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Abstract

Honeybees swarm when they move to a new site for their hive. During the process of swarming, their behavior
can be analyzed by classifying them as informed bees or uninformed bees, where the informed bees have some
information about the destination while the uninformed bees follow the informed bees. The swarm’s movement
can be viewed as a network of mobile nodes with asymmetric information exchange about their destination. In
these networks, adaptive and mobile agents share information on the fly and adapt their estimates in response to
local measurements and data shared with neighbors. Diffusion adaptation is used to model the adaptation process
in the presence of asymmetric nodes and noisy data. The simulations indicate that the models are able to emulate
the swarming behavior of bees under varied conditions such as a small number of informed bees, sharing of
target location, sharing of target direction, and noisy measurements.

I. Introduction
Animal species move in groups, such as schools of fish,
flocks of birds, and swarms of honeybees, when they
perform seasonal migrations, travel to food sources, or
to new sites [1]. For some species, the majority of the
individuals in the group process the information about
the propensity to travel in a certain direction; but for
other species, only some of the group members share
information about the destination, while the other unin-
formed members are guided by informed individuals.
For example, for honey bees, when they have made a
decision about the new site and begin traveling, the
location of the new nest site is only known to a small
fraction of the swarm [2,3].
A curious feature in the home-site selection procedure

by bees is that only 3-5% of the bees [4] in the swarm
have been to the new site and are called scout bees. So,
how can these fewer bees lead the entire swarm toward
the new site? After falsifying the “assembly pheromone”
assumption [5], there have been at least two likely
hypotheses, both of which show that the informed bees
provide guidance information to the other bees [6]. One
hypothesis is the “subtle bee” hypothesis and the other

one is the “streaker bee” hypothesis. The “subtle bee”
hypothesis suggests that informed bees do not conspicu-
ously signal the correct travel direction but steer the
whole swarm by moving toward the right direction. The
“streaker bee” hypothesis states that the informed bees
will conspicuously signal the correct travel direction by
making high-speed flights. The major difference is that
in the “streaker bee” hypothesis, the uninformed bees
will pay more attention to the action of those high-
speed bees, i.e., they favor the information transmitted
from fast flying bees. In simulations, it was shown in [7]
that in a group of both informed individuals and unin-
formed individuals, if each individual attempts to align
with neighbors and tries to keep a certain distance from
others, then the whole group can fly correctly to the
destination. This policy can be used to explain the
“subtle bee” hypothesis. On the other hand, it was
shown in [8] that the “streaker bee” hypothesis is a plau-
sible mechanism by simulating the case that uninformed
individuals can recognize informed bees and favor align-
ment to these bees. Later, through photographic analy-
sis, the work [9] showed that there are some fast flying
bees in the swarm, especially in the upper half of the
cloud of bees. And the experiments in [9,10] showed that
those high-speed bees have greater directionality oriented
toward the new nest site. Thus, though it is still uncertain
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whether uninformed bees follow streaker bees, it appears
that uninformed bees follow fast flying bees.
In this article, we construct a model to explain the bee

swarming behavior under conditions not considered
before including the type of information that is shared
about the bees, the fact that measurements are subject
to noise, and the fact that the location of the destination
is not known precisely but needs to be estimated on the
fly from noisy data. When information is subjected to
noise, improved performance can be obtained if the
shared information is processed locally as well. Rather
than rely solely on, for example, averaging information
from nearby neighbors, the diffusion model that is
adopted in this article allows each individual bee to
further filter the received information based on its local
measurements. The model is based on the assumption
that streaker bees lead uninformed bees by flying fast,
and that if they slow down to the speed of the unin-
formed bees, they are not recognized as streaker bees by
the rest of the swarm.
The swarming behavior of honeybees provides a useful

and interesting example of one kind of mobile networks
that consists of two types of nodes: informed agents and
followers. In these networks, there is a limited number
of informed nodes, which possess relatively accurate
information about the overall objective of the network
(such as moving toward a target location). In contrast,
the remaining nodes (which constitute the majority) do
not have information about the target location but
rather interact with their neighboring nodes in order to
infer useful information about the overall objective.
Information diffuses through this hierarchical network
structure and the motion of the uniformed agents is
ultimately influenced by the measurements from the
informed agents. Some earlier works in the literature,
such as [11-13], used bio-inspired ideas to suggest meth-
ods for distributed detection and resource allocation in
communication systems. In this article, we are instead
interesting in proposing a distributed algorithm that
emulates the bee swarming behavior. We do so by
employing a diffusion adaptation strategy, and con-
structing a mobile network model to represent the
swarm, with each node corresponding to a bee in the
swarm. By using diffusion adaptation [14-16], each bee
makes its own estimation about the target location and
shares information with its neighbors. The type of infor-
mation shared among neighbors affects the efficiency of
the swarming behavior. We consider two types of infor-
mation sharing. In one case, we assume the agents share
noisy information about the general location of the tar-
get, and in the other case we assume the agents share
noisy information about the general direction of the tar-
get. Our model extends the earlier study done in [8],
which focused on ensuring that the bees align their

individual velocities to the average velocity of their
neighbors through a consensus procedure. In contrast,
we incorporate diffusion adaptation and allow the bees
to adjust their velocities by taking into account several
additional effects such as: (a) the velocities of their
neighbors as in [8]; (b) the velocities of the informed
agents; (c) the agents’ estimation of the target location;
and (d) the type of information that is being shared
(such as information about the location of the target or
about its direction). Simulation results further ahead (e.
g., Figures nine and ten) illustrate how these additional
factors improve the accuracy of the model. Furthermore,
since it is reasonable to assume that each bee generally
assesses information relative to its own location, the
model that is developed in the body of the article is
translated into a local coordinate system in the Appen-
dix. We derive the equation models relative to a global
coordinate system in the following sections because it is
easier to convey the main ideas without overburdening
the notation with subscripts and superscripts that refer
to different local coordinate systems (one for each bee).

