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Abstract

We present a two-step technique for estimating the point spread function (PSF) field from a single star field image
affected by shift-variant (SV) blur. The first step estimates the best-fitting PSF for each block of an overlapping block
grid. We propose a local image model consisting of a pattern (the PSF) being replicated at arbitrary locations and with
arbitrary weights. We follow an efficient alternate marginal optimization approach for estimating (1) the most likely
pattern, and (2) the locations where it appears in the block, with sub-pixel accuracy. The second step uses linear
dimensionality reduction and nonlinear spatial filtering for estimating the entire PSF field from the grid of local PSF
estimates. We simulate SV blur on realistic synthetic star fields to assess the accuracy of the method for this kind of
images, for different blurs, star densities, and Poisson counts. The results indicate a moderately low error and very
robust behavior against noise and artifacts. We also apply our method to real astronomical images, and demonstrate
that the method provides relevant information about the underlying structure of the actual telescope and
atmosphere PSF fields. We use a variant of the method proposed in Part I to compensate for the observed blur.

Keywords: PSF estimation, PSF field, PSF field estimation, Shift variant blur, Deformable kernel, Dimensionality
reduction, Maximum likelihood, Sparsity, Star fields

1 Introduction
Shift-variant (SV) image restoration requires knowledge
of the point spread function (PSF) at each image location.
If we have access to the imaging device, and the cap-
ture conditions are known, it may be possible to obtain
the PSF field by pre-calibration. In many practical situa-
tions, though, we do not have access to this information.
Moreover, the PSF field may change due to factors that
are beyond our control (e.g., atmospheric turbulences,
device temperature, vibrations, fog, relative movement
of camera and objects). A given PSF field must then be
estimated solely from the observed image(s) we want
to restore.
The most common approach for estimating the blurring

kernel from a single image consists of formulating a joint
optimization problem, often based on statistical models of
the image and the degradation, which is used to estimate

*Correspondence: javier.portilla@csic.es
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both the uncorrupted image and the kernel. Typically, a
starting guess is refined by alternating between estimating
the image (assuming the kernel is known) and the PSF
kernel (assuming the image is known). Apart from other
potential problems like convergence and stability, adding
such an outer loop to the estimation makes it especially
heavy in computational terms, as each of these marginal
estimations is, by itself, computationally expensive. To the
best of the authors’ knowledge, the intrinsic complexity
of these approaches has prevented their application to
the general case of SV blur kernels (although special
cases have been treated, like considering foreground and
background layers, e.g., [1]).
Furthermore, as blind restoration problems are intrinsi-

cally highly ill posed, stable solutions have been obtained
mostly using some prior information about the kernel,
adapting the problem solution to particular situations.
Many methods benefit computationally from using a
restricted (e.g., parametric) PSF model: Prior knowledge
is applied in camera motion [2,3], parametric models
are used in defocus and lens aberration correction [4,5],
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sparse characteristics are exploited for frosted glass [6],
etc. In the specific case of PSF field estimation in astro-
nomical images, several authors have studied orthogonal
representations to characterize observed PSFs from stars
[7,8]. The underlying motivation is to provide a robust
tool against noise, flexible and possibly adaptive, without
imposing a narrow structure to the PSF field. They may
also facilitate PSF field interpolation (see, e.g., [9,10]). In
the data-adaptive case, the linear dimensionality reduc-
tion (by singular value decomposition (SVD) or principal
component analysis) deserves to be mentioned, which
connects directly to the idea of deformable filters [11]
approached in the companion paper, Part I. Function
bases are optimal in a least-square sense, and they are
ranked in terms of energy contribution to the PSF field
description, so they can be selected to filter measure-
ment noise in the estimation in a way that can be easily
automated with techniques like Generalized Cross Valida-
tion [12]. Not surprisingly, such dimensionality reduction
techniques have previously been used to estimate the PSF
field [13]. However, they have typically been used for spe-
cial cases, such as for modeling particular devices (for
instance, the Large Synoptic Survey Telescope [14] or the
Advanced Camera for Surveys on Hubble space Telescope
[15]), adapted to particular stars as the ideal PSF reference,
or for modeling gravitational lenses [16,17]. Hence, these
approaches lack generality in the sense that they cannot
be used as a general, “knowledge blind” tool for astro-
nomical PSF field estimation. Only a few of the referred
methods (like [18]) intend to apply their PSF estimation
results to image deblurring, and none of them draw the
clear connection between image restoration and PSF field
estimation.
To alleviate the previously mentioned computational

bottleneck, many techniques analyze the image in search
of local features which provide information of the PSFs
across the image, such as edges and corners [4]. These
groups of pixels give clues which are used to compute
point and line spread functions without user intervention.
The idea of extracting local information about the PSF to
build local PSF estimates is especially relevant for the SV
blur case. Considering the lack of generality of the most
common approaches outlined above, and taking the ben-
efits of utilizing local estimates into account, we design
here a novel approach to astronomical PSF field estima-
tion. It is based on two simple observations relating to the
fundamental characteristics of astronomical imagery, as
opposed to typical photographic images.
First, astronomical images typically contain an abun-

dance of stars, which can be modeled well as ideal
point light sources. While only a narrow set of typi-
cal photographic images present enough repeated pat-
terns, such as bright distant lights, to be used directly
for characterizing the PSF field, the presence of stars in

astronomical images allows for a particularly simple way
to locally estimate the PSF, by weighted averaging, after
sub-pixel localization. Note that, even under the smooth-
ness assumption, obtaining a more or less dense set of
local PSF estimates is not enough to fully characterize the
blur, and a certain type of regularization and interpola-
tion of that information to the rest of the image locations
is necessary.
This is where our second observation comes in: we take

advantage of the fact that the PSF field in astronomical
images is usually simpler compared to typical photo-
graphic images, as there is no foreground–background
structure. To a first approximation, PSFs result from the
composition of the telescope and atmosphere PSF fields
(for Earth-based observations), and they usually vary
smoothly across the image field. Typical photographic
images, on the other hand, may present a very rich vari-
ability in PSF field structures, due to differences in focus
and/or relative speed of objects in the scene. Only in
particular cases (e.g., camera movement and/or defo-
cus, still long distance objects) one may expect to find a
smooth PSF field. Furthermore, only in an even narrower
set of cases, typical photographic images present enough
repeated patterns (e.g., bright distant lights) to be used
directly for characterizing the PSF field, similarly to the
star field case.
Hence, our approach is twofold, and sequential. The first

