filter-based one, is that the wrapper stage provides
both the set of optimal features and the related best per-
forming classifier. The selected classifier is then used in
the decision fusion process.
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The filter-wrapper-based feature selection method in
[49] is a two-phase process that has been used to reduce
the computation load and the complexity of the search
operations associated with the wrapper approach. The
first phase, which acts as pre-processing phase, involves
the filter [48] discussed earlier. As the result, a set of
relevant features, f, with minimum redundancy and
maximum class discriminability is obtained. In the sec-
ond phase, the feature subset, f, is presented as an input
to the wrapper. The wrapper uses the performance of
the classifier, such as the probability of error, to assess
the goodness of the selected features [49]. The wrapper
was evaluated using three different statistical classifiers,
namely linear, quadratic, and k-nearest neighbor. Opti-
mal EEG and HRV feature subsets together with the best
performing classifiers were selected as a result of
employing the filter-wrapper-based feature selection
method.

Optimal HRV features and classifier A combination of
seven HRV features, FHRV, and the 1-NN classifier gave
the best classification performance. The selected features
were: energy in LF, mean of IA for HF, min of IA for
MF, TF-based Shannon entropy, standard deviations of
IA for MF, LF/HF ratio, sum of IA for LF, sum of IA for
HF (all TF features).

Optimal EEG features and classifier A subset of five
features combined with a linear classifier gave the best
performance. The five features selected here were the
same ones obtained using the filter-based algorithm
mentioned above, namely TF energy, number of TF
components (TF features), peak frequency, bandwidth of
the peak frequency (frequency-domain features), and
total score from Liu’s technique (time-domain feature).
It is important to note that most of the features

retained by the feature selection process, in both types
for information fusion, are time-frequency ones. This
attests to the suitability of the TF domain in represent-
ing non-stationary physiological signals such as EEG and
HRV.

EEG and HRV information fusion
In order to make the EEG–HRV feature fusion possible,
the frame rates of the two signals must match. In
Figure 3, the EEG frame rate is five times that of the HRV
and as such, there is a mismatch between the features of
HRV and EEG. To deal with this issue, we investigated
three different solutions: (1) assign a constant value to all
12.8-s HRV windows, (2) use linear interpolation, and
(3) use higher-order polynomials. The linear interpolation
was adopted as it realized a good tradeoff between per-
formance and complexity and resulted in a smooth transi-
tion between feature values.
The feature fusion approach
As illustrated in Figure 1, the EEG epochs were prepro-
cessed before being fed to the feature extraction and se-
lection units. As mentioned above, from the larger set of
features extracted, only five were selected. For each
12.8-s window, a 5 × M matrix of features, FCEEG , was
obtained by concatenating the M 5 × 1 feature vectors
corresponding to the M different channels. The matrix
FCEEG was then reduced to a 5 × 1 vector �FEEG by using
symmetrical uncertainty-based dimension reduction
method. This procedure has been shown to perform well
in multi-channel EEG seizure detection [50]. In terms of
features, this is equivalent to representing the M chan-
nels by a single representative channel prior to feature
fusion.
As explained earlier, for the case of HRV, a total of 96

features was extracted from the 64-s epoch, and an opti-
mal 9 features represented by the 9 × 1 vector �FHRV

were used to train the classifiers. To ensure matching
segmentation between EEG and HRV features, HRV fea-
tures were linearly interpolated (as shown in Figure 3).
The resulting feature vectors �FHRV and �FEEG were conca-
tenated to form a single composite feature vector, �F ,
given by

�F ¼ �FEEG
�FHRV

� �

The composite feature vector was then fed to a num-
ber of statistical classifiers. The classifiers used in our in-
vestigation were linear, quadratic, and k-NN with k= 1,
3, and 5 using a leave-one-out cross validation. It has
been shown that leave-one-out cross validation is suit-
able in the small data case [51].