A. Relation to network processing algorithms
In prior studies on network adaptation and processing
[17,18], the emphasis has largely been on the case of
homogeneous networks, where nodes have similar pro-
cessing capabilities and similar information levels about
the state of the environment. The swarm of bees provides
a useful example of a heterogeneous network consisting
of two types of nodes: some nodes (about 5% of them)
are more informed than the remaining nodes. In addi-
tion, the nodes are mobile and the informed nodes are
faster than the uninformed nodes. From a signal (or
information) processing perspective, it is an interesting
challenge to show how to organize the sharing of infor-
mation in a manner that benefits the overall performance
across the network. To do so, we consider two subnet-
works: one for informed bees and the other for unin-
formed bees; the agents within each subnetwork share
information with the neighbors in the same subnetwork.
In addition, in order to allow passing of information
from informed nodes to uninformed nodes, the informed
needs perform a strategy for information sharing by mov-
ing back and forth to become part of the neighborhoods
of the uninformed nodes. In this article, we describe one
way of developing adaptation algorithms that handle
such heterogeneous behavior and examine the perfor-
mance of the network in the presence of adaptation noise
and dynamically changing neighborhoods.

II. Diffusing position information
In this initial section, we assume the informed bees
share noisy information about the site position. We set
the network model and explain how diffusion can be
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used to allow the nodes to adapt their motion toward
the common target (hive) location.

A. Informed bees
Informed bees have been to the destination site before.
However, while traveling with the swarm toward the
site, their estimation of the distance to the new site is
not accurate due to noisy disturbances. For each itera-
tion step, the informed bees sense the approximate dis-
tance to the site in the presence of noise, communicate
with the informed bees in their neighborhood, and use
this process of information sharing to refine their esti-
mation of the location of the site. Based on the number
of neighboring bees, the informed bees decide on
whether to trust the refined information and move in
the direction of the estimated location. To describe the
algorithm in more mathematical terms, let us introduce
a couple of parameters:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ωo : Actual location of the new hive site.
xk,i : Actual position of informed bee k at time i.

uk,i :

Noisy unit - norm direction vector from

informed k bee at time i towards the target

location wo. The exact direction vector, say

uok,i, is equal to the unit - norm vector that

points from xk,i towards wo. The vector uk,i

is a noisy version of uok,i.
dok(i) : Actual distance to the new site from informed bee k at time i.

dk(i) :

Measured distance to the new site by informed

bee k at time i. This distance is affected by

random noise.

(1)

In our notation we use boldface letters, such as dk(i)
and uk,i, to denote stochastic variables and use normal
font, such as dk(i) and uk,i, to denote realizations or
observations for these random variables.
As the informed bees approach the target, they are

able to make better estimation of their distance to the
target. Therefore, we shall assume that the measured
distance dk(i) is the true distance plus additive noise,
with the variance of the noise changing in proportion to
the distance to the target, namely, we assume that

dk(i) = dok(i) + β · ∥∥ωo − xk,i
∥∥ · nk(i) (2)

where nk(i) is a normalized unit-variance zero-mean
Gaussian variable, and b is a positive parameter. The
term ∥w° - xk,i∥ is a measure of the Euclidean distance
from bee k to the target.
We assume that the swarm contains a total of K

informed bees and N - K uninformed bees (with K
usually much smaller than N). Now given the noisy dis-
tance measurements (2) by the informed bees, we con-
sider the following cost function:

min
w

K∑
k=1

E
∣∣dk(i) − uk,i(ωo − xk,i)

∣∣2 (3)

where E denotes the expectation operator. This cost
function attempts to determine the optimal location w°
that best matches the measured data {dk(i), uk,i} in the
least-mean-squares sense. Once determined, the esti-
mate of w° will be subsequently used by the bees to
adjust their velocity vectors and update their locations.
We are interested in a distributed solution to (3) where
the estimation problem can be solved in a decentralized
manner where each bee would only need to share infor-
mation with its immediate (local) neighbors and not
with all other bees. To arrive at such a distributed solu-
tion, we call upon the adapt-then-combine (ATC) diffu-
sion algorithm, which was developed in [15,16] to solve
similar problems. The algorithm consists of two steps:
an adaptation (processing) step followed by a consulta-
tion (combination) step. Let ψk,i-1 denote the estimate of
w° by bee k at time i - 1. Given the data {dk(i), uk,i} at
time i, the following steps are performed (In analysis of
the following part, it is presumed that the bees are not
in the position of the destination. Otherwise, those bees
stop the process of estimation and velocity control):
(1) Adaptation step. Each informed bee performs an

adaptation step by incorporating the local data {dk(i), uk,
i, xk ,i} in order to update its estimate ψk ,i-1 into an
improved intermediate estimate jk,i:

φk,i = ψk,i−1 + μku
∗
k,i

[
dk(i) − uk,i(ψk,i−1 − xk,i)