step consists of estimating the most likely local PSF for
each block of a set of overlapping image blocks covering
the whole image, according to a simple local image model.
The second step extends and refines these local PSF esti-
mates through linear dimensionality reduction, nonlinear
filtering of outliers, and spatial interpolation. Whereas the
first part is completely model-based, the second part is
presented here, to a large extent, in an ad hoc way. This
does not diminish its strong connection with the ideas
presented in the companion paper, Part I, about using the
concept of deformable kernels to deal with smooth PSF
fields.a
There is a third fundamental characteristic of astronom-

ical images that needs to be mentioned. Astronomical
images have a huge dynamic range compared to typical
photographic images, and very often, the search for rele-
vant information requires processing low-contrast details
in a contrast-adaptive fashion. Therefore, traditional error
measures, such as quadratic error, must fail to describe the
quality of a restoration method for star fields. To evaluate
the quality of a restoration method on this kind of images
is, thus, challenging. Quantitatively assessing the quality
of the deblurring results has therefore not been tried here.
The rest of the article is organized as follows. Section 2

presents a simple image model for SV blurred star fields to
be used as a local approximation for image blocks. Then,
Section 3 describes an alternate optimization algorithm
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for obtaining, through maximum likelihood, an estimate
of the local PSFs. Section 4 describes a generic approach
for estimating a smooth PSF field from a regular grid
of local PSF estimates. A broad set of experiments, and
their corresponding results, are described and discussed
in Section 5. First (Subsection 5.1), objective measure-
ments of the PSF field estimation quality are made by
means of simulated star fields using two synthetic PSF
fields. Then (Subsection 5.2), real astronomical images are
analyzed to estimate their PSF field. These estimates are
used for restoration of real images in Section 5.2.1. Section
6 concludes the article.

2 A smooth pattern fieldmodel for images
In this section, we describe a simple and yet effective
image model for star fields subject to smoothly vary-
ing SV blur, e.g., due to a combination of atmospheric
blur and non-ideal telescope optics. The model is con-
ceptually much wider and potentially applicable to very
different situations, like when observing repeated patterns
in typical photographic images, possibly subject to certain
variations depending on their image location. Although
future instantiations of this model may attack the prob-
lem of directly characterizing the smooth pattern field
for the whole image, we follow a simpler approach here,
consisting of characterizing local regions of the image first
by using a single reference pattern. Despite this simplifi-
cation, we do consider in the local model that there is an
error due to modeling the actual pattern within a block

as constant. Figure 1 illustrates the idea of obtaining local
PSF estimates on a regular spatial grid, using overlapping
blocks.

2.1 Imagemodel
We define a pattern field pd(x;d(x0)) as a special type of
four-dimensional function which associates a certain spa-
tial pattern pd(x) to each image location x0. The spatial
pattern pd(x) depends on a vector of hidden parameters
d(x0) (usually unknown a priori) which, in turn, depends
on the image location x0. If the pattern depends smoothly
(i.e., continuously and with continuous first derivative) on
the parameter vector d, and each component of d is a
smooth function of x0, then pd(x;d(x0)) can be viewed as
a smooth pattern field. The reader familiar with SV blur
will already have noted the applicability of such smoothly
varying pattern fields to characterize the PSF at any given
image location, in some favorable cases (as discussed in
the introduction). The star field, then, can be modeled as
the result of blurring a set of ideal point sources (Dirac
delta functions) with a shift variant PSF field:

y(x) = yB(x) +
M∑
i=1

ai pd(x − xi;d(xi)) (1)

This image model y(x) is composed of a number of
instances of the pattern field, each representing a local
PSF, in this case, located at a position xi and scaled by a

block of 
the image 
with features

pooling features
in the block to 
integrate the PSF

local PSF

sampled PSFs over the image

Figure 1 General strategy applied for estimating the PSF field. The first step is to estimate the local PSF on a grid of locations, using
overlapping blocks. From these local estimates, the PSF field can be estimated, assuming it varies smoothly across the image. The method is
presented here in its most general way (grouping local features).
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factor ai corresponding to the strength of the ideal point
source. In order to make the model robust to changes of
the background level, it is highly convenient to include a
very smooth additional background term yB(x).
In this application of the pattern field model, we have

taken the approach of representing the patches by finite-
dimensional vectors, corresponding to finite and discrete
sampled patches in the image. A proper pixel size of the
patch can easily be assigned by inspection of the most
blurred areas of the image. Also, for algorithmic conve-
nience, we have imposed that the patches do not overlap
(in other applications of the model this may respond to an
actual physical constraint). Although this is not a realistic
assumption for stars, we have experienced that it does not
significantly harm the estimation.
Note that, seen as a generative model, Equation 1 is

fairly simple: a highly sparse input distorted by an SV blur,
even linear for a given pattern field. However, from an
analysis point of view, fitting an observation to this model
involves a highly nonlinear procedure, mainly because of
the sparse character of its input. Although powerful tech-
niques for sparse estimation exist (e.g., [19]), they usually
assume that the input is sparse, but not necessarily in
such a way that the input is a set of (isolated) deltas, and
much less that the “basis functions” are non-overlapping.
On the other hand, our approach takes advantage of this
particular structure of the problem.

2.2 Pattern observation model
The pattern field p generally is a nonlinear function for
which there is no prior information except that it is
smooth with respect to the image coordinates. If it is
smooth enough, the Nyquist theorem limits the amount
of information that is lost when we spatially sample
the parameter vector d. This takes us to a block-based
approach, in which we model the PSF at a certain block
location as a component along the PSF at the block center,
plus a certain perturbation increasing with the distance to
the center: pd(x;d(x0)) = bpd(x;d(xC)) + ε, where xC is
the central location of the block B(xC), and x0 ∈ B(xC).
Consequently, a given pattern observation, numbered i, at
some position xi in a given block, is modeled as:

y(xi) = yB(xi) + ai (bip + εi) + ni (2)

Here, p is the vectorized pattern at xC , bi represents the
fading of the component along the central pattern towards
the boundaries of the block, εi ∼ N(0, σ 2

εiI) represents
the deviation of the pattern with respect to the p direc-
tion, and ni ∼ N(0, σ 2

n I) is a noise term. Note that bi will
be 1 (or less, in practice, if our knowledge of p is approx-
imate) at the block center, and will decrease as we move
away from it, while σεi is modeled as an ever increasing
but upper bounded function of ||x − xC ||, thus behaving
in a complementary way to bi.

