
Chandran EURASIP Journal on Advances in Signal Processing 2012, 2012:140
http://asp.eurasipjournals.com/content/2012/1/140

RESEARCH Open Access

Time-varying bispectral analysis of visually
evoked multi-channel EEG
Vinod Chandran

Abstract

Theoretical foundations of higher order spectral analysis are revisited to examine the use of time-varying bicoherence
on non-stationary signals using a classical short-time Fourier approach. A methodology is developed to apply this to
evoked EEG responses where a stimulus-locked time reference is available. Short-time windowed ensembles of the
response at the same offset from the reference are considered as ergodic cyclostationary processes within a non-
stationary random process. Bicoherence can be estimated reliably with known levels at which it is significantly different
from zero and can be tracked as a function of offset from the stimulus. When this methodology is applied to multi-
channel EEG, it is possible to obtain information about phase synchronization at different regions of the brain as the
neural response develops. The methodology is applied to analyze evoked EEG response to flash visual stimulii to the
left and right eye separately. The EEG electrode array is segmented based on bicoherence evolution with time using
the mean absolute difference as a measure of dissimilarity. Segment maps confirm the importance of the occipital
region in visual processing and demonstrate a link between the frontal and occipital regions during the response.
Maps are constructed using bicoherence at bifrequencies that include the alpha band frequency of 8Hz as well as 4
and 20Hz. Differences are observed between responses from the left eye and the right eye, and also between subjects.
The methodology shows potential as a neurological functional imaging technique that can be further developed for
diagnosis and monitoring using scalp EEG which is less invasive and less expensive than magnetic resonance imaging.
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Introduction
Bispectral analysis of EEG data has been the subject of a
number of studies. Some have used single channel data
only. Others have used multi-channel EEG ensembles but
few have investigated multi-channel EEG using higher
order spectral analysis in a time-varying manner. This
article revisits the theoretical foundations to justify such
analysis and provides new results from the application of
time-varying bispectral analysis to evoked EEG responses.

Background
Research on bispectral analysis of EEG signals dates back
to the 1970s, not long after higher order spectral analysis
emerged as a branch of study in the 1960s. Dumermuth
et al. [1] demonstrated that there exists significant phase
locking between alpha and beta components in intracra-
nial EEG. Barnett et al. [2] used bispectral analysis to
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examine waking and sleeping states and found signifi-
cant quadratic phase coupling only in the EEG of wake-
ful subjects with high alpha activity. These early studies
used steady state potentials. Bullock et al. [3] used bico-
herence analysis of intracranial and subdural EEG in a
time-varying framework in an attempt to classify the
onset of epileptic seizures. They analyzed EEG from sleep,
wakefulness and seizure states. Their results were not
conclusive on the effectiveness of the bicoherence descrip-
tor. They found the bicoherence to fluctuate abruptly
within a few seconds. The fluctuations were not consis-
tent across subjects during the seizure period although
statistically significantly higher levels of bicoherence were
observed. Muthuswamy et al. [4] modeled paroxysmal
burst EEG as a non-linear time-invariant process and
showed that the bicoherence in the delta-theta band of
EEG bursts is significantly higher than baseline waveforms
in animal subjects recovering from a brain trauma. It has
been shown that the bispectrum of the EEG correlates
with changes in consciousness level and the bispectral
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index (BIS) [5,6] derived from EEG bispectral parame-
ters was developed as a clinical tool to monitor depth of
anaesthesia during surgery. Tang and Norcia [7] used the
bispectrum to study steady state visually evoked poten-
tials. They called their method the coherent bispectrum.
They used oscillatory visual stimulii and reported the
presence of inter-modulation frequencies and evidence of
nonlinear interactions. Shen et al. [8,9] investigated time-
varying bispectral analysis of non-stationary EEG data
considering piece-wise third order stationary segments
and non-Gaussian autoregressive modelling. Minfen et
al. [10,11] used higher-order spectral analysis of EEG for
classification of brain functional states.
In this study, time-varying bispectral analysis is applied

to transient EEG responses evoked by a stimulus or related
to a sensory event. A classical Fourier approach is adopted
and ergodicity is only assumed over short time inter-
vals around windows that are at the same offset with
respect to a stimulus-locked time reference. Many previ-
ous EEG studies such as [12] have used stimulus-locked
time references and stimulus-locked time averaging but
most of them use grand averaging in time and some
use spectral analysis. They have not investigated time-
varying bispectral analysis in the manner described in this
work. Bicoherence changes are tracked in this study with
millisecond resolution, better tracking resolution than in
earlier studies such as [1]. Auto-bicoherence is mapped
simultaneously for multiple channels to obtain a spatio-
temporal view of the EEG response at selected locations
in the bifrequency plane, providing enhanced processing
and visualization capabilities compared to any previously
reported work. Such analysis will be useful in understand-
ing the neuronal activity involved in visual and auditory
perception, motor planning and movements. It can pro-
vide new features for diagnosing neurological conditions
and sensory impairment.

Methods
In this section, some equations defining higher order
spectra [13-16], are revisited to provide a context and jus-
tification for the adoption of a classical short-time Fourier
approach to time-varying bispectral analysis.

Random processes
Consider a real-valued random process, x(t), that varies
with time, as a signal model for any channel of EEG. An
ensemble of many realizations of the random process can
be used to define statistical averages or expected values
that are deterministic quantities. At any given time instant
t′, x(t′) is a random variable. For a first-order stationary
random process, the probability density function p[ x(t′)]
is independent of the time t′. Descriptions of the random
process that depend only on the statistics of one random
variable such as the mean value are examples of first order

statistics. The mean or first order moment of the process
is

E[ x(t′)]=
∫

x(t′)p[ x(t′)] dx = mx
1 (1)

A random process is not fully characterized by its first
order statistics alone. The joint probability density func-
tion p[ x(t′), x(t′′)] provides a second order description of
the random process. For a second-order stationary pro-
cess, this probability density is independent of the abso-
lute value of the time instants and depends only on the
time offset τ = t′′ − t′. The autocorrelation or second
order moment of the random process is

mxx
2 (τ ) = E[ x(t′)x(t′′) = E[ x(t′)x(t′ + τ)] (2)

Here E stands for the expectation operation over an
ensemble of realizations of the process. Very often, only a
single realization is available. If it is sufficiently long and
the process is stationary to the second order, an estimate
of the autocorrelation can be computed by averaging over
time rather than over the ensemble. It is given by

m̃xx
2 (τ ) = Et[ x(t′)x(t′′)]=

∫
x(t′)x(t′ + τ)dt′ (3)

For an ergodic process ensemble statistics (E) are equal
to time statistics (Et). Ergodicity also implies that time
statistics do not change with time and an ergodic process
is necessarily stationary. If these properties hold true up
to n-th order statistics, the process is said to be n-th order
ergodic. Ergodicity is not guaranteed for all processes. At
best it is an assumption that holds fairly well in practice
to allow reliable estimates of statistical parameters that
characterize the process. If the process is ergodic, a sin-
gle long realization may be divided into several shorter
ones for statistical expectation computation. This division
into blocks of time creates an ensemble of shorter real-
izations of the random process. As a trade-off, the range
of possible time offset values (τ ) is reduced. Assume that
an estimate of the autocorrelation, mxx

