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Abstract

In this article, we consider the problem of tracking a point target moving against a background of sky and clouds.
The proposed solution consists of three stages: the first stage transforms the hyperspectral cubes into a two-
dimensional (2D) temporal sequence using known point target detection acquisition methods; the second stage
involves the temporal separation of the 2D sequence into sub-sequences and the usage of a variance filter (VF) to
detect the presence of targets using the temporal profile of each pixel in its group, while suppressing clutter-
specific influences. This stage creates a new sequence containing a target with a seemingly faster velocity; the
third stage applies the Dynamic Programming Algorithm (DPA) that tracks moving targets with low SNR at around
pixel velocity. The system is tested on both synthetic and real data.
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Introduction
In the intervening years, interest in hyperspectral sen-
sing has increased dramatically, as evidenced by
advances in sensing technology and planning for future
hyperspectral missions, increased availability of hyper-
spectral data from airborne and space-based platforms,
and development of methods for analyzing data and
new applications [1].
This article addresses the problem of tracking a dim

moving point target from a sequence of hyperspectral
cubes. The resulting tracking algorithm will be applic-
able to many staring technologies such as those used in
space surveillance and missile tracking applications. In
these applications, the images consist of targets moving
at sub-pixel velocities on a background consisting of
evolving clutter and noise. The demand for a low false
alarm rate on the one hand, and a high probability of
detection on the other makes the tracking a challenging
task. We posit that the use of hyperspectral images will
be superior to current technologies using broadband IR
images due to the ability of the hyperspectral image
technique to simultaneously exploit two target-specific
properties: the spectral target characteristics and the
time-dependent target behavior.

The goal of this article is to describe a unique system
for tracking dim point targets moving at sub-pixel velo-
cities in a sequence of hyperspectral cubes or, simply
put, in a hyperspectral movie. Our system uses algo-
rithms from two different areas, target detection in
hyperspectral imagery [1-9] and target tracking in IR
sequences [10-19]. Numerous works have addressed
each of these problems separately, but to the best of our
knowledge, to date no attempts have been made to
combine the two fields.
We chose the most intuitive approach to tackle the

problem, namely, divide and conquer; we separate the
problem into three sub-problems and sequentially solve
each one separately. Thus, we first transform each
hyperspectral cube into a two-dimensional (2D) image
using a hyperspectral target detection method. The next
step involves a temporal separation of the movie
(sequence of images) into sub-movies and the usage of a
variance filter (VF) [10-13] algorithm. The filter detects
the presence of targets from the temporal profile of
each pixel, while suppressing clutter-specific influences.
Finally, a track-before-detect (TBD) approach is imple-
mented by a dynamic programming algorithm (DPA), to
perform target detection in the time domain [14-17,19].
Performance metrics are defined for each step and are
used in the analysis and optimization.
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To evaluate the complete system, we need to obtain a
hyperspectral movie. Since data of this kind are not yet
available to us, an algorithm was developed for the creation
of a hyperspectral movie, based on a real-world IR
sequence and real-world signatures, including an implanted
synthetic moving target, given by Varsano et al. [13].

1 System Architecture
The system performs target detection and tracking in
three steps: a match target spectral filter, a sub-pixel
velocity match filter (MF), and a TBD filter. This third
step proves to be an effective algorithm for the tracking
of moving targets with low signal-to-noise ratios (SNRs).
The SNR is defined as:

SNR = MaxT/σ (1)

where MaxT is the target’s maximum peak amplitude
and s is the standard deviation.
The general system architecture is given in Figure 1.
Parts of this study have been published previously by

our group: we will, therefore, refer extensively to those
publications. Algorithms for target detection in single
hyperspectral cubes are described in Raviv and Rotman
[20], the details of the VF and of the generation of the
hyperspectral movie are presented in Varsano et al. [13],
and the DPA is described in Nichtern and Rotman [14].
In this article, we present an overall integration of the
system; in particular, the article analyzes the integration

of the VF and the DPA and provides an overall evalua-
tion of the system.