Despite of the apparent intricacy of this model, it can be
reformulated into a much simpler one. First, observe that
we can decompose p into

p = p0 + μp1 (3)

where μp1 =[μp, . . . ,μp]T represents the sample pixel
mean of the reference pattern, and p0, consequently, its
zero mean version.b Second, as the background yB(x) is
smooth, it can locally be approximated by a constant:

yB(xi) ≈ μB,i1 (4)

Since we are unconcerned about estimating the image
background or the ground level of the zero-mean pat-
tern, we may encapsulate these components of the model,
thus simplifying the model as well as the computational
procedure:

y(xi) − (μB,i + aibiμp︸ ︷︷ ︸
=μi

)1 = aibi︸︷︷︸
=ci

p0 + aiεi + ni︸ ︷︷ ︸
random

(5)

The simplified patch model can be restated as follows:

y(xi) − μi1 = cip0 + wi (6)

where wi ∼ N(0, (a2i σ 2
εi +σ 2

n )I) now is a joint “error” term
representing the uncertainty of the observation.

3 Local PSF estimation by alternatingmarginal
likelihood optimization

Since the observed star patterns are independent, the like-
lihood of observing a number M of patterns in the block
is

− log L∝
M∑
i=1

(
K log(a2i σ

2
εi+σ 2

n )+ ‖y(xi)−μi1−cip0‖2
a2i σ

2
εi+σ 2

n

)

+ (N − MK) log σ 2
n +

∑
x∈R

∣∣y(x) − yB(x)
∣∣2

σ 2
n

+ const, (7)

where K is the dimensionality of the vectorized neighbor-
hoods, N is the number of pixels in the block, and R is
the set of pixels that are not included in any pattern. Opti-
mizing the likelihood directly for all the unknowns is a
difficult problem. However, it can effectively be attacked
by alternating between optimizing the marginal likelihood
as a function of p0 and the set of pattern locations, {xi, i =
1 . . .M}, respectively.
The algorithm we propose essentially comprises three

stages:

1. taking an initial guess at the pattern;
2. finding approximate (full-pixel precision) locations of

the pattern, as well as the number of locations, with
respect to that guess; and

3. alternating between re-estimating the pattern and
refining the locations with sub-pixel precision.
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Likelihood maximization with respect to each of μi, ci
is a simple least-squares fitting, and can be done indepen-
dently for each image location xi:

μ̂i = yT(xi)1
K

(8)

ĉi = (y(xi) − μi1)Tp0
‖p0‖2

= ‖y(xi) − μi1‖
‖p0‖

cos∠
(
p0, y(xi) − μi1

)
. (9)

For estimating ai we observe in (5) that:

E{‖y(xi) − μi1‖2} = a2i E{‖bip0 + εi‖2} + Kσ 2
n (10)

Assuming E{‖bip0 + ε‖2} = 1, we simply choose the
estimate

â2i = ⌊‖y(xi) − μi1‖2 − Kσ 2
n
⌋
+ (11)

where the brackets indicate non-negative clipping. For
those selected patches with norms well above the back-
ground noise level (Kσ 2

n ), the effect of ai on the variance
is to normalize the local energy of the patch, so effectively
giving a stronger weight to candidates with low relative
error (high SNR). The low energy patches, on the other
hand, are effectively damped by the larger influence of σ 2

n
in their associated variance.
Also, for a given set of scaled and noisy pattern candi-

dates, {y(xi) − μ̂i1}, the solution for the most likely p0 is
the standard least-squares one:

p̂0 ∝
M∑
i=1

‖y(xi) − μ̂i1‖ cos∠
(
p0, y(xi) − μ̂i1

)
a2i σ

2
εi + σ 2

n
(y(xi) − μ̂i1)

(12)

Note that ĉip0 is invariant with respect to ‖p0‖. Hence,
we only need to find the direction of p̂0 in (12). Con-
sequently, our method is invariant with respect to the
normalization of the PSF. In order to avoid numerical
error, it is still useful to constrain ‖p0‖. As it appears most
natural in this context, we choose ‖p0‖ = 1. Recall that, in
spite of this non-standard choice when dealing with PSF
patterns, it is always possible to go back to standard PSF
form (non-negative, normalized volume) by estimatingμp
and re-normalizing.
Methodically, the optimization for the locations {xi}

takes a different form for the initial (full pixel precision)
and the subsequent (sub-pixel) estimates.

3.1 Estimation of the approximate locations of star
patterns

When the {xi} are estimated for the first time, we canmake
use of the observation that the last two terms in (7) (the
“non-pattern” terms) are constant if extended to all pixels
of the block. Then, we can remove that constant from the

optimization functional to obtain

−log L∝
M∑
i=1

(
K log(a2i σ

2
εi+σ 2

n )+ ‖y(xi)−μi1−cip0‖2
a2i σ

2
εi + σ 2

n

−K log σ 2
n − ‖y(xi)−μi1‖2

σ 2
n

)
+const,

(13)

where we have applied the approximation (4) again.c Con-
sider the expression inside the parentheses, evaluated as
a function of a generic image location x and holding p0
fixed:

A(x) = −K log
(
a2(x)σ 2

ε (x)
σ 2
n

+1
)