2 (τ ) has thus been
obtained. In practice, this autocorrelation will usually tend
towards zero for large offsets and the block size can be
suitably chosen to be large enough for the autocorrela-
tion to have decayed to nearly zero. If that is the case,
the autocorrelation function will be absolutely integrable
and its Fourier transform will exist. The Fourier trans-
form of the autocorrelation function is the power spectral
density referred to as the power spectrum of the process,
Sxx2 (f ), where f represents frequency in cycles per second
or Hertz when the independent variable time of the ran-
dom process and the offset τ are measured in seconds.
For deeper understanding of stationarity and ergodicity
in random processes and stochastic calculus the reader
is referred to [17]. The power spectrum reveals the har-
monic structure or frequency components in the random
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process. If the autocorrelation function is an impulse or
Dirac delta function δ(τ ) (implying that values of the
process separated even infinitesmally in time are uncor-
related) the power spectrum Sxx2 (f ) = 1 is constant and
the process is referred to as white. In this case, the power
spectrum does not reveal much about the process. Noise
processes like that produced by thermal fluctuations of
electrons in a material tend to be broadband in their spec-
trum and nearly white. There are no selectively resonant
structures that would concentrate power over particular
frequencies or frequency bands. If the process is also a
result of superposition of many uncorrelated processes,
such as the potential difference produced across a resistor
owing to the thermal fluctuations of millions of electrons,
the Central limit theorem dictates that the probability
density function will tend towards the Gaussian distribu-
tion. This is also true of joint probability density functions
of all orders. The process is then referred to as a Gaus-
sian process. A Gaussian probability density function in D
dimensions is given by

p(X) = 1
(2π)D/2[ det(CX)]D/2

× exp
[
−1
2
(X − μX)CX

−1(X − μX)T
] (4)

where μX is the mean vector and CX is the covariance
matrix of the D-dimensional vector X. det represents the
determinant of a matrix. ForD-th order statistics of a ran-
dom process, these dimensions come fromD time instants
at which the process is considered, each a scalar random
variable. Yet, only first order (mean value) and second
order (pair-wise in the covariance matrix) suffice for a
complete description of the Gaussian probability den-
sity. The white Gaussian random process model is often
employed as a simplified model for noise. A Gaussian pro-
cess is completely described by first and second order
statistics because a Gaussian probability density function
of any order can be represented using a mean vector and
a covariance matrix alone. Deviations from Gaussian dis-
tributions can be detected or measured by using higher
than second order moments. For example, skewness is
computed from third moments and kurtosis from fourth
order moments. Skewness is a measure of the asymme-
try of the probability density and kurtosis is an indicator
of the deviation of the tails of the distribution from those
of a Gaussian. If a deviation from Gaussian is detected, it
may be owing to particular frequency components in the
process.
A Fourier representation for higher order moments was

proposed by Shiryaev [13]. The third order spectrum or
bispectrum was first applied to study nonlinear interac-
tions in ocean waves [18]. The estimation of such higher

order spectra was placed on a firm mathematical and sta-
tistical foundation by Brillinger and Rosenblatt [14,15,19]
in the same decade. The fast Fourier transform (FFT) algo-
rithm and advances in computers facilitated the numerical
estimation of higher order spectra and gave impetus to
higher order spectral analysis research and its application
in the latter half of the twentieth century. More review
articles can be found in [16,20,21].

The bispectrum
The third order moment or triple correlation of a random
process x(t), assumed stationary, is defined as

mxxx
3 (τ1, τ2) = E[ x(t)x(t + τ1)x(t + τ2)] (5)

For many processes this function of two offset variables
will decay with increasing delay or offset. If this function
satisfies the Dirichlet conditions for existence of a Fourier
spectrum, such as being absolutely integrable, its Fourier
transformmay be defined and is known as the bispectrum
of the process,

B(f1, f2) = Sxxx3 (f1, f2) =
∞∫

−∞

∞∫
−∞

mxxx
3 (τ1, τ2)

× e−j2π(f1τ1+f2τ2)dτ1dτ2

(6)

The subscript 3 refers to a third order parameter. The
superscripts xxx are a reminder that the spectrum is an
auto-spectrum computed from the same random process
rather than a cross-spectrum computed from different
random processes. The bispectrum of a one dimensional
random process is a function of two frequencies as shown
above. The pair of frequencies is referred to as a bifre-
quency. The bispectrum of a Gaussian random process
is zero because the third moment is zero. Moments of
higher order are not all zero for a Gaussian process. But
cumulants [16,21] of order three and greater are zero and
it is conventional to define higher order spectra in terms
of cumulants of a random process rather than moments.
This work is restricted to the third order and third order
moment and cumulant spectra are identical, both refer-
ring to the same bispectrum. This definition of the bis-
pectrum may be extended to include moment functions
from harmonic random processes that are not absolutely
integrable but have finite power, or finite energy within a
period, similar to such extension for the power spectrum.
The spectrumwill then theoretically comprise of impulses
or Dirac delta functions rather than being continuous.

Estimation of the bispectrum
It has been shown that the bispectrum can be estimated
in the Fourier domain [19]. Strictly speaking, a station-
ary random process does not have a Fourier transform
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because existence conditions are not satisfied. Any sin-
gle realization of the process will have finite power but
infinite energy. A Fourier transform is therefore defined
using the Fourier–Stieltjes integral and Cramer spectral
representations as

x(t) =
∞∫

−∞
ej2π ftdX(f ) (7)

where

E[ dX(f )]= 0 (8)

It can be shown [16] that for real-valued x(t)

mxx
2 (τ ) =

⎧⎨
⎩

∞∫
−∞

ej2π(f τ)E[ dX(f )dX∗(f )] f1 = f2 = f

0 f1 �= f2
(9)

where ∗ represents the complex conjugate operator.
The power spectrum of a random process can thus be
expressed as an expected value in the frequency domain.

Sxx2 (f )df = E[ dX(f )dX∗(f )] (10)

The power over a small interval in the frequency f is the
expected value of a product of Fourier–Stieltjes spectral
representations that are complex conjugates. The power
spectrum is real-valued and does not have any phase
information. The zero value for f1 �= f2 can be subjected to
some scrutiny. If it were not the case, the second moment,
mxx

2 would turn out to be a function of t which is a contra-
diction to the assumption of a stationary random process,
x(t). However, it holds because the infinitesimal band-
width processes, dX(f1) and dX(f2) are complex-valued
and in a phasor representation such as Rice’s representa-
tion [17] they are not “phase-locked” when f1 �= f2. The
phase of the product will be uniformly distributed in the
interval [ 0, 2π) and the expected value of the product will
be zero in this case. When f1 = f2 = f , the product
becomes real-valued and can have a non-zero expected
value. A different but formal proof is given in [22] where
it is shown that dX(f ) is an orthogonal process. The proof
starts by making a single realization of the random pro-
cess periodic outside a finite interval. In the same manner
it can be shown [16] that the bispectrum is a triple product
of such representations.

mxxx
3 (τ1, τ2) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∞∫
−∞

∞∫
−∞

∞∫
−∞

ej2π(f1τ1+f2τ2)E[ dX(f1)dX(f2)

×dX∗(f1 + f2)] f1 + f2 = f3

0 f1 + f2 �= f3

(11)

and by comparing with Equation (6) and the inverse
Fourier relationship,

Sxxx3 (f1, f2)df1df2 = E[ dX(f1)dX(f2)dX∗(f1 + f2)] (12)

The reason for a non-zero expected value when the res-
onance condition, f1 + f2 = f3 is satisfied is similar to
that for the power spectrum as explained above except
that the triple product here can become “phase-locked”
and does not have to be real-valued. The term “phase-
locked” is used with inverted commas because the phase
is not necessarily constant in every realization. The bis-
pectrum is a complex-valued function of two frequency
variables and retains relative phase information between
Fourier components.
A difficulty in the use of the frequency domain for esti-

mation of the power spectrum or the bispectrum of a
random process lies in the fact that differentiability of the
spectral representation cannot be guaranteed. However,
estimates of higher order statistical or spectral parameters
have to be computed numerically for practical purposes.