]
(4)

(2) Combination step. Subsequently, each informed
bee averages the intermediate estimates of its immediate
neighbors to obtain the final updated estimate ψk,i. This
sequence of adaptation and combination steps updates
the estimate of w° from ψk,i-1 to ψk,i:

ψk,i =
∑
t∈N (i)

k,s

ask,lφl,i (5)

In (5), the symbol N (i)
k,s represents the set of informed

bees in the neighborhood of informed bee k at time i;
the neighborhood may be defined as the set of informed
bees that are within distance r from bee k. The coeffi-
cients ask,l are scaling factors that add up to one. For
simplicity, the coefficients can be assigned uniformly or
assigned according to the distance between the bee and
its neighbors:∑

l∈N (i)
k,s

ask,l = 1
(6)

Expressions (4) and (5) indicate that the informed bees
first estimate the position of the new site (adaptation
step), and then communicate with their neighbors and
obtain a new estimate (combination step). Observe that
in this diffusion model, the bee does not rely solely on
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combining the information received from its neighbors
[as in (5)]. The bee also processes this combined esti-
mate according to (4) by evaluating an error term that
measures how well the combined estimate explains the
local data {dk(i), uk,i} measured by bee k.
(3) Velocity control step. After each informed bee

has updated its estimate to ψk,i, the group of informed
bees needs to decide where they should move to in the
next step. We call this step the control step, since the
result of the estimation result is used for controlling the
bees’ motion. For the control step, each informed bee
checks the number of bees in its neighborhood. If the
number exceeds a certain threshold, then the informed
bee will move toward the direction of the nest site as
described below. The velocity vector will be set as a
weighted combination of the previous and current velo-
city vectors. To describe the mechanism of velocity con-
trol, we define the maximum speed as gsmax, where g is
a number between 2 and 3, and smax is the maximum
speed of motion of the uninformed bees. If the number
of informed bees is less than a threshold, then the
informed bee will go back to the rear of the swarm. In
fact, whether these informed bees move toward the rear
or linger around until the rest of the swarm go past
them is still not known. In this study, we use the former
assumption and assume that the informed bee first
moves toward the center of the swarm, and when it
passes the center, it goes toward the opposite direction
of the new site. During this process, the speed becomes
smax the same as that of the uninformed bees, so that
other bees cannot recognize it as an informed bee. This
procedure can be modeled mathematically as follows:

If N (i)
k,s ≥ threshold, then informed bee k sets its velo-

city vector as a combination of the previous velocity
vector and an estimate of the direction vector toward
the location of the new site:

vk,i = (1 − λ)vk,i−1 + λγ smax
(ψk,i − xk,i)∥∥ψk,i − xk,i

∥∥ (7)

else if N (i)
k,s < threshold, then informed bee k moves

back toward the rear of the swarm. Initially, the bee
turns around with velocity

vk,i = −smax
ψk,i − xk,i∥∥ψk,i − xk,i

∥∥ (8)

Subsequently, the informed bee detects the bees that
are in front of it and moves toward the center of this
group until it reaches the rear of the swarm. Bee l is
considered to be in front of informed bee k when∥∥xl,i − xk,i

∥∥ < rr (9)

(xl,i − xk,i)vTk,i > 0 (10)

where rr is the range of the perception area (the same
value as the repulsion region for uninformed bees
described further ahead in (19)). Then the velocity at
time i for informed bee k is set as

vk,i = smax

∑
l∈N (i)

k,f
(xl,i − xk,i)∥∥∥∥∑

l∈N (i)
k,f
(xl,i − xk,i)

∥∥∥∥ (11)

where N (i)
k,f is the set of bees in front of bee k at time

i. This velocity selection makes the informed bee move
toward the center of the surrounding bees that are in
front of it while it is moving toward the back of the
swarm.
After setting the velocity vector, each informed bee

then updates its position according to the rule:

xk,i+1 = xk,i + vk,i�t (12)

The procedure is summarized in Figure 1. In (7) and
(8), we assume that the term in the denominator is not
zero; otherwise, we set the velocity vk,i to zero (since ψk,i

= xk,i indicates that the informed bee is close to or has
likely arrived at the destination).

B. Uninformed bees
The uninformed bees have not been to the destination
site before and they cannot sense the position of the
destination. They collect information about the site by
first checking whether there are informed bees in their
neighborhood. If so, they benefit from the estimation
results of these neighbors; if not, they use the result of
their previous estimation step. Specifically, we consider
the following cost function for the uninformed bees:

min
w

N−K∑
k=1

E

∥∥∥∥∥∥∥
∑
l∈N (i)

k,s

ck,lψl,i − ωo

∥∥∥∥∥∥∥
2

(13)

where the coefficients ck,l are scaling factors that add
up to one (for simplicity, the factors can be assigned
uniformly):∑

l∈N (i)
k,s

ck,l = 1
(14)

and N (i)
k,s denotes the set of informed bees that exist

in the neighborhood of uninformed bee k at time i.
According to (13), each uninformed bee k attempts to
combine the estimates of its neighbors of informed bees
in order to estimate the destination location w° by
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minimizing the mean-square error (MSE). Once deter-
mined, the estimate of w° is subsequently used by the
uninformed bees to adjust their velocity vectors and
update their locations. Again, we are interested in a dis-
tributed solution to (13), whereby each bee would only
need to share information with its immediate (local)
neighbors. To do so, we again appeal to the ATC diffu-
sion algorithm. The algorithm consists of two steps: an
adaptation (processing) step followed by a consultation
(combination) step. As before, we let ψk,i-1 denote the
estimate of w° at uninformed bee k at time i - 1. Given
the estimates {ψl,i-i} from the informed bees in the
neighborhood, each uninformed bee would perform the
following three steps:
(1) Adaptation step. Each uninformed bee combines

the current estimates at time i from its informed neigh-
bors and uses this information to update its estimate ψk,

i-1 to the intermediate value jk,i:

φk,i = ψk,i−1 + μk

⎛
⎜⎝ ∑

l∈N (i)
k,s

ck,lψl,i − ψk,i−1

⎞
⎟⎠ (15)

(2) Combination step. Subsequently, each uninformed
bee combines the intermediate estimates of its neighbors
(now consisting of both informed and uninformed bees)
and ends up with the updated estimate ψk,i. The factors
can be assigned uniformly for simplicity:

ψk,i =
∑
l∈N (i)

k

ak,lφl,i (16)

where N (i)
k denotes the set of bees (both informed and

uninformed) within the neighborhood of bee k at time i.
Observe that the neighborhood of bee k is divided into

two sets: one is the entire neighborhood N (i)
k

consisting

Figure 1 A diffusion adaptation model for the motion of informed bees involving three components: adaptation, consultation, and
velocity control.
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of all bees within a certain radius r, and the other set N (i)
k,s

is a subset of the first and consists only of the informed
bees within the neighborhood. After the diffusion step
(15), the uninformed bees use the location estimates ψk,i

to update their velocity vectors in order to meet at least
two objectives: (a) to move toward the target location w°
and (b) to move coherently with the other bees as a group
by ensuring that the bees do not get too close to each
other or too far from each other, as we now explain.
(3) Velocity control step. The first objective is

assisted by computing a velocity component, denoted by
vk,m,i, through a combination of the current velocity and
a vector pointing approximately toward w°, namely,

vk,m,i = (1 − λ)vk,i−1 + λsmax
(ψk,i − xk,i)∥∥ψk,i − xk,i

∥∥ (17)

The second objective of moving in a group can be
implemented by defining an attraction and repulsion
area around each bee. For attraction, the velocity vector
is selected as the average of all vectors pointing from
the current position of the bee to all of its neighbors [8]:

If
∣∣∣N (i)

k,a

∣∣∣ �= 0 ,

vk,a,i =
smax

ra

1∣∣∣N (i)
k,a

∣∣∣
∑
l∈N (i)

k,a

(xl,i − xk,i) (18)

else if
∣∣∣N (i)

k,a

∣∣∣ = 0 ,

vk,a,i = vk,m,i (19)

where N (i)
k,a is the set of bees within the attraction area

of bee k at time i. The factor 1
ra
is used to bound the

length of the vector to at most one, so that the value of
vk,a,i does not exceed smax. In Equation (18), when bee l
moves away from bee k, the weight for bee l toward the
final attraction velocity of bee k would be larger. In this
way, within the attraction region, when the neighboring
bees of bee k move away, bee k would be attracted by
these bees.
For repulsion, the velocity vector is selected as the

average of all vectors pointing from all neighbors within
a given distance rr to the bee [8]:

If
∣∣∣N (i)

k,r

∣∣∣ �= 0 ,

vk,r,i =
smax

rr

1∣∣∣N (i)
k,r

∣∣∣
·

∑
l∈N (i)

k,r

(xk,i − xl,i)

(
rr∥∥xk,i − xl,i

∥∥ − 1

) (20)

else if
∣∣∣N (i)

k,r

∣∣∣ = 0 ,

vk,r,i = vk,m,i (21)

where N (i)
k,r is the set of bees within the repulsion area

of bee k at time i. The factor 1
rr
is used to bound the

length of the vector to at most one, so that the value of
vk,r,i does not exceed smax. In Equation (20), when neigh-
boring bee l moves away from bee k, the weight for bee
I toward the final repulsion velocity of bee k would be
smaller. In this way, within the repulsion region, when
the neighboring bees of bee k move closer, bee k would
be repelled by these bees. Figure 2 shows an example of
how attraction and repulsion work. The three velocity
components are combined to yield the bee’s velocity as:

vk,i = αmvk,m,i + (1 − αm)(ρavk,a,i + ρrvk,r,i) (22)

where ra and rr are positive weighting scalars, and am

is a factor between 0 and 1.
After setting the velocity vector, each uninformed bee

then updates its position vector according to the same
rule:

xk,i+1 = xk,i + vk,i�t (23)

In conclusion, the behavior of uninformed bees is
summarized in Figure 3.