+ ‖y(x) − μ(x)1‖2

×
(

1
σ 2
n

− 1 − cos2 ∠
(
p0, y(xi) − μ(x)1

)
a2(x)σ 2

ε (x) + σ 2
n

)
,

(14)

where we have applied

‖y(x) − μ(x)1 − c(x)p0‖2
= ‖y(x) − μ(x)1‖2(1 − cos2 ∠

(
p0, y(x) − μ(x)1

)
),

and where μ(x) = yT(x)1/K is the sample pixel average
of the patch. This function represents the log-likelihood
ratio between two hypotheses: the patch centered on x
corresponding to an instance of the pattern versus cor-
responding to the background. When the patch centered
at x, y(x), contains significantly more energy than that
of the background noise, we have a pattern candidate. In
that case, all but one of the terms in Equation (14) in the
vicinity of x are smooth functions of x, because they cor-
respond to energy measurements which are insensitive
to the exact location of the pattern, whenever it remains
entirely within the patch. The exception is the covariance
factor term, which is very selective to the exact pattern
location, even under noise. Furthermore, in this vicinity
A(x) must yield high positive values (because 1/σ 2

n �
1/(a2(x)σ 2

ε (x) + σ 2
n )), peaking in an isolated maximum

where the covariance factor gets closest to 1, i.e., when
the pattern candidate is aligned with respect to the pat-
tern guess p0. Therefore, a greedy algorithm, under the
assumption of no pattern overlapping in the image, is opti-
mal for finding the most likely locations for the current
pattern guess. To estimate the set of M locations {xi}, we
first pick the global maximum of A(x) in the block as
x1 and set M to 1. Next, we rule out the neighborhood
around that maximum as a potential location for subse-
quent picks (to enforce the non-overlapping constraint in
the analysis) and find the next-to-optimal maximum x2,
increasingM by 1; and so on, until no further locations can
be selected, or the next minimum attains a close-to-zero
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value, indicating that nothing is gained by considering a
star pattern at this location.
Practically, this algorithm fails to choose the correct

locations only in the case where the initial assumption
of non-overlapping patterns does not hold, i.e., in our
case, when two or more stars of similar brightness are too
close to each other (if one star clearly dominates, then
the ML choice corresponds to centering that dominant
star). However, these wrong choices can be easily detected
by thresholding the covariance cos∠

(
p0, y(x) − μ(x)1

)
between the current guess of the pattern and the image,
and thus preventing these locations to contribute to the
pattern estimate (in our experiments we used a threshold
cmin = 0.2).

3.2 Sub-pixel refinement
When estimating xi in the subsequent iterations, we do
not need to adjust M, but we would like to improve the
locations xi to sub-pixel precision. Observing that σεi and
‖y(xi) − μi1‖ are approximately constant for such small
changes of xi (as the pattern is assumed to be approxi-
mately centered in the patch, with some background space
around it), the optimization functional can be simplified
to obtain the following estimate:

x̂i ≈ argmax
xi

cos∠
(
p0, y(xi) − μi1

)
(15)

As this functional is very simple to compute, we can
afford to perform a local search around the previous loca-
tion estimates simply by computing a standard, bicubic
sub-pixel interpolation of the patch and evaluating the
functional.d We choose to do this in a hierarchical fashion,
that is, performing local search in [−1, 1] first with a step
size of �x = 1/2 in each coordinate, updating, then per-
forming a local search for the relative shift in [−1/2, 1/2]
with �x = 1/4, and so on, down to a precision of one
eighth of a pixel.

3.3 Variance estimates
The overall variance of the pixels of a patch including a
pattern depends on the additive background noise term
(σ 2

n ), and the multiplicative error term (a2i σ 2
εi ) due to the

error on the pattern itself. The latter depends solely on the
distance to the block center in relative terms; in absolute
terms, it also depends on the scale factor ai of the instance
of the pattern. For estimating σ 2

n , we use theMedianAbso-
lute Deviationmethod with a simple difference filter along
each dimension [20].
Tomodel the variance of the error εi, we assume that the

pattern random vector field has an isotropic covariance
structure similar to an AR(1) process. In particular,

σ 2
εi = 1 − ρ

2
L/fr ‖xi−xC‖

K
(16)

and E{‖bip0 + εi‖2} = 1, such that the energy is sta-
tionary across the pattern field. ρ is the parameter that
determines the smoothness of the field, and L/fr is the dis-
tance between neighboring block centers (L being the side
length of the block, and fr the overlapping block redun-
dancy factor). Thus, E{‖εi‖2} = 0 at the block center
itself and E{‖εi‖2} = 1 − ρ2 at the neighboring block
center. In our experiments, we chose ρ = 0.98 as a reason-
able smoothnessmeasurement for adjacent PSF in the grid
made of the overlapping blocks’ centers. In the estimation
procedure (12), this structure of σ 2

εi leads to the desir-
able effect of giving a stronger weighting of the detected
patterns that are near the block center.
In addition to uncertainty due to noise and spatial varia-

tion of the pattern, there is a methodical uncertainty with
respect to the current estimate of p0. Particularly the first
guess may be somewhat inaccurate; and since the weights
in (12) are based on covariance measurements with the
(guessed) pattern, subsequent applications of the estima-
tor may weight useful instances of the star pattern lower
than necessary, and vice versa. To make the method adapt
to the quality of the current patch estimate, we add the
term σ 2

g to the r.h.s. of (16) when first performing the
estimation of the full pixel pattern locations, defined as

σ 2
g = 1 − (

maxx cos∠
(
p0, y(x) − μ(x)1

))2
K

. (17)

This value corresponds exactly to the quadratic error in
our guess if (1) there is an instance of the exact pattern in
the image, and (2) that instance is the closest one in the
image, in a covariance factor sense, to our guess. The use
of this extra term permits a less shape-selective weighting
of candidate patterns when the quality of the estimated
pattern is still relatively low.

3.4 Initial and subsequent pattern guesses
In our experiments, for the first block we used as a guess
a Gaussian PSF, with a spatial dispersion σ = 2, using a
19 × 19 patch support. For subsequent blocks, processed
in a horizontal raster scan order, we use the average of the
estimated PSFs for previously estimated blocks above and
on the left (or only one of them, for the first row or the
first column).