Sampling of random processes
Sampling of stationary random processes is discussed in
[17] where Rice’s representation for stationary random
processes in terms of in-phase and quadrature compo-
nents is utilized in a theoretically rigorous treatment. A
discussion is also found in [23]. For the sake of simplicity
a descriptive justification is provided here. Assume that
the random process has a finite bandwidth or has been
filtered using a linear phase filter that does not disturb
the higher order spectral parameters of interest and is
thus made band limited. The process can now be sam-
pled at the Nyquist rate of twice the bandwidth without
any loss of information. It is now a discrete-time ran-
dom process whose power spectrum and higher order
spectra of interest are still the same within the rele-
vant band of frequencies. Criteria to prevent aliasing in
higher order frequency domains are not exactly identical
as that for the power spectrum because of the multi-
ple frequency dimensions, and the interested reader is
referred to [24-26]. Here, attention is focussed only in
the regions in higher order frequency space where the
conditions imposed by the Nyquist criterion hold and suf-
fice. Sampling is assumed to be without any aliasing in
the power spectrum or bispectrum in the range of fre-
quencies of interest. Sampling also imposes a limit on the
resolution with which statistical parameters can be esti-
mated in the time domain because the offset variables
cannot be smaller than the sampling interval. Assume fur-
ther that higher order statistical parameters of interest,
such as the third moment, can be estimated to the desired
accuracy using expected values, in practice, averaging
over finite length epochs. Theoretically, these parameters
are defined in the limit of the epoch length approach-
ing infinity. In practice, a long enough epoch length will
ensure that the estimates converge to a desired degree
for processes whose moments converge asymptotically.
Harmonic random processes have ensemble mean and
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autocorrelation functions that are periodic in time and
are a class of cyclostationary random processes [17]. For
cyclostationary processes higher order spectral parame-
ters do not asymptotically converge as the time goes to
infinity. Correlations for such processes are cyclic and do
not decay to zero. Theoretically rigorous treatment of the
calculus of various classes of random processes can be
found in [17]. If a cyclostationary process were divided
into sub-processes using blocks that are multiples of a
period, the random-phase assumption for indidvidual har-
monic components will not hold. This can be addressed
by phase randomization procedures, for example by using
blocks with random shifts. A phase-randomized [17] ver-
sion of the cyclostationary process is a stationary process
with the same moments as that computed for the cyclo-
stationary process over one period. There are pitfalls in
the phase randomization approach pointed out in [27] and
ergodicity can sometimes be destroyed. For estimation of
the bispectrum, it is assumed here that an ensemble of
realizations is available from a number of trials and phase
randomization is not necessary.
Let there be N epochs. Let each epoch be processed

using blocks of M samples, appropriately large such that
estimates in time are averaged over a large number of peri-
ods and the inaccuracy from averaging over a non-integral
number of periods is small. A finite length block of sam-
ples satisfies the conditions for existence of a discrete-time
Fourier transform (DTFT)

X(f )=
M−1∑
k=0

x[kT] e−j2πkfT =
∞∑

k=−∞
x[ kT]�[ k/M] e−j2πkfT

(13)

where the rectangular window in time is given by

�[ k/M]=
{
1 0 ≤ k < M
0 k ≥ M (14)

and T is the sampling interval. The DTFT can be com-
puted at any desired frequency and uniquely between 0
and 1/T. With higher order spectral analysis, it is not
merely a question of reducing spectral leakage from win-
dowing but understanding the effect that leakage will
have on estimates of relevant parameters. Spectral leak-
age and windowing in the estimation of the bispectrum
are discussed in [28,29]. In general, spectral leakage from
statistically independent or random phase components
will have a similar effect on higher order spectra as the
addition of white random noise. It will lower the frac-
tion of power that is phase-coupled. Tapered windows
will introduce a modulation effect and spurious phase-
locked low frequency components unless the mean value
is removed from each block before application of the win-
dow and computation of the discrete Fourier transform

(DFT). Assume that each realization of the discrete-time
random process repeats itself outside the M samples. It
is then converted into a hypothetical cyclostationary pro-
cess which has nearly the same higher order moments of a
given order providedM is sufficiently large. This assump-
tion is different from the harmonizability of deterministic
moment functions [21]. The FFT algorithm to compute
the DFT can now be employed to get samples of the
spectrum as the expected value.

X(p) = X(f )

∣∣∣∣∣k= p
T

=
M−1∑
k=0

x[ p] e−j2πkp (15)

Bispectrum estimate in the Fourier domain
The bispectrum of the process can then be obtained in the
Fourier domain as the expected value of a triple product
of Fourier coefficients using the DTFT or the DFT. It can
be shown [16] that

E[X(f1)X(f2)X∗(f1 + f2)]= MSxxx3 (f1, f2) (16)

Periodicity outside the M-length interval and third
order stationarity are utilized in the simplification. The
bispectrum can be therefore estimated as an average of
a triple product of Fourier coefficients over an ensem-
ble of realizations. It can be seen from Equation (12) that
the bispectral density is actually a triple product divided
by the term df1df2 = ( 1

MT )2 but since this is a constant
for a given sampling interval and block length it may be
ignored when bispectral values are compared and M and
T remain constant. It can also be removed when the bis-
pectrum is normalized with power spectrum values at the
frequency components involved as it will appear both in
the numerator and the denominator.
For the rest of the article, B(f1, f2) is used instead of

Sxxx3 (f1, f2) to refer the the auto-bispectrum of x(t) and
P(f ) is used instead of Sxx2 (f ) to refer to the auto power
spectrum.
The bispectrum of a real-valued process satisfies a num-

ber of symmetry properties in the bi-frequency domain.
Assume that time is expressed in sampling intervals and
frequencies are normalized by the sampling frequency.
The principal domain or non-redundant region [16,30]
of computation of the bispectrum for such a process is
given by the triangular region (shown in Figure 1) in
bi-frequency defined by

f1 ≥ 0; f1 = f2; f1 + f2 ≤ 1 (17)

Bispectrummagnitude and bicoherence
Expressing the bispectrum estimate in polar form

B(f1, f2) = E[ |X(f1)X(f2)X∗(f1+f2)|ejφ(f1)+φ(f2)−φ(f1+f2)]
(18)
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Figure 1 The principal domain of the auto-bispectrum of a sampled signal. Frequencies are normalized by one-half of the sampling frequency.

If the phases, φ(f1),φ(f2),φ(f1+ f2) are independent and
uniform random in the interval [ 0, 2π) the bispectrum
will be zero. If there is perfect phase coupling between the
Fourier components and φ(f1) + φ(f2) − φ(f1 + f2) is zero
for every realization, the bispectrumwill be non-zero. The
bispectrum has been used to study non-linear wave cou-
pling and in this context it has been normalized to assume
values between 0 and 1 similar to coherence in second
order statistics. The squared magnitude of the normalized
bispectrum [31] is referred to as bicoherence by

b2(f1, f2) = |B(f1, f2)|2
P(f1)P(f2)P(f1 + f2)

(19)

Although this bicoherence spectrum measures the
degree of phase coupling at the particular bi-frequency, it
is not guaranteed to be between 0 and 1 when numerically
estimated from a finite number of realizations. An alter-
native normalization, that satisfies this property better is
given in [32] by

b2(f1, f2) = |B(f1, f2)|2
E[ |X(f1)X(f2)|2]E[ |X∗(f1 + f2)|2] (20)

The bicoherence is a measure of the fraction of power
at the component f1 + f2 that is owing to phase-coupled
Fourier components at f1 and f2 as opposed to arising
from random-phase components, or from random addi-
tive broadband noise that has non-zero power spectral
density at these frequencies. If there is a random phase
component at any of the frequencies f1, f2 or f1 + f2
the bicoherence will reduce because at least one of the
denominator terms in Equation (20) will increase. Because

the bicoherence is a ratio it is sensitive to small values of
the denominator that are close to zero. When the denom-
inator is zero, the ratio should actually be 0/0 but can be
a large value subject to precision in the numerical com-
putations. This will rarely occur with broad band random
processes but can occur with harmonic random processes
that have line spectra. One means of avoiding this is to
add white Gaussian random noise of small amplitude to
the input prior to processing. This will have the undesir-
able effect of lowering all bicoherence values from their
true value. If the power of the noise is small compared to
the power of sinusoidal components at the frequencies of
interest its negative bias on the true value of bicoherence
will be small and negligible.

Estimation of bicoherence
The procedure to estimate bicoherence using the
Equation (20) is as follows.

(1) Collect N epochs in an ensemble. Let the epochs be
processed as M sample blocks. The sampling
frequency, fs, should be above twice the highest
frequency of interest. An anti-aliasing filter may be
applied provided it does not disturb phase
relationships in the range of frequencies of interest.
The frequency resolution is set by the length of each
block,M, and given by �f = 1

MT where T = 1
fs is the

sampling interval.
(2) Estimate the signal power and add low amplitude

white Gaussian noise keeping the signal to noise ratio
maintained high.
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(3) For each block, remove the mean value.
(4) Obtain the Fourier coefficients using the FFT.
(5) Form the products of Fourier coefficients required,

X(f1)X(f2)X∗(f1 + f2) and X(f1)X(f2), and retain
X∗(f1 + f2). Do this for every bi-frequency in the
non-redundant region of computation.

(6) Average the intermediate products above over all N
realizations.

(7) Divide as shown in the Equation (20) to obtain an
estimate of the bicoherence.