C. Simulation results
We set the simulation parameters as in Table 1 to
ensure the density of bees is the same as the density of
bees in the real world.
Figure 4 shows that the swarm can reach the destina-

tion even if the percentage of informed bees is small
(5%). In fact, simulations indicate that the swarm is able
to reach the destination even with a smaller fraction of
informed bees. Figure 5 shows the convergence speed
and mean square error of the estimated target position
and the true position for different percentages of
informed bees in the swarm.
It is seen from Figure 5 that as the percentage of

informed bees increases, the convergence speed
increases and the MSE decreases. The figure also indi-
cates that when the percentage of informed bees
increases from 5 to 10%, the convergence speed does
not change as much as when the percentage of informed
bees increases from 1 to 5%. On the other hand, as seen
from Figure 6, given the same proportion of informed
bees (we use 5% here), when the total number of bees
increases, the MSE improves but the convergence speed
remains practically invariant. These results suggest that
the larger the size of the swarm is, the smaller the num-
ber of informed bees can be. This result is consistent
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with the observation in [7] that the larger the swarm is,
the less leaders the swarm needs. Moreover, Figure 5
exhibits a staircase shape. The horizontal steps arise
when informed bees move back to the rear of the
swarm. When they do so, they fly at low speeds and are
not recognized as informed bees by the other unin-
formed bees. When this situation occurs, the unin-
formed bees are not able to update their estimate of the

target location and instead maintain their previous
estimates.
Figure 7 shows the result of diffusion adaptation com-

pared with the situation where the bees do not coop-
erate with each other to estimate the target location (the
combination steps are not used). It is seen that the dif-
fusion adaptation model leads to better estimation
results.

Figure 2 Velocity calculation within the attraction and repulsion regions.
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D. Comments on model
The informed and uninformed bees perform adaptation
diffusion independently. The relation between both pro-
cesses is that the observations of the uninformed bees
arise from the informed bees. For the informed bees,
they share information about the destination location to
perform diffusion adaptation, and communicate with the
surrounding informed bees. For the uninformed bees,
they gather information from the informed bees in their
neighborhood, and use these bees’ estimation results as
their own observation. Afterward, they communicate
with all surrounding bees. By examining the information
propagation mechanism among uninformed bees, it can
be seen that after a few steps, an accurate estimate

about the target position will be shared among the bees
in the whole swarm.

III. Diffusing direction information
So far in our discussions we examined one mode of infor-
mation sharing where the nodes (bees) shared informa-
tion about the location of the target destination. We now
discuss another possibility for information sharing, which
is less demanding than sharing the location estimates.
Bees may instead share information about the direction
(rather than location) of the destination.

A. Informed bees
We first model the dynamics of the informed bees.
These bees estimate the position of the new site, set
their velocity vectors, and then communicate the infor-
mation about the direction that agrees with their velo-
city vectors to the surrounding informed bees. We again
use a diffusion adaptation model. Now, however, the
combination step will be applied to the velocity vectors
rather than the location vectors. Three steps are
involved: adaptation, velocity control, and combination.

Figure 3 A diffusion adaptation model for the motion of uninformed bees involving three components: adaptation, consultation, and
velocity control. In this case, the velocity control block does not only ensure motion toward the desired target, but also helps enforce regions
of repulsion and attraction around the bees to guarantee group motion.

Table 1 Simulation parameters

N K ra rr σ 2
v rr ra Smax μ

100 5 0.5 0.5 0.5 0.8 1.5 0.1 0.2

N, the number of bees in the swarm

K, the number of informed bees in the swarm

σ 2
v , variance of noise added to the velocity vector in order to account for

inaccuracies in the calculations by the swarm.
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(1) Adaptation step. Each informed bee uses its local
data to update its estimate of the location from ψk,i-1 to
ψk,i. Contrary to the adaptation step in Section 2.1, the
location estimate is updated directly to ψk,i rather than
to an intermediate quantity:

ψk,i = ψk,i−1 + μku
∗
k,i[dk(i) − uk,i(ψk,i−1 − xk,i)] (24)

(2) Velocity control. Each informed bee uses its
updated location estimate to compute an intermediate
velocity vector based on a threshold computation.

If N (i)
k,s ≥ threshold, set the intermediate velocity vec-

tor as:

ηk,i = (1 − λ)vk,i−1 + λγ smax
(ψk,i − xk,i)∥∥ψk,i − xk,i

∥∥ (25)

else if N (i)
k,s < threshold, informed bee k initially turns

around with velocity

vk,i = −smax
ψk,i − xk,i∥∥ψk,i − xk,i

∥∥ (26)

then moves with velocity:

vk,i = smax

∑
l∈N (i)

k,f
(xl,i − xk,i)∥∥∥∥∑

l∈N (i)
k,f
(xl,i − xk,i)

∥∥∥∥ (27)

where the position of bee l should satisfy:∥∥xl,i − xk,i
∥∥ < rr (28)

(xl,i − xk,i)vTk,i > 0 (29)

In (26) and (27), we assume that the term in the
denominator is not zero; otherwise, we set the velocity
terms hk,i and vk,i to zero (since ψk,i = xk,i indicates that

Figure 4 Simulated distribution of a swarm of honeybees as they move toward the destination.
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the informed bee is close to or has likely arrived at the
destination).
(3) Combination step. If the number of informed

bees in the neighborhood of bee k is larger than a
threshold, the intermediate velocity vectors in the neigh-
borhood are combined in a convex manner. Specifically,

If N (i)
k,s ≥ threshold, set:

vk,i =
∑
l∈N (i)

k,s

ask,lηl,i (30)

else if N (i)
k,s < threshold, set

vk,i = ηk,i (31)

(4) Update location:

xk,i+1 = xk,i + vk,i�t (32)

Compared with the diffusion model we adopted in
Section 2.1, the difference is that the diffusion step of
Equation (4) was performed on the estimates of the tar-
get location, while now diffusion is performed on the
intermediate velocity vectors as in (43).