3.5 Summary of the local PSF estimation method
In Figure 2 (left) we have depicted a scheme summariz-
ing our local PSF estimation method. We also provide an
algorithmic description below:

Algorithm 1. Local PSF estimation in star fields
1: Obtain an initial guess p̂0
2: for all blocks in the image do
3: Estimate σ 2

n and σ 2
g

4: for all x in the block do
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5: Compute σ 2
ε , a, μ, and c

6: Compute covariance factor among patch and
pattern cos∠

(
p0, y(x) − μ(x)1

)
7: Compute A(x) using (14)
8: end for
9: X ← {}
10: loop
11: x̂i ← argmaxx′ A(x′) s.t. x′ /∈ N (x),∀x ∈ X
12: if A(x̂i) < T or x̂i has no solution then
13: M ← |X|
14: break
15: else
16: if cos∠

(
p0, y(xi) − μi1

)
> cmin then

17: X ← X ∪ {x̂i}
18: end if
19: end if
20: end loop
21: repeat
22: Re-estimate p̂0 using (12)
23: for all x̂i ∈ X do
24: Improve x̂i by local search using (15)
25: end for
26: until convergence
27: Update the guess p̂0 for the next block
28: end for

Subpixel
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Dimensionality
reduction

through SVD 
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Impose
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Figure 2 Left: Local PSF estimation for a block; Right: PSF field
estimation from a grid of local PSF estimates.

4 Estimating smooth PSF fields from local
estimates using SVD

When we observe a set of patterns under noise, rele-
vant features can be extracted by means of finding the
orthogonal basis that optimally (in a least-squares sense)
compresses that particular set of patterns as a weighted
sum of orthogonal components. The SVD has been in
widespread use for many years to solve this problem.e In
a high dimensional space, such as the one used to repre-
sent rich unconstrained patterns, like our PSFs, the noise
effect on the obtained dominant terms is small, because,
if it is white, it distributes its energy equally among all
the orthogonal components. The terms above the noise
level, on the other hand, may carry a large proportion
of the total pattern energy. Therefore, those terms pro-
vide an approximation to the original (uncorrupted) set of
patterns, when the components below the noise level are
filtered out before reverting the linear transform.
This kind of linear spectral filtering can be effective

to reliably estimate the dominant eigenPSFs of the PSF
field, but it may not be enough to characterize the field
by itself, when there are strong spurious fluctuations in
the estimated patterns. These fluctuations may be caused
by imperfections of the algorithm and/or the model (in
our case, we do some incorrect assumptions, like that the
PSFs do not overlap), or due to the presence of “outliers”
(image contents that fit neither the dominant pattern nor
the background statistics). Then, using prior information
about the typical features of the pattern field is essential
to increase robustness. In our problem, the local PSF esti-
mates are far from being equally reliable (e.g., because
of inhomogeneities of the local density of stars, differ-
ent brightness, background effects, etc.). Using the prior
knowledge of the PSF field being smooth helps us to dis-
count the outliers’ effect on the estimation, and, thus, to
improve the results.

4.1 Estimating a smooth PSF field from a grid of local
estimates

As the method of the previous section does not ensure
alignment of the local estimates with respect to each
other, they need to be aligned prior to being subjected to
dimensionality reduction, as illustrated in Figure 2 (right).

4.1.1 Local PSF sub-pixel alignment
Note that the sub-pixel alignment performed here is con-
ceptually slightly different from the intra-block alignment
of patterns, as we do not want to optimize a similarity
measures with respect to a certain reference pattern here,
but rather maximize the similarity of each pattern with
respect to the others. A sensible solution is to find the sub-
pixel shifts that minimize the Euclidean error to the pro-
jection of each pattern onto the first eigenvector of the set,
which is recomputed at each iteration (using a hierarchical
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iterative approach using cubic splines, as before). It is
straightforward to prove that, following this procedure
we will reach a stationary solution for the spatial shifts
which maximize (locally, at least) the first eigenvalue of
the covariancematrix of the set of patterns, as it effectively
minimizes the sum of squares of the components along
orthogonal directions. Similarly to the intra-block align-
ment case, we have experienced a very significant decrease
in the energy of the components orthogonal to the first
eigenvector (around 4–5 dB) by doing this inter-block
alignment.We observe a spatial drift of the estimated local
pattern across image blocks. This undesirable effect does
not affect the model fitting negatively.

4.1.2 Dimensionality reduction and nonlinear filtering of
the spatial weights

After the alignment, we proceed to perform a linear
dimensionality reduction of the set, using the SVD.
Although it is not difficult to obtain a suitable number
of singular vectors/values automatically, we have chosen
the number simply by visual inspection of the eigenval-
ues profile. We obtain a set of eigenvectors (eigenPSFs),
plus the corresponding optimal spatial weights to rep-
resent the grid of extracted local patterns as a linear
combination of them. Then, the “outliers” can easily be
detected and suppressed by iteratively detecting the spa-
tial weights that largely deviate with respect to their neigh-
bor values, and substituting them by the local mean of
their neighbors. Once the spatial weights are regularized,
we revert the orthogonal transform and obtain a spatial
grid of regularized patterns. The ground level of these
must be shifted back to zero and their volume normal-
ized, in order to force both positivity and unit volume, as
required for PSFs. We use a mode estimation to estimate
the ground level of each pattern.

4.1.3 PSF field interpolation to intermediate spatial
locations

We may want to obtain PSF estimates for each pixel of
the image; for example, if we want to use the PSF field
estimation to perform deblurring on the same or similarly
captured images. Given a low-dimensional description of
a vector at different image locations, such as obtained
through the SVD, it is easy to achieve that by interpo-
lating the scalar coefficient corresponding to each basis
vector, provided the vector field is smooth. However, as we
enforce the PSF constraints (positivity and unit volume)
after reverting the transform, the resulting set of local PSF
estimates are no longer confined to a low-dimensional
linear subspace. One solution to this is to interpolate
before reintroducing the constraints, and then fixing the
ground level and volume for each pixel location in the
image. However, a more efficient manner consists of per-
forming a second SVD on the previously estimated set

of positive and volume normalized PSFs, and retaining
enough singular components for an excellent approxi-
mation (let us say, more than 60–80 dB). After this sec-
ond dimensionality reduction, we can perform a vector
interpolation very efficiently by simply interpolating the
obtained weights as scalar functions, using cubic splines.
This method ensures the right form of our PSF field esti-
mate: a number of eigenPSFs, plus their corresponding
smooth spatial weights (one weight for each eigenPSF–
pixel pair). We may then apply the deformable filtering
techniques explained in Part I to restore the observation
using this estimate.