Statistical reliability of bicoherence estimates
In general, the estimation of higher order spectra becomes
progressively unreliable as the order increases. Increas-
ingly larger numbers of epochs are required to achieve
estimates with similar variance. An asymptotic theory of
these estimates is discussed in [19]. The bias and vari-
ance of any higher order spectrum will actually depend
on the true value and exact expressions are not known for
arbitrary true values [33].
The estimate of the bicoherence from a finite number

of realizations has a bias and variance and it must be
determined whether the value is statistically significantly
different from zero. For a finite value of N, it has been
shown that the bicoherence of a Gaussian process is Chi-
squared distributed [16]. 95% of the bicoherence values
are expected to be below 3

N . Statistics of the higher order
coherence are discussed in [33,34].
The development of higher order spectral analysis above

assumes that the process is ergodic. This is not satisfied by
the EEG signal. Statistics may be stationary over a short
window in time but ergodicity may still not be satisfied.
A framework for using short-time higher order spectral
analysis is developed next.

Non-stationary random processes and
time-varying spectra
Extensions of the theory of sampling to non-stationary
random processes have been made by Gardner [27,35],
Garcia et al. [36] and others. Higher order spectra have
been analyzed in time-varying frameworks using Wigner-
Ville distributions and polynomial phase modelling in
[37-42]. Essentially, Wigner-Ville distributions transform
the second order correlation with respect to the time off-
set variable τ but leave the time variable t′ in Equation
(2) to take the non-stationarity of the signal into account.
A symmetric form x(t′ − τ/2)x(t′ + τ/2) is used in the
definition of the autocorrelation. Higher order forms have
been defined with multiple time offset variables. In order
for ergodicity to hold, it is necessary that the time t′ refer
to the same time instant in every realization of the non-
stationary process. This is only possible if the process
is time-locked to the reference t′ = 0 such that there is
correspondence of this time in every realization of the

process with regard to the non-stationarity. This is not
true of arbitrary non-stationary random processes but it
can be imposed on data acquisition as done in this work.
Phase is meaningless in the Wigner-Ville approach unless
the cross Wigner-Ville distribution is used to access the
phase (see [43]). Better resolution in the time-frequency
plane is possible with theWigner-Ville approach than with
classical short-time Fourier analysis.
Wavelet transforms have also been used in defin-

ing transformed representations for higher order cumu-
lants [44]. It may be noted here that in general the
wavelet transform is quite well suited to capture tran-
sient information in the time-varying scalogram but not
all mother wavelets lend themselves to representations
that involve phase or utilize correlations. A real-valued
mother wavelet is usually defined to be symmetric and
does not have phase. Morlet wavelets (discussed in [45])
are complex-valued and are in fact complex exponentials
at a central frequency modulated by a Gaussian window
in time. Retaining both the real and imaginary parts of
the transform, a phase can be defined as a function of the
central frequency and time. It is in this respect similar
to a short-time Fourier transform (STFT) with a Gaus-
sian window. However, the approach is not well suited
for phase coupling investigations because expectation by
averaging over short time windows is not the same as
ensemble averaging and triads of frequencies that satisfy
resonance conditions for sum or difference interactions
are not as easily identified in scale space as in a linear fre-
quency space. A wavelet transform based bicoherence is
developed in [45]. This work reported that lack of ensem-
ble averaging resulted in spurious coherence. Filtering
and application of thresholds based on global maxima are
used to remove unwanted noise and extract evolutionary
characteristics from the bicoherence.
Another approach to time-varying bispectral analy-

sis of non-stationary EEG signals is presented in [9]. A
non-stationary signal is modelled using a non-Gaussian
autoregressivemodel with time-varying parameters under
the assumption of piece-wise stationarity. This approach
is suitable for anlaysis of different states but not particu-
larly for tracking evolutionary characteristics with time.
A classical STFT approach with a sliding window is

presented here. This methodology is preferable here over
other methods because it provides a direct phase cou-
pling interpretation of the results and permits relatively
easy means of establishing a confidence interval to indi-
cate whether the bicoherence observed is significantly
different from zero or not. Further, the methodology
developed here examines EEG frequency components
in the delta, alpha and beta bands considering narrow
band frequencies of interest such as 4, 8 or 20Hz. The
STFT is an appropriate tool for such analysis unlike
broadband analysis.
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Short time Fourier analysis
The Fourier transform defined as an infinite integral for
continuous signals or an infinite summation (DTFT) for
discrete-time signals is not a useful tool for the analy-
sis of non-stationary signals. Spectral representations of
non-stationary signals change with time. A short-time
Fourier spectrum may be computed using a window in
time centred at a given time instant. As a function of
time, this spectrum provides information about the sig-
nal in a time-varying manner. The squared modulus of the
STFT is known as the spectrogram. The main disadvan-
tage of the STFT is that the frequency representation is
uniformly sampled. The frequency bins of the same size
regardless of whether high frequencies or low frequencies
are being analysed. A logarithmic spacing of frequency,
with the frequency step size proportional to the frequency,
would permit better analysis of most real-world signals.
The time-frequency bins of the STFT are rectangular. The
main advantage is that it can be computed fast using the
FFT algorithm. In order to keep the processing simple and
to facilitate the establishment of values that are signifi-
cantly different from zero, DFT using a sliding window is
adopted as the method of analysis for non-stationary ran-
dom processes here. It is assumed that the statistics of
the process are stationary up to the third order within a
window and change slowly as the window is translated.
The process is also assumed to be ergodic provided a
correspondence between windows is established across
multiple epochs. The correspondence across realizations
can be achieved by using a reference time that is constant
for all epochs with regard to the physical processes and
state changes that are taking place. For evoked EEG this
reference is the time of application of the stimulus. Seg-
ments of each epoch that are equally offset in time from
the reference can be assumed to have similar statistics and
constitute an ensemble of epochs.

Time-varying bicoherence
Assume thatN epochs of a nonstationary random process
are obtained along with a separate signal that provides a
stimulus-lock time reference. Assume that the epochs are
sampled and the sampling interval is T . The sample at
the reference time is indexed 0. The epochs extend from
−M1 to +M2 samples with respect to the reference. The
objective is to examine the bicoherence of the process as
a function of time around the reference. This can provide
useful information about the process prior to, during and
after the stimulus indicating the degree of phase-coupling
between harmonic components in the process. A sliding
window of W = M samples is used and the window is
centred at tw. If the window is short enough compared
to the transient changes in the underlying process, an
assumption of stationarity within the window will hold.
The ensemble of epochs for any given tw can be assumed

ergodic if the process can be assumed to behave similarly
in each epoch at a given offset tw from the stimulus-locked
reference. A time-varying version of the bispectrum can
then be defined using Fourier transform coefficients with
the STFT centred at time tw,

B(f1, f2, tw) = E[X(f1, tw)X(f2, tw)X∗(f1 + f2, tw)] (21)

and a time-varying bicoherence can be defined using

b2(f1, f2, tw) = |B(f1, f2, tw)|2
E[ |X(f1, tw)X(f2, tw)|2]E[ |X∗(f1 + f2, tw)|2]

(22)

Estimation of time-varying bicoherence
The procedure to estimate time-varying bicoherence is as
follows.

(1) Vary the position of the centre of the window from
−M′

1 + W/2 toM′
2 − W/2 skipping S samples

between windows. For each position, consider the
ensemble of windowed segments as a separate
random process.

(2) Estimate the bicoherence for this process.

Bicoherence can be visualized in the bi-frequency plane
as an image. Time varying bicoherence, therefore, will
need to be visualized as a montage of images or as an
animated set of frames. A contour map with contours
starting from the 95% significance level value is useful.
Such a map is shown in Figure 2. For a multi-channel sig-
nal such as an EEG montage, topographic maps that show
the parameter of interest simultaneously at all channels
is often employed. They provide useful information about
relative values and the spatial distribution. Such a map is
shown in Figure 3.
Only one value of bicoherence at each channel can be

visualized in this manner at a time from one plot. Visu-
alization of the time evolution requires the display of a
sequence of two-dimensional plots.