The classifier/decision fusion approach
In the decision fusion approach, two separate classifiers
were used for EEG and HRV as shown in Figure 2. The
independent decisions of these classifiers were, then,
combined to produce an overall decision. The multi-
channel EEG and the HRV were processed as in the fea-
ture fusion scheme previously described prior to being
combined at the decision level. In the current approach,
however, the extracted HRV and EEG features were sub-
mitted to a two-phase wrapper-based feature selection
process described in [48]. The matched feature vectors
associated with the HRV and EEG where then fed to the
two separate classifiers previously identified as optimum,
namely linear and 1-NN classifiers. The independent
decisions from the classifiers were finally fused using the
combination rules described in [52] for an overall classi-
fication into seizure and non-seizure activities. The
tested combining rules were mean, max, min, product,
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sum, and majority vote rules. The results are presented
in the following section.
Performance analysis and discussion
Seizure detection performance based on feature fusion
We first compared the performance of seizure detec-
tion based on feature fusion using different statistical
classifiers. The performance of the EEG–HRV feature
fusion scheme, as determined by the classification
results in terms of sensitivity and specificity, is pre-
sented in Figure 5. Using the selected composite features
discussed above, Figure 5 shows that the 1-NN, with
95.20% sensitivity (SEN) & 88.60% specificity (SPE),
achieved the best overall performance. The 3-NN
achieved a SEN slightly higher than the SEN yielded by
1-NN but at the expense of lower SPE (78%). The perfor-
mances of the other classifier investigated were relatively
poorer.
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Figure 6 Performance comparison of classifier fusion of EEG and HRV
Seizure detection performance-based classifier fusion
Figure 6 illustrates the performance results for the clas-
sifier combination case. The mean, max, min, product,
and sum rules achieved 95.20% SEN & 94.30% SPE.
The majority vote rules achieved 100% SPE at the ex-
pense of low SEN (71.4%). The mean, max, min, prod-
uct, and sum rules were therefore found to give the
best overall performance for this application. That most
combination rules gave the same results can be
explained by the fact that these simple rules were actu-
ally developed from “sum” and “product” rules as
detailed in ([53], Chapter 5).

Seizure detection performance: combined EEG–HRV
versus EEG only and HRV only
We assessed the value of both fusion strategies for new-
born seizure detection by comparing their performances
to those based on either HRV or EEG (i.e., without fu-
sion). Table 2 shows the performances in terms of
80 100 120

Specificity (%)

Sensitivity (%)

using various classifier combination rules.



Table 2 Performance comparison of newborn seizure detection using individual signal classification (EEG or HRV) and
the proposed fusion configuration

Algorithm EEG HRV Feature fusion Classifier fusion

SEN SPE SEN SPE SEN SPE SEN SPE

Proposed 80.90 86.50 85.70 84.60 95.20 88.60 95.20 94.30

Liu 60.60 61.50 – – 70.10 78.60 85.70 67.50

Gotman 72.10 69.20 – – 79.00 76.80 82.60 86.60
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sensitivity and specificity. The feature-based combin-
ation classifier achieved 95.20% SEN & 88.60% SPE com-
pared to 80.90% SEN & 86.50% SPE using the EEG
features alone or 85.70% SEN & 84.60% SPE using the
HRV features only. This shows that the combined fea-
tures have significantly improved the sensitivity of new-
born seizure detection compared to the sensitivity
achieved using either HRV or EEG features alone. The
improvement of specificity through feature fusion, al-
though not as dramatic as the sensitivity, was also re-
markable (+2.10%). The proposed seizure detector based
on the classifier fusion accomplished 95.20% SEN &
94.30% SPE compared to 80.90% SEN & 86.90% SPE
using the EEG features alone and 85.70% SEN & 84.60%
SPE using the HRV features only. Here, an even more
significant overall improvement was obtained compared
to the feature fusion process.
Effects of the feature selection on the seizure detection
performance
To assess the benefit of the feature selection process, we
compared the performance of the full feature set and the
reduced feature set-based classifiers for the cases of
HRV (Table 3), EEG (Table 4), and the combined EEG–
HRV (Table 5). Table 5 clearly shows the positive impact
of the feature selection on the performance of the classi-
fication. The reduced dimension-based classifiers out-
classed the full dimension based ones in both sensitivity
and specificity. The good achievement of the feature se-
lection algorithms was also visible for the cases of EEG-
only and HRV-only classifiers and was accompanied, in
Table 3 Classification accuracy using original HRV
features against the optimal feature subset