4.2 Relationship to the image estimation method
proposed in Part I

The dimensionality reduction approach on the (aligned)
PSFs is a shared approach of Parts I and II of this double
article. In both cases, the local PSF is modeled as a linearly
deformable kernel with a reduced number of dimensions.
Whereas the main motivation for using deformable ker-
nels in Part I was computational efficiency (as the linear
deformable filtering can be implemented as a sum of
masked convolutions), our main motivation in this second
part is robustness in the characterization of a PSF field
from which we only have partial and noisy information.
More importantly, both techniques are connected in prac-
tice by the use one would give to them for image SV blind
restoration: first estimating the PSF field (Part II), then
using that estimate for applying the SV image restoration
estimation described in Part I. We also believe that, by
developing the PSF field estimation and the image estima-
tion in the context of a single framework, we add value to
each of the described techniques.

5 Experiments: results and discussion
5.1 PSF field estimation in simulated star fields
In order to obtain an objective reference to evaluate our
PSF field estimation results, we have simulated both PSF
fields and star field images. We degraded the latter by
noise after the SV blur.

5.1.1 Simulating SV blurred star fields
We consider three different Poisson noise levels, corre-
sponding to having maximum values for 8 bits (from 0 to
255), 12 bits (0 to 4095), and 16 bits (0 to 65535) in the sim-
ulated star fields. Also, we add zero mean Gaussian noise
of unit variance. We have implemented a simulation for
the star field giving roughly the same (relative, observed
from the Earth) magnitude statistics as the observed stars,
which approximately fit the law

log n(m) = αm + C,

n being the number of stars of a given apparent magnitude
m. According to actual statistics of observable stars [21],
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Figure 3 First set of eigenvalues in the PSF field of BLUR1 and BLUR2. Original and estimated for 3 different Poisson noise levels (density:
40.000 stars).

Figure 4 Original first BLUR1 eigenPSFs and their associated weights.
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the number of stars with apparent magnitude between m
and m + 1 (at least for the studied interval 0 ≤ m ≤ 10)
is around three times larger than the number of stars with
apparent magnitude between m − 1 and m. Considering
that an increase by one unit of magnitude corresponds to a
decrease by 2.15 times the apparent brightness, this yields
α = log(3)/ log(2.15) ≈ 1.43. For simulating apparent
brightness samples, we use the standard technique of inte-
grating and inverting the pdf (a power law in this casef)
with this coefficient, and then sampling from an uniform
density in [ ε, 1] and applying the obtained function to
the uniform samples. In this case, the resulting function
is still a power law with β = −1/(α − 1) ≈ −2.3. This
yields an output brightness range of [ 1, ε−2.3], which is
normalized afterwards to the desired maximum value.We
have chosen ε = 0.01.
We have implemented two synthetic PSF fields, BLUR1

and BLUR2, which are quite similar to the ones used in

Part I. BLUR1 is defined by:

hBLUR1(x; x0) ∝ 1/(k(x0, y0)2 + x2 + y2)
− 0.95min{1/(k(x0, y0)2 + x2 + y2)},

with x and y ranging now from −9 to 9. Except for
keeping a constant spatial support and the offset correc-
tion, this PSF field can approximately be interpreted as a
spatial magnification of the PSF from the center (where
it is sharpest), with the zoom factor being k(x0, y0) =
2−1/2√1 + ((x0)2 + (y0)2)/(L2/6), being L the side of the
pattern (assumed squared). The second PSF field, BLUR2,
is a Gaussian function whose width (square root of vari-
ance along the horizontal axis) is fixed and equal to σx =
1.6, whereas its height changes exponentially along the
vertical axis by σy(x0, y0) = 1.6 × 2y0−L/2. Note that
these two PSF fields are defined through uni-parametric
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Figure 6 Estimated first BLUR1 and BLUR2 eigenPSFs from simulations with low Poisson noise level (maximum level of 65535, 16 bits),
and their associated weights over the image.

PSF functions, with the parameter being a smooth func-
tion of the image coordinates. Thus, they are smooth
uni-parametric PSF fields.
A degraded star field simulation is obtained by (1)

choosing an image size (2048 × 2048 in our case) and a
number of stars for the image (2 × 104, 4 × 104, 1.6 × 105
or 6.4 × 105), locating each at non-integer random coor-
dinates, and then associating to each of them a random

brightness according to the power law explained above; (2)
applying the synthetic PSF field (BLUR1 or BLUR2); (3)
normalizing the resulting maximum to the desired value
(255, 4095, or 65535, for 8, 12, or 16 bits, respectively), (4)
simulating Poisson statistics on the previously noise-free
image, and (5) adding white Gaussian noise (zero mean,
unit variance), rounded to integer values (plus a constant,
to avoid negative values).
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Table 1 Accuracy of the PSF field estimation (Signal-to-noise ratio, in decibels)

BLUR1 BLUR2

Poisson noise level LD MD HD UHD LD MD HD UHD

8 bits 6.95 7.02 7.12 6.64 10.01 9.68 10.15 8.90

12 bits 7.72 6.99 6.88 6.63 10.35 10.20 10.16 8.79

16 bits 7.48 7.14 7.16 6.76 10.33 10.38 10.44 9.47

LD has used a pooling region of 5122 pixels, MD and HD 2562 pixels, and UHD 1282 pixels.