Application of time-varying HOS to evoked EEG response
Higher order spectra, as spectral representations of cumu-
lants or moments, are strictly valid only for ergodic ran-
dom processes. These requirements are not satisfied by
evoked EEG potentials. However, if a sufficiently small
observation window in time is employed, the process can
be assumed to be stationary within the window. The time
of application of the stimulus serves as a reference. Win-
dows at a given offset from this reference can be assumed
to yield consistent averages over an ensemble if the speed
of response does not vary. For spontaneous responses
such as reaction to an auditory or visual stimulus this can
be expected. For learned responses such as memory recall
it may not hold true.
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Figure 2 Bicoherence of visual evoked EEG. Bicoherence at channel O2 plotted over the principal domain in bifrequency space computed using
a 128 point window around a point in time 10ms after the presentation of a flash visual stimulus to the right eye. The sampling frequency is 200Hz.
Only Bicoherence values above the 95% significance level of 0.15 are coloured and the colour bar is shown on the right. It can be noted that
bicoherence is significantly high over many frequency combinations and the values appearing as brown are particularly high around 0.6. This
picture can change with time.

Let xc,W ,tW (t) be an evoked EEG response signal from
channel c over a window W centred on time tW at time
t relative to the stimulus. W is short enough for the
process to be considered stationary. An array of EEG
channels is processed simultaneously. Bicoherence values
are obtained for each channel as a function of time tW .
For the sake of simplicity of notation, bicoherence will be
referred to as B(f1, f2) and with the channel names men-
tioned on the plots or tables rather than included as a
subscript. Time will implicity refer to tW and the subscript
W is omitted as the window does not change except for
sliding across in time.
Assume that each epoch of this process extends peri-

odically outside the window with the same statistics up
to third order. Short time higher order spectra are the
computed using ensemble averaging. IfN epochs are used
in the ensemble average, bicoherence values for white
Gaussian noise are Chi-squared distributed and the 95%
confidence level is 3

N [33,34].
Response to a given stimulus is recorded several times

in different epochs. In practice, the assumption of ergod-
icity over a window will only hold if the response is at
the same speed. This can be expected for most involun-
tary responses such as those to a visual stimulus or an
auditory stimulus from the same individual or a set of indi-
viduals who are similar in this regard. For reponses such
as memory-recall, the time delays can vary considerably
and the stimulus-locked ergodicity assumption may not
hold even for the same individual. For a voluntary move-
ment such as a hand squeeze, the assumption will hold
provided each subject complies with the request to per-
form the movement as instructed. The time of application

of the stimulus is recorded synchronously with the EEG
channels using an auxiliary channel. The length of the
window, MT , should be long enough to get the desired
frequency resolution �f = 1

MT and yet short enough for
stationarity up to order 3 for bispectral analysis to hold
true. This can be a challenge. Exactly how quickly, phase
synchronization and desynchronization occurs between
frequency components in the response of neural pop-
ulations to stimulii is not fully known. Whether such
phenomena last tens of cycles or hundreds of cycles of
the component frequencies and whether they are consis-
tent and correlated with other known markers of such
responses is not yet clearly understood. Experimental
analysis with real EEG data is a means to provide answers
to such questions.
A phase coupling interpretation of bicoherence will

strictly hold only for rhythmic components of the EEG
such as alpha and beta waves. Transient or paroxysmal
events such as bursts will result in high bicoherence if
they occur at nearly the same offset from the stimulus
onset and retain their waveform characteristics across an
ensemble. In this case, they will always fall within some
processing window(s) and they will be phase synchronized
to the envelope signal that defines the burst.

Simulations
In order to demonstrate the usefulness of the time-varying
bicoherence analysis with phase synchronized waves and
bursts in the context of EEG signal processing, three sim-
ulations are performed. In each case, 20 realizations of
a signal are generated with sampling frequency 200Hz
and length 128 samples extending from t = 0 to t =
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Figure 3 Bicoherence mutliple channel map. Bicoherence at (8, 8Hz) at each of 17 EEG electrodes as a spatial distribution on the scalp. A colour
bar is shown on the right and values above 0.15 are statistically significantly above zero bicoherence. Bicoherence is computed using a 128 point
window which extends in time over the blue region as shown on the 1D plot on top and the window is centred 10ms after the presentation of a
flash visual stimulus to the right eye. The time of presentation of the stimulus is indicated by the transition in the 1D plot and this is used as the zero
time reference in each epoch processed.

0.635s. Each realization is a rectangular windowed block
centred at time tw = 0.315s of a random signal in the
time domain. Three types of input signal are simulated:
(a) phase-coupled and random phase sinusoids, (b) alpha
burst with jitter and (c) beta burst with jitter.

Phase-coupled and random phase sinusoids
The input signal comprised of sinusoids at 8, 16, 20, and
40Hz. The sinusoid at 16Hz had a phase which was the
sum of the phases of two sinusoids at 8Hz in each real-
ization. The sinusoids at 8Hz had a random individual
phase in each realization. A similar triad of two compo-
nents at 20 and 40Hz, however, was random phase and
had individual phases that were random in each realiza-
tion and there was no relationship between their three
phases. The amplitude of each sinusoid was the same
and constant, equal to 1. The time domain waveform for
a single realization of this signal is shown in Figure 4a.
Gaussian randomnoise was added to each realization with
10dB SNR. Twenty realizations were generated. A power
spectrum estimate for the signal using an averaged peri-
odogram is shown in Figure 4b. As expected there are

peaks in the power spectrum at 8, 16, 20, and 40Hz, and
the peaks at 8 and 20 Hz are approximately twice the
other because there are two random phase components at
each of these frequencies. The bicoherence for this signal
is shown in Figure 4c. Note the high value of bicoher-
ence at (8Hz, 8Hz) because of the phase-coupled triad of
components (8, 8, and 16Hz). The bicoherence at (20, 20)
is however low because the triad of Fourier components
(20, 20, and 40Hz) is not phase-coupled. How do we
know whether a value is low or high? If 20 realizations
are averaged in the estimate, the 95% signifance level for
bicoherence (see Table 1) is 0.15. This implies that if the
input were white Gaussian noise, for which theoretically
the bicoherence is 0, the distribution of bicoherence [34]
is such that around 95% of the values will be less than 0.15.
Therefore, a value above 0.15 can be considered non-zero
with 95% confidence. Why is the bicoherence not equal
to 1 at a perfectly phase-coupled triad? The bicoherence
is lowered by the presence of random phase components
at each of the frequencies involved arising from additive
random noise. Why would a triad of Fourier components
in a real world signal be phase-coupled? When an input
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(a) (b) 

(c)
Figure 4 Phase-coupled and random phase sinusoids. (a) time domain signal. This corresponds to a window of length 128 samples centred
around 0.315s, (b) power spectrum, (c) bicoherence. Note that the triad (8, 8, 16Hz) is phase-coupled and shows up with high bicoherence around
(8, 8) while the triad (20, 20, 40Hz) is random phase and the bicoherence at (20, 20) is not significantly high. The power spectrum is unable to reveal
this difference.

signal passes through a non-linear system, any quadratic
non-linearity will generate sum and difference frequencies
of input sinusoidal components which will then be phase
coupled. Synchronized firing of pulses can also generate
phase relationships.