Classifier Full-set Filter Wrapper

(96 features) (9 features)

Error rate Error rate Number of
features

Error
rate

Linear 0.32 0.25 7 0.18

Quadratic 0.62 0.36 6 0.21

1-NN 0.39 0.15 7 0.15

3-NN 0.34 0.21 8 0.16

5-NN 0.40 0.26 7 0.22
all the three cases, by significant computational savings
as can be seen in Table 6.
The performance of Gotman’s and Liu’s algorithms with
and without fusion
To further evaluate the added value resulting from com-
bining the information extracted from EEG and HRV,
we decided to investigate how Liu et al.’s [5] and Got-
man et al.’s [11] algorithms would benefit by using the
extra information provided by the HRV. Our proposed
detectors used a set of d-dimensional feature vectors
that characterize the EEG seizure and non-seizure pat-
terns as input to a supervised statistical classifier. There-
fore, in Liu’s technique, total score is used as a feature to
distinguish the EEG seizure from the non-seizure. The
feature was fused with HRV features using the two pro-
posed combination strategy. In Gotman’s case, the fre-
quency of the dominant spectral peak, bandwidth of the
dominant spectral peak, and spectral power at the dom-
inant spectral peak were extracted from each EEG win-
dow. The features were then combined with HRV
features using the two proposed fusion approaches. The
results of such attempts are shown in Table 2.
Liu et al.’s algorithm achieved 60.60% SEN & 61.50% SPE.

Using the HRV features as complementary information at
both feature and decision levels improved the sensitivity
and the specificity of the seizure detection algorithm con-
siderably (SEN: +9.50% & +25.10% and SPE: +17.10%
& +6.00%). Gotman et al.’s algorithm accomplished 72.10%
SEN & 69.20% SPE. Fusing the EEG with the HRV at the
decision level improved both the sensitivity and specificity
Table 4 Classification accuracy using original EEG feature
set against the optimal feature subset

Classifier Full-set Filter Wrapper
(5 features)

Error rate Error rate Number of
features

Error rate

Linear 0.39 0.24 5 0.24

Quadratic 0.43 0.37 4 0.36

1-NN 0.45 0.33 5 0.33

3-NN 0.53 0.39 4 0.37

5-NN 0.47 0.30 5 0.30



Table 5 Classification accuracy using original combined EEG feature set against the optimal combined feature subset

Algorithm EEG HRV Feature fusion Classifier fusion:
(linear classifier) (1-NN classifier) (1-NN classifier) linear classifier &

1-NN classifier

SEN SPE SEN SPE SEN SPE SEN SPE

Proposed classifiers + optimal feature sets 80.90 86.50 85.70 84.60 95.20 88.60 95.20 94.30

Proposed classifiers + full feature sets 76.19 64.70 56.90 70.90 46.90 80.90 92.30 61.50
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the algorithm significantly (SEN: +6.90%, SPE: +7.60%). A
considerable improvement of the specificity and sensitivity
was also achieved by combining the EEG and the HRV at
feature level (SEN: +10.50%, SPE: +17.40%).
From Table 2, it is evident that Liu et al.’s and Gotman

et al.’s algorithms would benefit from the complemen-
tary information provided by HRV features. Based on
the results of “EEG features” section, a potential explan-
ation of the relatively poor performance of the two algo-
rithms, compared to the proposed algorithms, has to do
with the fact that EEG features sets used by the two
algorithms were not good enough to achieve high dis-
crimination between seizures and non-seizures.
Detection performance comparison with Greene’s
algorithm
In an attempt to combine EEG and ECG information to
detect newborn seizures, Greene et al. [38] proposed
two approaches, namely patient-specific and patient-in-
dependent. Both approaches were considered with fu-
sion at feature-level (referred to as early integration or
EI) and at decision-level (referred to as late integration
or LI). The authors reported that the patient-specific ap-
proach achieved 76.37% SEN & 88.77% SPE (through EI
configuration) compared to 71.02% SEN & 88.53% SPE
using the EEG features alone and 59.69% SEN & 69.21%
SPE using the ECG features only. They also reported
that patient-independent approach accomplished 74.39%
SEN & 66.95% SPE (through EI configuration) compared
to 68.18% SEN & 73.95% SEP using the EEG features
alone and 69.51% SEN & 62.22% SPE using the ECG fea-
tures only. The results were based on a dataset of 12
recordings from 10 neonates containing 633 seizures
Table 6 Execution times for classification using full EEG–
HRV feature and reduce feature sets