Step 1: Transformation of the hyperspectral cube into a
2D image - the hyperspectral reduction algorithm
Three different reduction tests - spectral average, scalar
product, and MF - were applied on each temporal
hypercube individually. Each of these methods is charac-
terized by a mathematical operator, which is calculated
on each pixel. In every frame, a map of pixel scores is
obtained (the result of the mathematical operator) and
used to create the movie.
Test 1: spectral average
This test involves implementation of a simple spectral
average of each pixel by:

E (x) =
1
2

∑
n

xn (2)

where x denotes the pixel’s spectrum, xn the spectral
value of the nth band, and N the number of spectral
bands.
Test 2: scalar product
Test 2 is a simple scalar product of the pixel’s spectrum
(after mean background subtraction) with the known
target spectral signature:

Scalar product = tT · (x − m) (3)

Figure 1 System architecture.
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where x is the pixel being examined, t is the known
target signature, and m is the background estimation
based on neighboring pixels.
Test 3: MF
In every frame, a map of pixel scores is obtained (the
result of the mathematical operator) and used to create
the movie. The article assumes the linear mixture model
(LMM) of the background and a known target signature.
The MF detector is given as follows:

MF = tTφ−1(x − m) (4)

where x is the pixel being examined, t is the known
target signature, and m and F are the background and
covariance matrix estimations, respectively.
The background subtraction procedure is done prior

to applying the filter. The background estimation is per-
formed on the closest neighbors that definitely do not
contain the target; for example, if the target is known to
be at most two pixels wide, the background is estimated
from the 16 surrounding neighbors, as illustrated in
Figure 2.
The MF test was run with different target factors

(intensities). The target factor (intensity) can be con-
trolled manually by the hyperspectral data creation algo-
rithm, as an external parameter to the three tests
mentioned previously. A higher target factor value, i.e.,
stronger intensity of the implanted target, poses less dif-
ficulty to the detection and tracking algorithm. Since
the target implantation model is linear, it is directly pro-
portional to the target factor (intensity of implantation).
Overall, the input to the first stage is a hyperspectral

cube; the output of the first stage is a 2D image
obtained from the hypercube. Details of the signal pro-
cessing algorithm using a hyperspectral MF can be
found in Raviv et al. [20].

Step 2. Temporal separation of the 2D sequence: the
temporal processing algorithm
Buffering a number of 2D images acquired in step one is
needed to obtain a sequence that is sufficiently long to
perform temporal processing with the VF [13]. The
input for the temporal processing algorithm is the

temporal profile of a pixel. Figure 3 defines our termi-
nology at this stage.
The temporal processing algorithm starts with a tem-

poral separation of each temporal profile into sections;
each section should roughly cover the time it takes for
the target to enter and leave the pixel. By compressing
each section into a single picture, the original amount
of sequence images will now be condensed into a smal-
ler sequence of images with the target moving at pixel
velocities (at least one pixel per frame). For example,
the profile in Figure 4 (top) is an input to the temporal
separation which increases the velocity of the target to
at least one pixel per frame, as shown in Figure 4 (bot-
tom). The number of sub-profiles is defined by:

j =
N − G0

G − G0
(5)

where N is the number of profile frames, G0 is the
overlap between each of the sub-profiles, and G is the
length of the sub-profile.
Following temporal separation, the temporal proces-

sing algorithm is applied. The temporal processing algo-
rithm is based on a comparison of the sub-profile
overall linear background estimation (defined as DC) to
the single highest fluctuation within the sub-profile. The
overall linear background estimation (DC) fit, is done
using a wider temporal window of samples to achieve
best background estimation. The background estimation
is performed by calculating a linear fit by means of least
squares estimation (LSE) [21]. The fluctuation or short-
term variance estimation is performed on a short tem-
poral window of samples (susceptible to temporal varia-
tions, i.e., the target entering/leaving pixel), after
removing the estimated baseline background. The
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Figure 2 Pixels used for background estimation for a target of
2 × 2 pixels. Figure 3 Terminology used in Step 2.
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algorithm is presented in the following two steps,
although, in practice, the processing can be performed
in real time using a finite size buffer.
Background estimation using a linear fit model
The background can be regarded as the DC level of
the temporal profile: the DC level is constant for
noise-dominated temporal profiles but varies with time
when clutter is present. The DC is estimated in a pie-
cewise fashion using a long-term sliding window and
performing the estimation on each set of samples sepa-
rately. The number of samples for each long-term win-
dow is denoted by M. The following linear model is
used for estimating the DC; for the sake of simplicity,
the description of the estimation is applied to a single
window:

y = ax + b + n; x = [1, 2, . . .M]T (6)

where n is the noise, a and b are the coefficients that
must be estimated, M is the number of samples for each
long-term window, and y is the DC signal. The goal of
this step is to estimate the long-term DC baseline using
a least-squares fit to the linear model represented by a

coefficients vector [âb̂]T .

Equation 6 can be rewritten as follows:

y = Xβ + n (7)

where β =
[
b
a

]
and X =

⎡
⎢⎢⎢⎢⎣

1 1
1
...

1

2
...

M

⎤
⎥⎥⎥⎥⎦

Using LSE, the following equation is obtained for β̂ :

β = (XTX)−1XTy; β̂ =
[
b̂
â

]
(8)

The estimated DC of a single window thus becomes:

ŷ = Xβ̂ (9)

The estimated DC of the complete signal is obtained
after performing the above calculations for each window
separately. Figure 5 shows two synthetic temporal pro-
files (one with the target implanted and the other with
identical noise but without a target) and their estimated
DC signals.
The estimated DC is based on the entire temporal

profile. The sub-profile DC estimation is chosen by the
relative location within complete temporal pixel profile.
Figure 6 shows the DC estimation on a signal with a
target and the same signal without a target from the
point of view of the sub-profiles separations.
Short-term variance estimation
The short-term variance calculation is performed after
subtracting the estimated long-term DC from each sub-
profile. The complete DC signal obtained in the pre-
vious step is denoted by DCj, where j denotes the index
of sub-profile, and the number of sub-profiles is defined
in Equation 5. DCj is subtracted from the temporal sub-
profile Pj:

P̂ = Pj − DCj (10)

The variance estimation is calculated by using a slid-
ing short-term window and performing variance
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Figure 4 Profile with target before (top) and after (bottom) temporal separation.
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estimation on each set of samples separately. L denotes
the number of samples in each short-term window. The
short-term variance of each window is estimated as fol-
lows:

σ 2 =
1
L

L∑
i=1

P̂j(i)
2 (11)

For a window size of L samples, an overlap of Lo sam-
ples, and a sub-temporal profile of G samples, the num-
ber of windows W is given by:

W =
[
G − L0
L − L0

+ 1
]

(12)

Finally, the maximum variance of a given temporal
profile is given by:

σ 2
max = max1≤i≤W

{
σ 2
i

}
(13)

where si2 is the estimated variance of the ith window.
An example of the variance response to the presence

of a target is shown in Figure 7. It is assumed that the

presence of a target will lead to an increase in the
short-term variance. The DC subtraction has a clutter
suppression effect, since the long-term DC tracks the
influence of clutter on the temporal profile. The graphs
of sub-profiles 4 and 5 were scaled to the range of the
pixel’s values in the profile. The scaling was done with
the aim of showing the range of the variance estimation
values.
Finally, a likelihood-ratio-based metric is used to eval-

uate the final score of each sub-temporal profile. The
likelihood ratio in this case is given by:

H0 : P̂ = n

H1 : P̂ = t + n

LRT =
σ̂ 2
1

σ̂ 2
0

(14)

where P̂ is the zero-mean temporal profile, n is noise,

and t is the target signal. σ̂ 2
1 is the estimated variance

when assuming a target is present; σ̂ 2
0 is the variance

estimated assuming the absence of a target.
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Figure 5 DC estimation on a signal with a target and the same signal without a target.
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In our model σ̂ 2
1 , σ̂ 2

0 variances are estimated as fol-

lows:

σ̂ 2
1 = σ̂ 2

max

σ̂ 2
0 =

1
K

K∑
i=1

σ̃ 2
i

(15)

where σ̃ 2
i for 1 ≤ i ≤ K denotes the K minimal var-

iance values of each temporal profile. The value of K is

chosen to be smaller than W, so as not to include values
that might be caused by the presence of a target.
In this case, the final score of each sub-profile is given

by:

Scorej =
σ̂ 2
max

1
K

∑K
i=1 σ̃ 2

i

(16)

The performance of the algorithm depends on a wise
choice of parameters, i.e., the sizes of the short-term

Figure 7 Example of variance estimation on a synthetic signal.
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and long-term windows and the length of the sub-pro-
file. The long-term window size serves as the baseline
for DC estimation. Since the pixel might be affected by
clutter, the baseline DC is not constant. It is assumed
that the presence of clutter will cause a monotonic rise
or fall pattern in the values of the pixel’s temporal pro-
file at least during the duration of the long-term win-
dow. Thus, the long-term window should be long
enough to facilitate accurate estimation of background,
on the one hand, and short enough to enable the influ-
ence of clutter to be tracked, on the other hand. Thus,
the long-term window should be minimally longer than
the target base width to avoid suppressing it [2]. The
short-term window is used for variance estimation. It
should be matched (or reduced) to the target width
(which depends on the target velocity). If the short-term
window is significantly longer than the target width, the
change in variance caused by the target will be reduced.
The sub-profile length matches a pixel target velocity; it
should be matched to the target temporal width. The
importance of these two window sizes and the overall
window parameters will be discussed in the experimen-
tal section of the article. We note that the temporal
algorithm presented here does not assume a particular
target shape and width. It does, however, assume a max-
imum temporal size of the target, (affecting the target
temporal profile), and a positive adding of the target
intensity to the background.
To determine the optimal set of window sizes on a

real data sequence, the algorithm was run with various
sets of parameters.

Dynamic Programming Algorithm
The algorithm is implemented using the following
assumptions [14]:

1. The target size is one pixel or less.
2. Only one target exists in each spatial block.
3. The target may move in any possible direction.
4. Target velocity is within 0-2 pixels per frame
(ppf).
5. Images are too noisy to allow detection of a
threshold on a single frame.
6. Jitter of up to 0.5 ppf is allowed only in the hori-
zontal and vertical directions and is uniformly
distributed.

Since the target velocity is within the range of 0-2 ppf
with a possible jitter of 0.5 ppf, the pixel can move up
to 2.5 ppf in the horizontal and vertical directions;
hence, a valid area from which a pixel might origin
from in the previous frame is a 7 × 7 pixel area (matrix).
Such a search area can be resized according to different
velocity ranges and jitter values. The search area will

define the probability matrices that contain the probabil-
ities of pixels in the previous frames being the origin of
the pixel in the current frame. To take into account
unreasonable changes of direction, penalty matrices are
introduced with the aim of building probability matrices
for the different possible directions of movement. These
matrices give high probabilities to pixels in the esti-
mated direction and decreasing probabilities (punish-
ment) as the direction varies from the estimated
direction.

2 System Evaluation
Evaluation of the temporal algorithm on synthetic data
Creation of synthetic IR frames
To evaluate the performance of the spatial and temporal
tracking algorithms, synthetic temporal profiles that
simulate different types of clutter and background beha-
vior were created. A target signal was implanted into
these background signals to simulate a target traversing
both clutter and noise-dominated scenes. On the basis
of the study of Silverman et al. [12] showing that the
temporal noise is closely matched to white Gaussian
noise, we used white Gaussian noise at various SNRs to
test the temporal algorithm.
Figure 8 shows the different types of signal used to

test the algorithm. The type 1 signal shown in Figure 8
simulated relatively fast and small clutter formation pas-
sing through a pixel. Signals of types 2, 3, and 4 simu-
lated, respectively, slowly entering clutter, symmetrical
slowly exiting clutter, and a noise-dominated scene in
which the base timeline is constant. The type 5 signal
served as reference signal, i.e., the best-case scenario,
which comprises a constant zero-mean base line.
Target temporal profiles were characterized by a rapid

rise and fall pattern. This behavior may be modeled by a
half sine or triangular shape, as shown in Figure 9.
The base width of the target corresponds to the target

velocity. The simulations showed that there were no sig-
nificant performance differences between the sine and
the triangular shaped targets.
Figure 10 shows the various background models with

the sine shape implanted at an SNR of 4.
Examination of the temporal algorithm on synthetic data
This section demonstrates the algorithm’s operation on
the synthetic data described in the previous section. The
following parameters affect the algorithm’s performance:

1. The background type.
2. The SNR, which is a function of the noise var-
iance and the target’s amplitude (factor). SNR is a
function of MaxT - the target’s peak amplitude.
3. Parameters of the windowing procedure:

a. the window size to estimate the background
baseline DC: the grouping spatial window size to
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convert sub-pixel target velocity to the pixel tar-
get velocity in the frame (as an input to the
DPA)
b. the size of the short-term variance windows
for each sample and for each grouping
c. the step size of each window (overlapping).

The dependence of the performance of the algorithm
on these factors is described below.

Background type The factor most influenced by the
background type is the DC estimation capability of the
algorithm. It is expected that DC estimation will be
easiest for signals having a constant DC level (signals of
types 4 and 5) and for signals having a slowly changing
DC (signals of types 2 and 3), since the linear regression
is capable of estimating parameters of the linear model.
Type 1 signals are the most problematic, since the DC
of such signals does not have an overall fit with a linear

model, but depends on piecewise matching of the DC to
windows sizes, as explained below.
Figures 11, 12, 13, 14, 15, 16, 17, 18, 19, and 20 illus-

trate the algorithm’s operation on the various signal
types, with and without an implemented target. In each
case, the DC signal and the estimated variance values
(calculated after subtracting the estimated DC from the
signal) are also plotted. The simulations were run for a
DC window of 20 samples, a DC overlap of 50%, a sub-
temporal profile of 15 samples, an overlap between sub-
profiles of five samples, and an SNR of 4. The target
width was 10 samples.
As can been seen in Figure 11, the increase in the var-

iance of sub-profiles 2, 8, and 9 may be attributed to the
imprecise DC estimation of the background. This case
simulates a cloud entering and exiting. Nevertheless, the
variance score of the target sub-profiles 5 and 6 is still

Figure 8 Synthetic background signals.
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much higher than that of sub-profiles 2, 8, and 9. The
variance of the other sub-profiles 1, 3, 4, and 7 is close
to zero.
The DC estimation for signals of types 2 and 3 is pre-

cise, since the signal fits a linear model. The variance

increases significantly when the target passes through
the pixel and is close to zero at other times.
Figures 14 and 15 shows a similar behavior for signals

of different DC levels. As expected, the variance of each
of signal (types 4 and 5) is the same.

Figure 11 Example of the temporal algorithm operation on the type 1 signal with a target.
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Figure 12 Example of the temporal algorithm operation on a type 2 signal with a target.

Figure 13 Example of the temporal algorithm operation on a type 3 signal with a target.
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Figures 16, 17, 18, 19, and 20 show the results of tem-
poral processing (variance estimation) for the different
signal types, for the cases where no target is present.
Not all the sub-profiles are shown, since the values of
the exhibited variance values are around zero.
From Figure 16 it can be seen that, by analogy with

Figure 11, the variance increases for sub-profiles where
the cloud enters and exits into/from frame. Such cases,
i.e., with no target, may cause false alarms. Figures 17,
18, 19, and 20 show that the temporal processing score
is close to zero for such signals in the absence of a
target.
A simple means of performance evaluation is given by

the ratio of the score obtained from the synthetic signal
that contains a target to the same signal without a tar-
get, i.e., the target/noise (T/N) ratio. Table 1 shows the
T/N ratio for the different signal types obtained by aver-
aging 500 runs. It is important to note that the T/N
ratio is not an effective metric to evaluate the algorithm,
as will be shown later.
As expected, the performance of the type 1 signal is

the worst among the different signals. Signals of types
2-5 all have similar good performance. If we compare
our sub-temporal processing algorithm with a temporal
processing algorithm as described in [13], it can be
clearly seen (Table 1, 2nd column) that the performance

improves by a factor of at least 2 for signals of types 2-
5, but not for the type 1 signal, for which the perfor-
mance improvement is insignificant.
Signal-to-noise ratio As in many other applications, the
SNR has a significant influence on the performance of
the temporal algorithm. As the SNR increases, the algo-
rithm’s performance is expected to improve, since both
the DC and variance estimation will be more accurate,
as is shown in Figure 21.
The algorithm responds similarly for signals of types