Alpha burst with jitter
The input signal comprised of a short burst of an alpha
frequency component at 8Hz. The envelope of the burst

Table 1 Significance levels of bicoherence

Number of epochs b295
10 0.3

20 0.15

100 0.03

The expected value of bicoherence at any bifrequency (f1,f2) is 0 if the harmonic
components are random-phase. This also holds for a Gaussian random process.
However, when a finite number, N, of epochs is used in estimation, bicoherence
values will be non-zero. 95% of the values will lie below b295.

was the convolution of a short, unit-amplitude rectan-
gular pulse of four samples width with itself four times.
The width of the burst was thus 13 samples or 65ms
and its waveform was a coarse approximation to a Gaus-
sian. The width of the burst is only long enough to about
one-half of a cycle of the alpha component and therefore
the signal looks similar to a spike. Jitter was introduced
to this burst and its position varied uniformly randomly
by four samples or 20ms on either side from realization
to realization. The alpha component was synchronized
to the envelope of the burst such that it maintained
its phase relative to the start of the burst. The ampli-
tude of the alpha component was constant, equal to 1.
Again, 20 realizations were generated and Gaussian noise
was added to each realization keeping SNR at −15dB.
A typical time domain waveform of this input signal is
shown in Figure 5a. The power spectrum is shown in
Figure 5b. Note that there is no sharp peak at 8Hz and
the power is spread in the frequency domain as expected
from the confinement in time owing to the burst. The
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(a) (b) 

(c)
Figure 5 Alpha burst with jitter. (a) time domain signal, (b) power spectrum, (c) bicoherence.

power spectrum, however, would be the same regardless
of any synchronization between the burst envelope and
the alpha frequency sinusoid. The bicoherence, shown in
Figure 5c shows significant high values around (8, 8). If
there was no phase relationship between the envelope
and the sinusoid, some spikes would be positive and oth-
ers negative of varying amplitudes, depending on which
part of a cycle of the alpha wave coincides with the burst
envelope, and the bicoherence would tend to zero as the
Fourier phases are random relative to each other. But that
is not the case here. The spread of bicoherence values
around (8,8) is similar to what would arise from leakage
when a window is applied to each realization except that
here the window is much shorter. This simulation exam-
ple shows that information from transient events can be
captured in the time-varying bicoherence. Application of
time-domain windows of short duration as may occur
with wavelet transforms at different scales can have a sig-
nificant impact on the bispectrum. Although a wavelet
transform based approach might appear to be suited to
detection of such transient waveforms, it must be pointed
out that in the presence of jitter, ensemble averaging of
time-domain signal realizations can destroy any signature

of the event. Without such averaging, a wavelet transform
based feature can capture the event in each realization
separately at appropriate scales. However, when the sig-
nal to noise ratio falls very low, as is the case with EEG
signals, it will not be possible to obtain a signature of the
event from any single realization and ensemble averaging
will not help because of the jitter. Bicoherence, however, as
computed here, will be significantly high provided enough
realizations are averaged in the estimate and it is tolerant
of any jitter as long as the event is within the process-
ing window in all the realizations. This is owing to the
translation invariance property of the bispectrum; linear
frequency dependent phase shifts arising from translation
cancel out in the triple product of Fourier coefficients in
Equation 16 or 18.

Beta burst with jitter
The input signal here comprised of a short burst of beta
frequency at 20Hz. The rest of the details are the same as
above for the alpha frequency burst except that the width
of the burst can hold more than one cycle and therefore
the typical time domain waveform shown in Figure 6a
is no longer just a single spike. The power spectrum
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(a) (b) 

(c)
Figure 6 Beta burst with jitter. (a) time domain signal, (b) power spectrum, (c) bicoherence.

shown in Figure 6b is again spread out in the frequency
domain but has its peak around 20Hz. The bicoherence
shown in Figure 6c shows significantly high bicoherence
at (20, 20) and in the region around it, especially towards
lower frequencies. This simulation example shows that
bicoherence can detect transient events that show phase
synchronization characteristics and also reveal differences
between them.
In practice, when time-varying bicoherence is com-

puted, the processing window will slide across into the
event, around it and then away from it. The event is not
tracked with high resolution in bifrequency space with the
processing parameters used above, but that is not always
necessary. The methodology developed here is intended
to use information from one or more such events—wave
or transient—that occur int the EEG signal, and allow
channels to be grouped based on the similarity of their
activity in response to a stimulus.
It is difficult to validate the methodology with real

EEG data because there does not exist a signal model
for evoked response that would predict significant bico-
herence or quadratic coupling at particular bifrequencies

which can then be compared to experimental findings.
Confidence in the usefulness of the methodology can be
improved if the spatial and temporal patterns of bicoher-
ence can be correlated with simultaneously acquired data
from a complementary methodology like functional mag-
netic resonance imaging. Such data are not available for
this work.
In this study, tests are reported that examine whether

the bicoherence evolution patterns can be used to estab-
lish relationships between different regions of the brain.
EEG electrodes from the array are segmented into groups
based on their bicoherence evolution in the evoked
response. Signals from two electrodes that have the same
bicoherence as a function of time following the stimulus
will have the same fraction of power that is quadrati-
cally phase-coupled. Whether this suggests involvement
in the particular response or joint inactivity is not
clearly established by this procedure alone. The seg-
ment maps of electrode groups thus produced is analyzed
together with knowledge about different lobes and cortical
regions involved in the particular response. For the visual
response, the primary visual cortex is in the occipital
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region and other cortical regions and information path-
ways have been identified by neuroscience research [46].
This is a degree of validation of the methodology. Such
segmentation can be done using various bifrequencies.

Application to real data
EEG data were collected using 19 EEG channels. 17 of
these channels are shown in Figure 3. The standard 10–20
system of EEG electrode placement (explained in [47]) was
used. Auxiliary electrodes were placed above and below
one eye and to the right and left of the eyes to capture
eye movements in the horizontal and vertical directions.
These signals were used in rejecting epochs where eye
blinking occurred because the interest is in visual pro-
cessing and the EEG signal is desired to be free of motor
activity related potentials. An LED light flash was used as
the stimulus. A stimulus-locked signal was obtained syn-
chronously with the EEG. This signal provides a sharp
transition at the time of application of the stimulus. It is
used to segment a continuously recorded EEG ensemble
into epochs.
Left hemisphere EEG electrodes were referenced to an

electrode behind the left ear and right electrodes similary
to a reference behind the right ear. These reference elec-
trodes are not expected to vary significantly as a result
of the stimulus. Medial electrodes were referenced to
ground. A 50Hz power supply frequency rejection filter is
provided with the system. Ag–AgCl electrodes with con-
ductive brine Gel were used with the KT88-2400 Contec
24 channel EEG system for data acquisition. Electrode
contact impedances were checked to be low enough using
the LED indicator on the system.
Data were captured with each subject blindfolded in the

left eye for one session and then in the right eye in the
following session. Samples were continuously collected at
200Hz and segmented to yield 512 sample epochs. The
epoching was done offline. Epochs were screened and
selected free of artifacts such as eye blinks. The initial
screening process was software driven and it was followed
by manual examination of the output to finalize the selec-
tion process. All epochs processed were ensured to be free
of noise from eye blinking. Each epoch represented 2.56s
starting 0.56s prior to the application of the stimulus. Data
were collected from five subjects. A variable number of
usable epochs were obtained from each session following
the screening process. More than 20 usable epochs from
each session were available from three out of five subjects,
labelled as E01, E02 and E05. These are processed in the
work reported here.

Processing
Processing decisions must be made with regard to the
type of window, the length of the window and the
time duration over which the window centre will be

moved. Although windows other than rectangular, such as
Hanning, Hamming or Blackman, are routinely employed
in spectral analysis and provide better suppression of leak-
age, they are not preferred in this context. These windows
are essentially multiplying the data samples in time and
will result in a convolution of the true spectrum with the
spectrum of the window. This introduces additional com-
plexity in analysis and interpretation and is less desirable
than some spectral leakage in this context. A rectangular
window is therefore adopted. Each epoch was segmented
to contain data for 2s following a visual stimulus. This is
enough time for the response to a flash visual stimulus
to be registered. Visual evoked potential markers iden-
tified from grand averages lie within about one second
from the stimulus. Further, data are to be clean from eye
blinks and larger time intervals make this more difficult.
Since data are sampled at 200Hz, this is about 400 sam-
ples. If time-varying bispectra are to be computed over
an interval of at least one second following the response,
the upper limit on the window length becomes one-half
this interval or 200 samples. A lower limit is set by the
frequency resolution desired. For a frequency resolution
better than 2Hz, the window length must be greater than
0.5s or 100 samples. A window length of 128 samples
makes it convenient to use an FFT algorithm. If the win-
dow length is increased, the frequency resolution will
be better but if the underlying phenomenon is transient
and short-lived, the trade-off in time resolution will be a
problem. If the window ismade shorter, the frequency res-
olution is too poor for EEG frequencies of interest such
as the alpha at around 8Hz. A rectangular sliding win-
dow of 128 samples was therefore used. This yields a
frequency resolution of 1.5625Hz in the output of each
short-time FFT. In order to move this window with its
centre starting from the zero time reference derived from
the stimulus, each epoch must contain at least 64 sam-
ples before the reference. There can be a small offset
between the time reference and the actual stimulus event.
In order to account for this and to facilitate some process-
ing before the onset of the stimulus additional samples
prior to the zero time reference were included in each
epoch. This number was selected to be 112 such that each
epoch was 512 samples, a multiple of 2. This resulted in
epochs between −0.56 and 2s with respect to the time
reference. For the results presented here, the time dura-
tion prior to the onset of the stimulus is not important.
The centre of the rectangular window is moved from
−0.07 to 1.2s, covering the region of time over which
the response is likely to manifest itself significantly and
allowing for any small negative offset. It may be noted
that even when the window is centred at -0.07 a number
of data samples come from post-stimulus measurements.
Twenty epochs are processed here providing ensemble
averaging. Bicoherence above 0.15 implies that there is
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95% confidence that the true value is not zero as shown in
Table 1.
A large number of plots can be generated using the