Algorithm Feature fusion Classifier fusion:
linear classifier

(1-NN classifier) & 1-NN classifier
Execution time (s) Execution time (s)

Proposed classifiers + optimal
feature sets

40.13 48.55

Proposed classifiers + full
feature sets

209.34 189.95
with a mean duration of 3.86 min and 11 normal,
healthy control neonates.
From these reported results, the combination of EEG

and ECG algorithm in patient-specific scheme seem to
outperform the patient-independent scheme. This obser-
vation is an agreement with previous works on automatic
seizure detection using EEG [5,10-13]. However, what is
usually desirable is to have a high performance seizure
detector that is patient independent. Furthermore, the
improvement achieved by the EEG and ECG combination
method does not seem to be significant enough to war-
rant the use of a computationally demanding algorithm.
Another point is that the patient-independent method
did not improve over the EEG-based seizure detection
but in fact has resulted in a lower specificity.
Our investigation led us to suggest two reasons for the

limitation of the proposed schemes. First, the method in
[38] uses a number of EEG and ECG features extracted
from the time and frequency domains. This implicitly pre-
assumes that the EEG and ECG are either stationary or at
least locally stationary and, as a consequence, ignores po-
tentially highly discriminating non-stationary features.
Second, a number of features were extracted from the
multi-channel EEG and then combined with the features
obtained from ECG to detect seizures. Using a high di-
mensional feature vectors in automatic detections/classifi-
cations is known to negatively affect the performance;
unless a feature selection process is performed prior to
classification. This problem is due to the use of potentially
performance-damaging irrelevant and/or redundant fea-
tures. The obtained results related to the nature of the
selected optimal features in “EEG features” section and
those dealing with the effect of feature selection on the
performance of the seizure detectors (Tables 3, 4, and 5)
clearly support these two conclusions.
To further evaluate the performance of our proposed

classifier fusion-based seizure detector (our best perform-
ing approach), we compared it with the newborn seizure
detector proposed by Greene et al. on the patient-
independent basis. We have extracted the six features
from each EEG channel and six features from a single
channel ECG as suggested in [38] and classified them into
seizures and non-seizures using statistical classifiers in an
EI configuration as reported in [38]. Table 7 shows the
results of the detection methods using our database.



Table 7 Performance comparison of seizure detectors based on newborn EEG and HRV inform

Algorithm EEG HRV Fusion of EEG and HRV

SEN SPE SEN SPE SEN SPE

Proposed seizure detector 80.9 86.5 85.7 84.6 95.2 94.3

Green’s seizure detector 71.5 65.6 59.6 67.5 72.8 60.3

Mesbah et al. EURASIP Journal on Advances in Signal Processing 2012, 2012:215 Page 12 of 14
http://asp.eurasipjournals.com/content/2012/1/215
Table 7 demonstrates the superiority of our proposed
newborn seizure detection algorithm. As discussed
above, the good results of our algorithm can be attribu-
ted to a number of factors. Our method uses a feature
selection algorithm which improved classification accur-
acy by excluding redundant and non-discriminative fea-
tures. The optimal features resulted from the feature
selection process of “EEG features” section were mostly
those extracted from the TF domain. Thus, the proposed
method efficiently uses the non-stationary information
embedded in both EEG and HRV. The stationarity as-
sumption of the newborn EEG and HRV seems to be a
major factor restricting the performance of the techni-
ques proposed by Greene et al. Time domain and fre-
quency domain methods are by themselves not efficient
enough to extract the rich information from non-
stationary signals such as EEG and HRV.
Limitations of the study and how to overcome them
As this is one of the earliest attempts to implement bio-
physical signals fusion for seizure detection [7,37], the
study described in this article has a number of limita-
tions. Most of these limitations, however, are directly or
indirectly related to the size of the database used. In this
section, we discuss some of these limitations and how
we plan to overcome them in the future.
The main limitation of the study is the size of the