B. Uninformed bees
In the previous model, the uninformed bees shared
information about the position of the new site, and each
bee determined its own velocity vector after diffusing
the position vectors. In contrast, in the current model,
the uninformed bees can only receive information about
the velocity vectors of their neighboring bees, so that
the diffusion step is performed over the intermediate
velocities.

1) Adaptation step. Each uninformed bee k com-
bines the velocity vectors of the informed bees in its
neighbor hood, and updates its velocity vector vk,i-1
to an intermediate value hk,i:

ηk,i = vk,i−1 + μk

⎛
⎜⎝ ∑

l∈N (i)
k,s

ck,lvl,i − vk,i−1

⎞
⎟⎠ (33)

2) Combination step. Each uninformed bee uses the
intermediate velocity vectors to update its velocity in
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order to satisfy the same two objectives as before: (a)
to move toward the target direction and (b) to move
coherently with the other bees as a group by ensur-
ing that the bees do not get too close to each other
or too far from each other.

The first objective is assisted by computing a velocity
component, denoted by vk,m,i, through a combination of
the intermediate velocity vectors of other uninformed
bees and the velocity vectors of informed bees. The sec-
ond objective is assisted by combining vk,m,i with a term
that enforces regions of attraction and repulsion around
each bee as before:

vk,m,i =
∑
l∈N (i)

k,u

auk,lηl,i +
∑
l∈N (i)

k,s

ask,lvl,i (34)

vk,i = αmvk,m,i + (1 − αm)(ρavk,a,i + ρrvk,r,i) (35)

3) Location control step:

xk,i+1 = xk,i + vk,i�t (36)

C. Simulation results
In the simulations, we use the same parameters from
Table 1. We observed that the bees are able to reach
the destination under this alternative model where the
bees share information about the direction of the target
(the observed result is similar to Figure 4).
It is also observed that during flight if the bees travel a

long distance toward the destination, then the swarm
may break up into two subgroups. This situation appar-
ently happens when the informed bees fly in front of
the swarm and bees at the rear of the swarm are less
influenced by them and split away from the group.
However in most cases, the two groups of bees will join
together again; this behavior is observed in nature.
It is useful to compare our results with the model devel-

oped in [8]. The model in [8] assumes that the uninformed
bees average the velocities of their surrounding bees. In
our model, the uninformed bees first check the velocities
of the informed bees, set their own velocities, and then
communicate with other bees. By doing so, uninformed
bees pay more attention to the informed bees. The result
indicates that this policy works well in leading uninformed
bees to the destination and the uninformed bees would
follow the informed bees’ behavior more closely. In order
to illustrate this difference, we set up two simulations, one
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for the method of [8] and one for our method. The same
parameters are used in both simulations, and for the first
250 steps, the destination is set to [20,20,20], and after
that, the destination is changed to [0,0,0]. One factor that
we measure is the difference between the actual direction
toward the target and the estimated direction for each
uninformed bee, and we use the MSE to assess this mea-
sure. Averaging over 50 experiments, Figures 8 and 9
show how MSE and the distance to the destination vary
with time for the method of [8] and for the proposed dif-
fusion adaptation models. The results suggest that it takes
a longer time for the uninformed bees in model [8] to re-
orient themselves to the new destination. Roughly, from
the figures, it takes about 350 steps for the bees to gather
sufficient information about the new direction using the
model in [8], while diffusion adaptation needs only about
10 steps. Note that in the method of Figure 9, when
informed bees go back to the rear of the group, it is possi-
ble that the swarm may slow down to a small velocity, and
this velocity is mostly determined by the attraction and
repulsion effects.

IV. Conclusion
This article studied the modeling capabilities of diffusion
adaptation mechanisms in the context of bee swarming.
Bee swarms provide an example of mobile networks

with asymmetric flow of information where some agents
are more informed than others. Two kinds of informa-
tion sharing were considered: location of the target and
direction of the target. Using the parameters given in
the model, in the location sharing model, the swarm can
reach the target with as little as 1% of informed bees,
while in the direction sharing model, the percentage of
informed bees needs to be higher (3% in our simula-
tions). Both models support the experimental evidence
[7] that there are about 5% streaker bees in a swarm.
The diffusion model does not rely only on having the
bees follow the average velocity of their neighbors, as in
traditional consensus models. Instead, information from
the informed bees and estimates of the target location
and its direction are diffused to influence the direction
of motion as well.

Appendix 1: Diffusing position information using
local coordinate systems
The description of the models in the body of the article
assumes that the location data xk,i are measured relative
to a global coordinate system. However, it is reasonable
to assume that bees can only observe the positions and
velocities of surrounding bees relative to themselves. For
this reason, it is more practical to associate with each
bee a local coordinate system whose origin is set at the
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current location of the bee and whose x axis points in
the direction of motion of the bee (this coordinate sys-
tem moves with the bee). Note that in view of the
updates (12), (23), (32), and (36), the origin of the local
coordinate system at time i is at xk,i and the direction of
the x-axis is the same as vk,i (see Figure 10). In this sec-
tion, we show how to transform the diffusion models
from relying on data relative to the global coordinate
system to data relative to localized coordinate systems.
To uniquely determine the y and z-axes of the local

coordinate systems, we select the y-axis to lie perpendi-
cular to the x-axis, and select the direction of the z-axis
to be according to the vector product rule. When the
local coordinate system is selected in this manner, we
can move back and forth between global and local coor-
dinates as follows:

wl = Gk(w − xk) (37)

where ω represents a vector in the global coordinate
system and ωl denotes its representation relative to the
local coordinate system attached to bee k. Moreover, the
term xk denotes the location of the bee in relation to

0 100 200 300 400 500 600 700
0

0.5

1

1.5

2

2.5

3

3.5
Method of [8]

Time step

M
S

E

0 100 200 300 400 500 600 700
5

10

15

20

25

30

35
Method of [8]

Time step

D
is

ta
nc

e 
to

 th
e 

de
st

in
at

io
n

Figure 8 Method of [8]: MSE (top) versus distance to the
destination (bottom).