methodology and bicoherence can be visualized as a func-
tion of a number of different variables—over the bifre-
quency plane, with time and with channels. In this study,
the alpha wave and its harmonics are of particular inter-
est. The alpha frequency can vary over a few Hertz with
age and from individual to individual. It is typically around
8Hz for an adult. A number of adjacent frequencies were
examined in the tests but 8, 4, and 20Hz and their bifre-
quency combinations are selected for figures in this work.
Only auto-bicoherence is reported in this study. A fre-
quency of 8Hz actually implies the frequency closest to it
when the 128 point DFT is computed. This is the 5-th fre-
quency bin at 7.8125Hz. Similarly 9Hz refers to the closest
DFT bin at 9.375Hz. For the sake of clarity, frequencies are
kept as integers in the discussion here, with the effect of
finite resolution implicit.
Bicoherence is tracked with time for all EEG channels.

It is computed with two sample skips or every 10ms. Bico-
herence patterns are compared across pairs of electrodes.
Time-varying bicoherence plots are shown in Figure 7. A
mean of absolute difference of bicoherence (BMAD) is cal-
culated for each pair of patterns. Each bicoherence lies
between 0 and 1. The BMAD value also lies between 0 and
1. If two bicoherence patterns are exactly identical it will
be zero.
Electrodes are separated into segments based on using

the following procedure:

(1) Group all electrodes, x = 1 . . .K , into one group
labelled i = 1.

(2) Take the first electrode, say x, at level i and examine
BMAD(x, y) for all y > x.

(3) Apply a threshold in the range,
(BMADmax, BMADmin), to each where the range of
threshold is between the maximum and minimum
values.

(4) If BMAD(x, y) > Th, then change the label of y to
i + 1.

(5) Replace i with i + 1 and go to step 2 until all
electrodes are processed.

(6) If the number of segments is greater than 5 terminate
else lower the threshold and proceed to step 1.

(7) Repeat the above procedure until the lowest possible
threshold is reached.

The above segmentation results in greater than 5 seg-
ments in most but not all cases. It imposes the con-
straint that segment separation be achieved using the
same threshold for separating every group from its parent.
Sometimes there is no single threshold that will necessar-
ily produce five ormore segments. The attempt is to divide

the electrodes into a small number of regions that might
have a correspondence with known cortical regions and it
will be difficult to interpret what is happening if there are
too many segments.
Electrode groups are plotted using different colours

based only on the order in which they get separated. All
electrodes in a given segment have the same colour. No
value is attached to the colour and it is not a measure. An
indication of the BMAD between two electrodes within
a segment is provided by drawing a line between the two
and making the thickness of the line logarithmically pro-
portional to the closeness of their BMAD value to zero.
This is done from an arbitrarily chosen (depending on the
first electrode to separate into that segment) electrode for
that segment to all other electrodes in the segment. In
these plots, electrodes are represented by three concen-
tric circles of a given colour corresponding to the segment.
Such maps are shown in Figure 8.

Results
Time-varying bicoherence obtained on the data is ana-
lyzed at different frequencies and over different channels
and as a function of time.

Bicoherence distribution over frequencies
Significant bicoherence was observed over large regions
in the bifrequency plane and this pattern changed with
time. A typical plot of bicoherence over the entire princi-
pal domain in bifrequency space is shown in Figure 2. This
plot corresponds to the EEG channel O2, computed with
a window around time t = 0.10s. This plot is for subject
E01. Significantly high bicoherence (above 0.15) extends
over the several EEG frequency bands. Particularly high
values above 0.5 are observed in the delta band (around
2–4Hz), alpha band (around 8–12Hz), beta band (around
20Hz) and extending to much higher harmonics.
It is quite possible that actual phase-coupling occurs

at discrete frequencies and their harmonics and what is
observed over larger frequency bands is owing to spec-
tral leakage arising from the finite length DFT. If an
attempt were being made to hypothesize or validate a sig-
nal model this would be of consequence. If it is desired
to use the bicoherence values without any assumption
of a parametric signal model for the purpose of analyz-
ing spatial-temporal functioning of the brain it does not
matter whether there is leakage as long as the process-
ing remains consistent across any comparisons. The latter
is the case here. Specific bifrequencies are selected and
the bicoherence fluctuation with time is computed for all
channels.

Bicoherence distribution over channels
Figure 3 shows the distribution of bicoherence at (8, 8)
for E01 computed with a window around time t = 0.10
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(a) (b) 

(c) (d) 
Figure 7 Bicoherence evolutions at (4, 4). Bicoherence evolutions at (4, 4) as functions of time for subject E01: (a) over Fp2 and O1 for a flash
stimulus viewed through the left eye, (b) over Fp2 and O2 and the left eye, (c) over Fp2 and O1 and the right eye, (d) over Fp2 and O2 and the right
eye. There is high correlation in (b) and the BMAD values will be small. In (d), the correlation immediately following the stimulus with a delay of
about 100ms is nearly perfect for the next 400ms.

seconds. These are the same conditions as those in
Figure 2 except that only one bifrequency is selected.
Bicoherence is plotted here for 17 channels and is inter-
polated in between to yield a contour-filled colour plot.
It can be observed that some electrodes such as Fz, Pz
and O2 show very high bicoherence. These plots can be
hard to interpret because high bicoherence values can
emerge and fade away if they were viewed as a sequence
with time, and there is no knowledge of the involve-
ment of different regions of the brain at different times
following a stimulus to validate this. There are also a
number of such plots possible, one for each bifrequency,
and there is no signal model or precise understanding of
the role of quadratic non-linearity in the firing of neural

populations to guide any selection based on bifrequency.
The problem can be simplified to some extent by making
pair-wise channel comparisons, examining how bicoher-
ence evolves with time for two electrodes. It can then be
determined whether there is strong correlation or simi-
larity between the bicoherence variations with time at the
two channels.

Bicoherence evolution with time
Figure 7a through Figure 7d plot bicoherence at (8, 8) for
subject E01, at two electrodes each, as a function of time.
Figure 7a shows the bicoherence at Fp2 and O1 for a flash
stimulus to the left eye. Fp2 is in the frontal region and
close to the eyes whereas O2 (and O1) is close to the
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(a) (b) 

(c) (d) 
Figure 8 Segmentation maps (4, 4). Segmentation of electrodes based on bicoherence at (4, 4): (a) for E01 and the left eye, (b) for E01 and the
right eye, (c) for E02 and the left eye, (d) for E02 and the right eye. In each region, electrodes are linked to a representative electrode using lines
whose thickness is indicative of the inverse of the BMAD value on a logarithmic scale. The thicker the line, the closer the two electrodes are in terms
of their bicoherence fluctuation.

occipital region, known for visual processing activity in
the human brain. Figure 7b shows bicoherence at elec-
trodes Fp2 and O2 following a left stimulus. Figure 7c,d
are similar bicoherence plots for a flash stimulus to the
right eye.
It can be observed that the two bicoherence variations

in Figure 7b (left eye) are very highly correlated. Themean
absolute difference of bicoherence (BMAD) between Fp2
and O2 in this plot is very small. In Figure 7d (right eye)
there is very high correlation between Fp2 and O2 only
during the 100 to 500ms duration following the stimulus.
After that the two functions separate although the trends
are still quite positively correlated as judged visually. The
BMAD taken over the entire 1.27s will be higher than that
for Figure 7b.
Figure 7a,c show that O1 is not highly correlated with

Fp2 for either left or right eye responses and the BMAD

values will be much higher. Based on these plots, Fp2 will
be grouped with O2 for the left eye response even with
a low threshold on BMAD. They will be grouped in the
same segment for right eye response only if the threshold
of separation is large.
In order to tell left from right, markers may need to be

computed over significant intervals in time such as the
100 to 500ms duration. In this study, attention is focussed
on holistic differences over the entire time response from
−0.07 to 1.2s. These are used to segment the electrode
array into groups. Segment maps are examined for com-
parison with existing knowledge about visual signal pro-
cessing in the human brain.