5.1.2 Results for simulated blurred star fields
Figure 3 shows the eigenvalues profile of the two synthetic
PSF fields (BLUR1 and BLUR2), and compares them to the
profiles obtained by using ourmethod on the grid of initial
PSF estimates to the simulated images, for the three noise
levels considered (for comparison purposes, global energy
has been normalized in all cases). It is very interesting
to see: (1) the rapid decay of the ranked eigenvalues; (2)
the estimated profiles fitting the theoretical curves for the
first two or three eigenvalues, the rest staying effectively
beneath observation noise; (3) the influence of different
Poisson count levels being quite small for the chosen rank
(8, 12, and 16 bits). Observing these eigenvalues profiles,

it seems legitimate to use just two dimensions for the
reconstruction, in both blur cases (BLUR1 and BLUR2).
Figures 4 and 5 show the structures obtained by apply-

ing the SVD to the original PSF fields BLUR1 and BLUR2,
respectively. It is worth noting that the weights associated
to the extracted eigenPSFs for each PSF field all have the
same iso-level structure (circular for BLUR1, and verti-
cal for BLUR2), indicating a PSF field with a single degree
of freedom, as expected. In addition, weighting functions
are smooth, as expected for smooth PSF fields. The basic
shape of the first two eigenPSFs and their iso-level struc-
tures are quite well reproduced in the PSF field estimation
from the simulated observations, as shown in Figure 6.
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Figure 7 Sampled PSFs with pair indexes from the lower right quadrant of BLUR1 PSF field with medium star density (40,000 stars,
pooling region of 256 × 256 pixels with half block overlapping). Top left: Original PSFs; top right: estimated PSFs in a 12-bit image (medium
noise level). In the bottom, both linear plots show a central cross section of selected PSFs for all considered noise levels.
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Here, one can fully appreciate the importance of non-
linearly removing the outliers, i.e., local weight values
departing from the generally spatially smooth behavior.
Table 1 shows a quantitative comparison of the esti-

mated PSF field to the original. It shows Signal-to-noise
ratio values, in decibels, of PSF field estimation in BLUR
1 and BLUR 2 with 4 Poisson noise levels and 3 differ-
ent star densities: low density LD (20,000 simulated stars),
medium densityMD (40,000 simulated stars), high density
HD (160,000 stars), and ultra high density UHD (640,000
stars). While the obtained figures are relatively modest,
it is worth noting the high robustness of the method
against noise and changes of the star density. We only
notice a slight performance decrease when the density
becomes too high, which causes a high amount of PSF
overlap. Figures 7, 8 and 9 further illustrate this robust-
ness, by comparing the obtained results to samples of the
original PSF fields, for different Poisson levels and star
densities. They also indicate that the blur is slightly over-
estimated. However, more importantly, a big part of the
error comes from obtaining kernels with different relative
locations. This is not strictly an error in the estimate, as
there is an intrinsic ambiguity for the pattern location

in terms of its internal coordinates x in the model, but
it still affects the numerical results negatively.g Disre-
garding this spurious shift effect, it seems that the most
important source of error in these results comes from
the blurring of the local pattern field caused by obtaining
our local PSF estimates on relative large blocks. More
sophisticated choices for the shapes of the spatial regions
upon which making our local estimates, instead of square
blocks, should improve the classical bias-variance trade-
off (bigger regions produce higher bias and lower vari-
ance, and vice versa) present at any estimation problem
on non-stationary random fields, as pointed out in the
conclusions.

5.2 PSF field estimation in real astronomical images
We apply our algorithm to three raw images, which were
taken with the historic Cassegrain 0.9-m (36-inch) tele-
scope at the National Science Foundation’s Kitt Peak
National Observatory: Crescent Nebula (Caldwell27),
Swan Nebula (M17), and Ring Nebula (M57). All these
images are coded in FITS format. They are publicly
available for academic and research purposes in the

0 5 10 15 20
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
Original
High noise level
Medium noise level
Low noise level

 

0 5 10 15 20
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05
Original
High noise level
Medium noise level
Low noise level

Figure 8 Sampled PSFs with pair indexes from the lower right quadrant of BLUR2 PSF field with medium star density (40,000 stars,
pooling region of 256 × 256 pixels with half block overlapping). Top left: Original PSFs; top right: estimated PSFs in a 12-bit image (medium
noise level). In the bottom, both linear plots show a central cross section of selected PSFs for all considered noise levels.
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Figure 9 Sampled PSFs with pair indexes from the lower right quadrant of BLUR1 PSF field with low level of noise and different star
densities. Top left: medium density (40,000 stars) with pooling region of 256 × 256 pixels; top right: high density with smaller pooling region
(128 × 128 pixels). In the bottom, both linear plots show a central cross section of selected PSFs for all considered density studied cases.

observatory educational website http://www.noao.edu/
education/arbse/arpd/ia.
The apparent magnitude scale, which we apply in the

previous simulations, is adapted to the sensitivity of the
human visual system. For these experiments, we have used
V-filtered raw images, because the formal photoelectric V
peak (around 540 nm) is closest to the peak of the human
eye’s (dark-adapted) detection efficiency. The images have
not been preprocessed in order to show the robustness of
the proposed algorithm.
The images are star fields of 2048 × 2048 pixels,

and have ranges approximately corresponding to 16 bits.
Figure 10 shows the eigenvalue profiles for the initial
grid of estimated PSF fields, which advise us to use
three significant (above noise level) components for the
Caldwell27 image, and only two for M17 and M57. In
Figure 11 we show a 15 × 15 PSF panel summarizing
the result of the PSF field estimation, for Caldwell27. We
observe that the PSF varies smoothly across the image,
becoming more concentrated (less blurred) as we get
closer to the bottom right corner. By looking at the three
significant eigenPSFs (Figure 12, top left) we see how they
are modulating the spatial extension of the PSF, which

basically follows an off-symmetric close-to-circular pat-
tern. There is something remarkable about the behavior
of the associated weights: to a first approximation, they
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Figure 10 First set of eigenvalues in real astronomical image
cases under study: Caldwell27, M17 andM57.

http://www.noao.edu/education/arbse/arpd/ia
http://www.noao.edu/education/arbse/arpd/ia
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Figure 11 Estimated PSF field for Caldwell27, sampled in a 15 × 15 grid.