0 100 200 300 400
0

0.5

1

1.5

2

2.5

3

3.5

4
Our method

Time step
M

S
E

0 100 200 300 4005

10

15

20

25

30

35
Our method

Time step

D
is

ta
nc

e 
to

 th
e 

de
st

in
at

io
n

Figure 9 Our method: MSE (top) versus distance to the destination
(bottom).

Li and Sayed EURASIP Journal on Advances in Signal Processing 2012, 2012:18
http://asp.eurasipjournals.com/content/2012/1/18

Page 13 of 17



the global coordinates. The columns of the rotation
matrix GT

k consist of the orthonormal basis vectors of

the local coordinate system relative to the global coordi-
nate. The matrix Gk is unitary.

1.1 Informed bees
We first show how to transform the intermediate esti-
mates jk,i and the updated estimates ψk,i to the local
coordinates. To begin with, the rotation matrix that
transforms a representation relative to the local coordi-
nates at time i - 1 to a representation relative to the
local coordinates at time i is given by:

Gl
k,i = Gk,iG

T
k,i−1 (38)

Now let ψ l
k,i−1 denote the local representation of ψk,i-1

relative to the coordinate system at time i - 1. It is given
by

ψ l
k,i−1 = Gk,i−1(ψk,i−1 − xk,i−1) (39)

Similarly, let ψ̄ l
k,i−1 denote the representation of the

same ψk,i-1 relative to the local coordinate system at
time i, namely,

ψ̄ l
k,i−1 = Gk,i(ψk,i−1 − xk,i)

= Gk,i((ψk,i−1 − xk,i−1) − (xk,i − xk,i−1))

= Gl
k,iψ

l
k,i−1 − v̄lk,i−1�t

(40)

where

vlk,i = Gk,ivk,i (41)

v̄lk,i−1 = Gk,ivk,i−1 (42)

Then, using Equation (4), we get

φl
k,i = Gk,i(φk,i − xk,i)

= Gk,i(φk,i − ψk,i−1 + ψk,i−1 − xk,i)

= μGk,iu
∗
k,i[dk(i) − uk,i(ψk,i−1 − xk,i)]

+ Gk,i(ψk,i−1 − xk,i)

= ψ̄ l
k,i−1 + μ(uk,iGT

k,i)
∗[dk(i) − (uk,iGT

k,i)ψ̄
l
k,i−1]

(43)

Similarly, for the combination step we have

ψ l
k,i = Gk,i(ψk,i − xk,i)

= Gk,i

⎛
⎜⎝ ∑

m∈N (i)
k,s

ask,mφm,i − xk,i

⎞
⎟⎠

=
∑

m∈N (i)
k,s

ask,mφl
m,k,i

(44)

where∑
m∈N (i)

k,s

ask,m = 1
(45)

and we introduce

φl
m,k,i = Gk,i(φm,i − xk,i) (46)

This quantity denotes the estimate result of bee m at
time i in the local coordinate system of bee k. Therefore,
the behavior of the informed bees can be described as
follows in the local coordinate systems:
(1) Measurement data
dk(i): distance to the destination.

ulk,i = uk,iGT
k,i : direction in the local coordinate system.

(2) Adaptation step

ψ̄ l
k,i−1 = Gl

k,iψ
l
k,i−1 − v̄lk,i−1�t

φl
k,i = ψ̄ l

k,i−1 + μul∗k,i
[
dk(i) − ulk,iψ̄

l
k,i−1

] (47)

(3) Combination step

φl
m,k,i = Gk,i(φm,i − xk,i)

ψ l
k,i =

∑
m∈N (i)

k,s

ask,mφl
m,k,i

(48)

(4) Velocity control step

When ψ l
k,i = 0 , we set the bee velocity to be zero.

Otherwise:

If N (i)
k,s ≥ threshold, set the velocity vector as

vlk,i = (1 − λ)v̄lk,i−1 + λγ smax
ψ l
k,i∥∥∥ψ l
k,i

∥∥∥ (49)

Figure 10 Local coordinates systems that move with the bee.
At time i, the x-axis points in the direction of vk,i.
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else if N (i)
k,s < threshold:

For the first step, informed bees turn around with
velocity

vlk,i = −smax
ψ l
k,i∥∥∥ψ l
k,i

∥∥∥ (50)

For the subsequent steps, the informed bees move
with velocity

vlk,i = smax

∑
m∈N (i)

k,f
xlm,k,i∥∥∥∥∑

m∈N (i)
k,f
xlm,k,i

∥∥∥∥ (51)

where the position of bee m should satisfy∥∥∥xlm,k,i

∥∥∥ < rr (52)

xlm,k,i(v
l
k,i)

T > 0 (53)