Segment maps
Figures 8, 9 and 10 show segment maps that divide the
electrode array into groups according to the temporal
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(a) (b) 

(c) (d) 
Figure 9 Segmentation maps (8, 8). Segmentation of electrodes based on bicoherence at (8, 8): (a) for E01 and the left eye, (b) for E01 and the
right eye, (c) for E05 and the left eye, (d) for E05 and the right eye.

evolution of bicoherence using the algorithm described
above. The objective is to divide the electrodes into groups
and examine (a) whether they correspond to lobes—
frontal, central, parietal and occipital, and (b) the nature of
the connection between frontal regions close to the sen-
sors (eyes) and the occipital region known to be involved
in visual processing.
Figure 8a through Figure 8d use bicoherence at (4, 4)

and show maps for subjects E01 and E02 viewing a flash
stimulus through the left eye and the right eye. All the
figures indicate a relationship between the frontal and
occipital regions as being grouped in the same segment.
Figure 8c groups parietal lobes and a temporal lobe in
the same segment. Figure 8d groups parietal and tem-
poral lobes also with the frontal and occipital but leaves
the central electrodes separate. This requires further
investigation.
Figure 9a through Figure 9d show a set of segment

maps for subjects E01 and E05 viewing a flash stimulus

through the left and right eyes, using bicoherence at (8, 8).
Figure 9a,d show frontal and occipital electrodes in the
same segment but Figure 9b,c do not. It is likely that
because the frequencies 8 and 16Hz, are also involved
in motor activity, the latter is influencing bicoherence
evolution phenomena. In Figure 9b,c, the BMAD val-
ues between Fp1, Fp2 and O1, O2 are relatively small
although they appear in different segments. In Figure 9b,
BMAD(Fp2,O2) is 0.060, BMAD(Fp1,O1) is 0.028 and
BMAD(O1,O2) is 0.099. In Figure 9c BMAD(Fp2,O2) is
0.110, BMAD(Fp1,O1) is 0.064, BMAD(O1,O2) is 0.127.
Figure 10a through Figure 10d show similar segment

maps for subects E01 and E05 using bicoherence at the
much higher frequencies of (20, 20). In Figure 10a,b,d
frontal and occipital electrodes are connected. FZ is
also included in the same segment. In Figure 10c, they
form two separate segments. This is partly owing to
the segmentation algorithm. Electrodes separate from
parent groups based on one threshold distance from a
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(a) (b) 

(c) (d) 
Figure 10 Segmentation maps (20, 20). Segmentation of electrodes based on bicoherence at (20, 20): (a) for E01 and the left eye, (b) for E01 and
the right eye, (c) for E05 and the left eye, (d) for E05 and the right eye.

representative electrode and the procedure is repeated
until a suitable threshold is found to create at least five seg-
ments if this is possible. The maps are only a rough guide.
More information is obtained by closer examination of
bicoherence as a function of time at electrodes. This is
done for the map of Figure 10c in Figure 11a through
Figure 11d.
At the beta band frequency of 20Hz and its second

harmonic, frontal electrodes have bicoherence evolu-
tion highly correlated with central electrodes as shown
in Figure 11a for F4 and C4. BMAD(F4,C4) is 0.003.
Although they appear in different segments, F4 also is
highly correlated with Fp2 as shown in Figure 11b and
Fp2 is only separated because the segmentation algorithm
attempts to find at least five segments if possible with a
single threshold. BMAD(F4,Fp2) is 0.003. Figure 11c,d
shows a comparison between bicoherence evolutions at F4
and O2 and F4 and O1, respectively. Some phenomena do
not last the entire time duration used in the computation

of the BMAD. F4 is highly correlated with O2 for 700 mil-
liseconds following the stimulus as shown in Figure 11c.
BMAD(F4,O2) is 0.043. The BMAD between them is
primarily dependent on the duration from 0.7 to 1.2s.
Bicoherence at O1 on the other hand is rarely above the
95% statistically siginificant level of 0.15 and is not highly
correlated with F4. BMAD(F4,O1) is 0.178.

Relationship to existing knowledge
Dynamics of visual recognition in the human brain are
discussed in [46] which gives a recent review of the area.
A great deal is known about the visual cortex from studies
on humans and primates. The occipital region is mapped
in this study by electrodes O1 and O2 and the visual
cortex by O2. As explained in [46] (refer Figure 1 in [46]),
the cortex is further divided into regions labelled as V1,
V2, V3 and V4. More is known about V1, the primary
visual cortex, than any other region. Information from the
right and left eye is combined in V1. There are two main
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(a) (b) 

(c) (d) 
Figure 11 Bicoherence evolutions at (20, 20). Bicoherence evolutions at (20, 20) as functions of time for subject E05 for a flash visual stimulus
viewed through the left eye: (a) over F4 and C4, (b) over F4 and Fp2, (c) over F4 and O2 and (d) over F4 and O1. There is near perfect correlation in
(a) and (b)—almost eerie for signals that are fluctuating so much. There is near perfect correlation in (c) for about 700ms following the stimulus.
The correlation is weak in (d), vastly different from the others. It serves to provide confidence that the near perfect correlations are not artefacts of
data collection or processing. O1 and O2 are adjacent channels; F4 is not near either of them.

pathways from V1 leading to the frontal cortex and on to
the hippocampus and surrounding structures. There are
the dorsal pathway and the ventral pathway. The dorsal
pathway includes the medial temporal area (MT) and
the medial superior temporal area (MST) that are known
to be involved in processing spatial information—object
motion, position and depth perception from stereo vision.
The ventral pathway includes the inferior temporal cortex
(ITC) which is involved in discriminating colours and
shapes. The EEG electrode array used in this study does
not have the spatial resolution to differentiate all these
regions—nor is it within the domain of the simple flash
visual stimulus experimentation. This methodology is not

intended to produce the same level of detail in under-
standing as neuro-anatomical and neuro-physiological
studies. However, it does have the advantage of working
on scalp EEG and does not involve the use of intra-cranial
electrodes or invasive surgical procedures on animals.
Nevertheless, it is encouraging that segmentation of
electrodes using this methodology establishes connec-
tions between the frontal and occipital regions and also
indicates involvement of other areas in the parietal lobe.
The experiments here are intended to be preliminary

validation of the use of temporal evolution of bicoherence
in better understanding the functioning of the human
brain using scalp EEG. The methodology does have the
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advantage that different EEG frequency bands can be ana-
lyzed using the same set of experimentally recorded data.

Conclusions
In this work, a methodology for time-varying bispec-
tral analysis of a multi-channel signal during a stimulus
locked transient response is developed. Theoretical foun-
dations of higher order spectral analysis are revisited in
this context to examine its validity. It is applied to scalp
EEG data. Time-varying bispectral analysis provides
information additional to what can be obtained from
grand averages (first order) or power spectral (second
order) techniques. It is observed that some EEG channels
exhibit time-varying bicoherence in response to a stim-
ulus with remarkable correlation over time intervals and
even similarity in magnitude lasting hundreds of millisec-
onds. A new methodology based on the mean absolute
difference of bicoherence over such intervals is developed
and applied to segment channels into sets that are more
similar in their response to the stimulus than others. It
is shown that channel segmentation using time-varying
bicoherence of the EEG response evoked by visual stimulii
is consistent with knowledge about involvement of the
occipital region and frontal regions in visual processing.
Future work possible includes validation of the methodol-
ogy using other sensory stimulii such as auditory, the use
of higher spatial resolution EEG, analysis of test data from
subjects with known visual system impairments such as
partial blindness, prosopagnosia (inability to recognize
faces), achromatopsia (inability to perceive colours) and
comparison of the markers obtained via this methodology
with results obtained using functional magnetic reso-
nance imaging. If the methodology can be developed for
practical diagnostic and monitoring applications, it is a
much less invasive and less expensive option than many
others because it is based on scalp EEG recordings.
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