database used. For practical reasons, it is desirable to
have an automated seizure detector that runs online and
uses continuous EEG signals of hours or even days long.
After all, the aim of the automation is to either assist the
neurologist by highlighting the signal sections of interest
or in applications that require immediate action, such as
prediction [54], to completely replace him or her. To ad-
dress this limitation, the authors plan to validate their
methods on larger databases, including normal record-
ings, obtained from different data acquisition systems.
This allows to address three points crucial for success of
any automated detector, namely between patients vari-
ability, robustness to the different data acquisition sys-
tems, and the effect of different labeling techniques. For
an online implementation, the widely used sliding
method will be implemented [10]. A post-processing
stage similar to the one proposed by different authors
[10,11,19,31] will be adopted to further enhance the per-
formance of the seizure detector.
Another limitation of this study is related to the
reporting of detected seizures in terms of segments/
epochs instead of seizure events and the use of sensitiv-
ity and specificity as the only measures of detection per-
formance. Concerning the first point, the decision to
adopt seizure epoch detection was mainly dictated by
the size of the database. Applying an event-based
method on database with a small number of seizures
tends to give either over optimistic results, in the case of
long seizures, or over pessimistic ones, in the case of
short seizures. The issue related to the second point,
namely the measures used to assess the detection per-
formance, attracted much debate in the literature [55].
Although there is no standard for reporting detection
performance, two complementary procedures are gain-
ing wide acceptance. These methods are the event-based
and the time-based detection methods [19,56]. Temko
et al. [56] correctly concluded that the best way to report
the performance of a seizure detector is to include a
number of different, but complementary, measures. This
approach will be adopted in our future works.
To assess the merit of a seizure detector, it is a com-

mon practice to compare its performance to some of the
existing methods. As the aim of this study was mainly to
assess the added value of the HRV information to the
seizure detection, this issue was restricted to a small
number of existing methods. One of our future plans is
to conduct a performance analysis that will include a
number of existing methods; especially those dealing
with high dimensional feature spaces.
One of the most challenging tasks in automated seiz-

ure detection is dealing with artifacts contaminating the
EEG. In this study, only those artifacts whose spectral
energies lie outside the (0.5–8 Hz) frequency band were
targeted. The fact that the performance did not suffer
much may be explained by the small duration of the
recordings used in this study. This, however, may not be
the case for long-term continuous recordings. To deal
with this situation, we plan to include some of the
artifact removal techniques we previously developed [57-
60] that deal with a wide variety of artifacts.
To detect newborn seizures, we have only considered a

small number of statistical classifiers and few basic rules
for classifier combination. These classifiers and combin-
ation rules were selected for their ease of implementation
and computational efficiency. They have also been shown
to perform well for a wide range of problems [53,61]. A
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number of more advanced methods [61-63] will be
reviewed and adapted to the problem of seizure detection.

Conclusions
We proposed new approaches for detecting newborn seiz-
ure through the combination of information extracted from
multi-channel EEG and single channel ECG. Two
approaches for combining EEG and HRV were proposed in
this article, namely feature fusion and classifier/decision fu-
sion. The feature fusion was achieved by concatenating the
features vectors extracted from the EEG and the HRV sig-
nals while the classifier fusion was accomplished by fusing
the independent decisions from individual classifiers based
on EEG and HRV. The combination of information from
EEG and HRV has led to better performing automatic neo-
natal seizure detectors compared to detectors based solely
on EEG (+14.30% SEN, +13.40% SPE) or HRV (+9.50%
SEN, +9.70% SPE). The decision-based fusion of EEG and
HRV was generally found to give better specificity than the
feature-based fusion (94.30% versus. 88.60%). The results
presented in this article confirm that information from
physiological signals that directly reflect neurological
changes (EEG) and signals that reflect autonomic behavior
(HRV) complement each other and their fusion offers su-
perior seizure detection performance.
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