(5) Update location

xlk,i+1 = vlk,i�t (54)

1.2 Uninformed bees
We use a similar derivation for the uninformed bees and
obtain that
(1) Measurement data∑
m∈N (i)

k,s

ck,mψ l
m,k,i (55)

where ψ l
m,k,i denotes the estimate of bee m at time i

using the local coordinate system of bee k.
(2) Adaptation step

ψ̄ l
k,i−1 = Gl

k,iψ
l
k,i−1 − v̄lk,i−1�t (56)

φl
k,i = ψ̄ l

k,i−1 + μk

⎛
⎜⎝ ∑

m∈N (i)
k,s

ck,mψ l
m,k,i − ψ̄ l

k,i−1

⎞
⎟⎠ (57)

(3) Combination step

ψ l
k,i =

∑
m∈N (i)

k,s

ask,mφl
m,k,i (58)

(4) Velocity control step⎧⎨
⎩ vlk,m,i = (1 − λ)v̄lk,i−1 + λsmax

ψ l
k,i∥∥∥ψ l
k,i

∥∥∥ ψ l
k,i �= 0

vlk,m,i = v̄lk,i−1, ψ l
k,i = 0

(59)

⎧⎪⎨
⎪⎩
vlk,a,i =

smax
ra

1∥∥∥N (i)
k,a

∥∥∥
∑

m∈N (i)
k,a
xlm,k,i−1

∣∣∣N (i)
k,a

∣∣∣ �= 0

vlk,a,i = v̄lk,i−1,
∣∣∣N (i)

k,a

∣∣∣ = 0
(60)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

vlk,r,i =
smax
rr

1∥∥∥N (i)
k,r

∥∥∥
∑

m∈N (i)
k,r
xlm,k,i−1

⎛
⎝ rr∣∣∣xlm,k,i−1

∣∣∣ − 1

⎞
⎠

∣∣∣N (i)
k,r

∣∣∣ �= 0

vlk,r,i = v̄lk,i−1,
∣∣∣N (i)

k,r

∣∣∣ = 0

(61)

vlk,i = αmv
l
k,m,i + (1 − αm)

(
ρav

l
k,a,i + ρrv

l
k,r,i

)
(62)

(5) Update location

xlk,i+1 = vlk,i�t (63)

Appendix 2: diffusing direction information using
local coordinate systems
We can follow the same procedure as in Appendix 1 to
express the direction information model in the local
coordinate systems.

2.1 Informed bees
(1) Measurement data
dk(i): distance to the destination.

ulk,i = uk,iGT
k,i direction in the local coordinate system.

(2) Adaptation step

ψ̄ l
k,i−1 = Gl

k,iψ
l
k,i−1 − v̄lk,i−1�t

φl
k,i = ψ̄ l

k,i−1 + μul∗k,i
[
dk(i) − ulk,iψ̄

l
k,i−1

] (64)

(3) Velocity control step

When ψ l
k,i = 0 , we set the velocity to zero. Otherwise:

If N (i)
k,s ≥ threshold, evaluate the intermediate velocity

vector as

ηl
k,i = (1 − λ)v̄lk,i−1 + λγ smax

ψ l
k,i∥∥∥ψ l
k,i

∥∥∥ (65)

else if N (i)
k,s < threshold:

For the first step, informed bees turn around with
velocity

vk,i = −smax
ψ l

k,i∥∥∥ψ l
k,i

∥∥∥ (66)
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For the following steps, informed bees move with
velocity

vk,i = smax

∑
m∈N (i)

k,f
xlm,k,i∥∥∥∥∑

m∈N (i)
k,f
xlm,k,i

∥∥∥∥ (67)

where the position of bee m should satisfy∥∥∥xlm,k,i

∥∥∥ < rr (68)

xlm,k,i(v
l
k,i)

T > 0 (69)

(4) Combination step

If N (i)
k,s ≥ threshold, set

vl
k,i
=

∑
m∈N (i)

k,s

ask,mηl
lm,k,i (70)

else if N (i)
k,s < threshold

vlk,i = ηl
k,i (71)

(5) Update the location vector:

xlk,i+1 = vlk,i�t (72)

2.2 Uninformed bees
For the uninformed bees, using similar derivations, we
have

φl
k,i = Gk,i(φk,i − xk,i)

= ψ̄ l
k,i−1 + μk

⎛
⎜⎝ ∑

m∈N (i)
k,s

ck,lφ
l
m,k,i − ψ̄ l

k,i−1

⎞
⎟⎠ (73)

where

ψ̄ l
k,i−1 = Gl

k,iψ
l
k,i−1 − v̄lk,i−1�t (74)

We arrive at the following steps:
(1) Measurement data:∑
m∈N (i)

k,s

ck,mv
l
m,k,i (75)

(2) Adaptation step:

ηl
k,i = v̄lk,i−1 + μk

⎛
⎜⎝ ∑

m∈N (i)
k,s

ck,mv
l
m,k,i − v̄lk,i−1

⎞
⎟⎠ (76)

(3) Combination step:

vlk,m,i =
∑

m∈N (i)
k,u

auk,mηl
m,k,i +

∑
m∈N (i)

k,s

ask,mv
l
m,k,i

vlk,i = αmvlk,m,i + (1 − αm)
(
ρavlk,a,i + ρrvlk,r,i

) (77)

(4) Update location:

xlk,i+1 = vlk,i�t (78)
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