2-5, in agreement with expectations, i.e., the perfor-
mance improves as the SNR increases. The performance
of the algorithm for the type 1 signal behaves differently;
first it increases with the SNR, but at a slower rate than
for signals of types 2-5, and it then decreases as a result
of an inaccurate DC estimation, as will be detailed later.
Since the DC of this signal does not fit a linear model
and the estimation must therefore be performed in pie-
cewise fashion, the size and the position of the windows
used to perform the estimation act as a limiting factor
to the performance.
Window size Both the window size for the baseline DC
estimation and the window size for the short-term var-
iance for the sub-profile have a marked impact on the
performance of the algorithm. It is expected that large
window sizes for baseline DC estimation would improve

Figure 14 Example of the temporal algorithm operation on a type 4 signal with a target.
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the DC estimation in cases where the background
changes monotonically (as for signals of types 2-4). Too
large a DC estimation window size might, in some
cases, lead to inaccurate tracking of the clutter form and
cause high false alarm rates (e.g., as for type 1 signals).
Thus, for background profiles, the optimal window size
is determined by the background type, i.e., for a noise-
dominated background or backgrounds containing
monotonically changing clutter, larger window sizes are
preferred; for backgrounds characterized by rapidly
changing clutter, shorter windows are preferred. For tar-
get temporal profiles, the larger the DC window, the
higher the profile score, since the presence of the target
peak will have a smaller influence on the DC estimation.
Obviously, an estimated DC that tracks the target form

is highly undesirable since it leads to target suppression.
Thus, in terms of the overall algorithm performance, the
optimal DC window is the one that is small enough to
closely track background changes but is large enough
not to track the target peak.
The sub-temporal profile length should be matched to

the target sub-pixel velocity, which is expressed as the
base width of the peak of the target profile and the sub-
pixel velocity, although there is no acute need for an
exact match. The short-term variance window size for
the sub-profile should be matched to the target rise
time, although once again there is no acute need for an
exact match. A sub-profile length that is larger than the
target width will disable the ability to track/detect a tar-
get with a sub-pixel velocity. Alternatively, a sub-profile

Figure 15 Example of the temporal algorithm operation on a type 5 signal with a target.
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Figure 16 Example of the temporal algorithm operation on a type 1 signal without a target.

Figure 17 Example of the temporal algorithm operation on a type 2 signal without a target.
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length that is smaller than the target width will allow
too few samples for the sub-profile.
A short time variance window that is larger than the tar-

get rise time will result in a lower score for the target pro-
file, since the variance calculated on each window is
normalized by the window’s length. Thus, for the target
profile, the optimal variance window size is expected to be
less than or equal to the sub-profile length. In fact, the
shorter the window, the higher the score of the target pro-
file. On the other hand, a short variance window is more
sensitive to random noise spikes in a temporal profile
dominated by noise. Therefore, the optimal variance win-
dow size for noise-dominated profiles should be as large
as possible so as to diminish the effect of the noise spikes.
The optimal variance window for the overall algorithm’s
performance is the one offering the best compromise
between the need to enhance the target profile score (i.e.,
as short as possible) and the need to suppress the short-
term noise fluctuations (i.e., as long as possible).
Another factor which will impact performance is the

overlap window between the sub-profiles. The overlap
window should allow for the compensation of low sub-
pixel velocity that derives from a small sub-profile

length. The overlap window results in the creation of
more sub-profiles, as defined in Equation 5, since the
greater number of sub-profiles aids to achieve a more
accurate tracking estimation.