Figure 12 Estimated first eigenPSFs from real astronomical image cases under study: Caldwell27, M17 andM57, and their associated
weights over the image.
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share the same iso-level curves. This means that, in this
real example, the modeled PSF field is not only smooth,
but also (approximately) uni-parametric. This surprising
result is further illustrated in Figure 13, where the three
computed weights have been visualized as dots in a
3D space. The result clearly shows a one dimensional
structure (a curve), reflecting a single effective degree of
freedom in the PSF field.
Interestingly enough, the other two studied images have

rather different PSF fields, which translate into different
eigenPSF shapes, especially for the second component
(see Figure 12, top, center, and right). Nevertheless, the
processed weights follow remarkably the same approx-
imated pattern of iso-level weights for this significant
second component. Note that the lack of a clear iso-level
structure of the weights associated to the first eigenPSF
is not significant in those examples, as the first compo-
nent has a fairly constant weight all over the image. Such
a pattern appears in other images (data not shown here)
from the same telescope. This pattern is not just due to an
artifact of the estimation method. We know that, because
we have seen a radically different (and, by comparison
to the known reference, correct) behavior in the simula-
tions. Our provisional explanation is that such iso-level
structure is related to the approximately fixed PSF field
component caused by the telescope structure (which uses
an off-center sensor with a parabolic mirror, in this case),
whereas significant differences in the overall PSF field
would be caused by the atmospheric PSF at the moment
and sky location of the capture. The observed PSF field

can be modeled as the result of convolving atmospheric
PSF field (approximately spatially invariant, for the small
angle subtended, but variable for each image capture)
and the telescope PSF field component (strongly spatially
variant, in this case, but approximately constant for each
image on the set). However, we do not have a solid expla-
nation yet for the approximately uni-parametric behavior
of the PSF fields.

5.2.1 Image blind restoration in real astronomical images
Finally, we apply the SV restoration method from Part I
using the estimated PSF fields to compensate for the blur.
Because the dominant noise source in these images is not
Gaussian, but Poissonian, we use a variant of the L0-AbS
method [22]. Regarding all other aspects, the image esti-
mation method and its implementation is the same as the
one explained in Part I. The resulting images gain a lot
of sharpness, which allows to resolve very close stars that
appear as a single cloud in the observations (as shown
in Figure 14). The spatial “averaging” effect due to the
block-wise estimation of the local PSFs may cause a slight
overestimation of the blur, which also appears in the sim-
ulation results. That would explain some over-sharpening
effects such as the low-contrast halo shown in the bottom
right subfigure.

6 Conclusions and future work
We propose an efficient and robust method for PSF
field estimation on star fields. The method is based on
careful detection and sub-pixel alignment of the stars

Figure 13 Estimated weights of the three main eigenPSFs computed for Caldwell27, composing a one dimensional structure in the space
(225 dots coming from sampling in a 15 × 15 grid).
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Figure 14 Original (left) and restored (right) portions of Caldwell27 case study image. One detail has been enlarged to show how close
astronomical objects are resolved by the algorithm. Gray-level scale in the image has been nonlinearly modified because of the large dynamic range.

according to a simple statistical local model and the ML
principle, followed by a combination of dimensionality
reduction and nonlinear filtering of outliers on the weights
of the eigenPSFs. We have demonstrated that the proposed
method is able to robustly capture the structure of the
spatially variant blur of smooth PSF fields, in spite of the
simplifying assumption that the local PSFs do not overlap.
This is demonstrated by image and PSF field simulations,
using different Poisson counts and star densities.
Beyond the introduction of the new local model, the

article offers interesting results obtained from applying
the method to real images (from a medium quality, Earth-
based, telescope image dataset), for which the method
has revealed significant information about the PSF field
structure. We have also demonstrated the applicability
of this technique in conjunction with the SV restora-
tion described in our companion paper (Part I), to jointly
build a blind SV restoration method assuming Poisson
statistics.
We believe that the repeated-pattern local image model

presented here has a big potential to be extended and

improved in several directions, even for tasks different
than PSF field estimation (e.g., texture characterization,
or other forms of intelligent combinations of image analy-
sis, processing and synthesis). Perhaps themost promising
and natural among these possibilities could come from
formalizing the pattern explicitly as a low-dimensional
deformable kernel in a global image model, instead of
making the local approximation of considering it con-
stant on certain regions, and then building a smooth
field from the resulting local estimates, as we did here.
It may be both very interesting and potentially useful
to explore, at least for the cases where a simple and
robust structure of the PSF field is detected (like the
approximately uni-parametric behavior observed in the
real astronomical images studied here), alternative esti-
mation strategies for exploiting the spatial structure of
this non-local redundancy. This should result in reducing
the bias of the estimates without increasing the associated
variance. Finally, another natural evolution of this type of
models could arrive by substituting the useful, but lim-
ited concept of linear dimensionality reduction by a much



Miraut et al. EURASIP Journal on Advances in Signal Processing 2012, 2012:193 Page 18 of 19
http://asp.eurasipjournals.com/content/2012/1/193

more powerful (and also more difficult to deal with) non-
linear dimensionality reduction concept (see, e.g., [23])
which aims at modeling the underlying manifold asso-
ciated to a varying pattern, low dimensional only in a
local sense. Evidence of low-dimensional curved mani-
folds, like the one shown in Figure 13 are very motivating
to address this conceptual and technical challenge for
practical purposes.

Endnotes
aTo jointly attack the deformable PSF field estimation
requires, even in the favorable case of star fields, a
substantially more sophisticated approach. We are cur-
rently working on that, given the applicability of such an
approach to a wider range of images and estimation prob-
lems.
bIf the neighborhood size is chosen appropriately, it is a
safe assumption that p(x) goes to zero at the neighbor-
hood boundaries (μp is the offset to this “ground level”).
Consequently, it is easy to estimate μp from p0 and revert
this decomposition, even though μp is lost in p0.
cAlthough the sample mean may depart significantly from
the background level when there is a star in the neighbor-
hood, we have tested that this effect, in this case, is small
compared to that of the variance in the denominator.
dThe interpolation is always computed on the original
full-pixel samples to avoid accumulating error.
eAs in the previous section, we are keeping the PSF pat-
terns zero-mean and L2-normalized. We, as other authors
(see, e.g., [15]) have experienced that mean subtraction
followed by L2 normalization generally helps to produce a
higher spectral concentration as compared to leaving the
PSFs positive and normalized in volume.
fAlthough this is an improper pdf, as it is not integrable
around zero, this does not prevent us from using it for this
purpose.
gWe intend to remove this ambiguity in future versions of
this method.
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