Evaluation of the temporal processing algorithm on real
data
Real IR sequences
Real-world IR image sequences taken from Silverman et
al. [22] were used for evaluating the temporal algorithm.
The movies comprised 95 or 100 12-bit IR frames. The
sequences contain raw data of unresolved targets flying
from Boston Logan Airport in Massachusetts, USA. In
the available dataset, there are five scenes containing
various types of clutter and sky as well as various targets
moving at different velocities.
Figure 22 shows a single frame (frame 50) of each of

the IR sequences examined in this study. Table 2 sum-
marizes the number and the nature of the targets for
each IR sequence and the background type of scene.
Evaluation metrics
Silverman et al. [22] suggested several performance
metrics for the evaluation of temporal algorithms. A

Figure 18 Example of the temporal algorithm operation on a type 3 signal without a target.

Figure 19 Example of the temporal algorithm operation on a type 4 signal without a target.
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derived version of the metric was defined. Each frame in
the sequence was divided into H × N blocks (30 × 30
were used), and the algorithm was run over nine blocks,
i.e., the target block (TB) and its eight adjacent non-tar-
get blocks (NTB). The SNRs of the TB and its eight
adjacent NTBs were calculated. Thereafter, the algo-
rithm score was calculated on the basis of the resulting
SNRs.
The block SNR is given as:

Block SNR(i, j) =
E[vi,j ∈ M] − E[vi,j /∈ M]

σvi,j
(17)

where vi, j is the set of pixels belonging to the (i, j)th

block, M is a set containing the five pixels with the
highest gray level in that block, s is the standard devia-
tion of the block pixels. E[vi, j Î M] is the expected
value of the highest pixels (target) and the E[vi, j ∉ M] is
the expected value of the rest of the pixels
(background).
The algorithm score is given as:

Score =
Block SNR(i, j)(i,j)=TB − E

[{
Block SNR(i, j)(i,j)=NTB

}]
σ{

Block SNR(i,j)(i,j)=NTB

} (18)

The block formula performs a subtraction between the
expectation value of the highest pixels (target) and the
expectation value of the rest of the pixels (background),
divided by the standard deviation of block pixels. Since
the probability matrices of the DPA introduce the

influence of target pixels on adjacent pixels, these influ-
enced pixels might accumulate higher values than unaf-
fected pixels (background), and can be regarded as
target pixels. This might lower the expectation value of
the target, but will also lower the standard deviation of
the background, since these high pixels are higher than
the statistics of the background.
The final grade of the algorithm serves as a tool for

comparison between the suggested temporal processing
algorithm and other temporal processing algorithms
that deal with the same problems. The grade is a reflec-
tion of the difference between the score of the block
containing the target and the expected values of the rest
of the blocks in the image, normalized by their standard
deviations.
Real data results
The real-world IR image sequences described in the pre-
vious section were used to evaluate the temporal track-
ing algorithm. The algorithm’s output images are given
in Figure 23, together with a representative frame from
each sequence. The sequences were chosen so as to

Figure 20 Example of the temporal algorithm operation on a type 5 signal without a target.

Table 1 Target/noise (T/N) ratio for various signal types

Signal type T/N ratio T/N ratio [Varsano et al. [13]]

1 1.8098 1.72

2 10.9558 4.34

3 10.9658 4.41

4 10.9659 4.29

5 10.9659 4.41 Figure 21 T/N ratio versus SNR for different signal types.
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comprise both clutter- and noise-dominated scenes. The
parameters of each simulation were chosen to be the
optimal set, as will be explained in the following section.
The target tracks are seen as bright short stripes, and in
some cases, clutter leakage is also evident.
Figure 24 provides a closer view of the block contain-

ing the target of each output image together with a

representative target temporal profile. Visual evaluation
of the images presented in Figure 24 suggests that in
terms of enhancement of the target pixels, the best
results were obtained for the sequences J2A and NPA,
since the target trace is stronger relative to the back-
ground. The M21F sequence, for example, has more
noise in the background, although the target pixels are
clearly visible. The metric defined for assessing the over-
all performance of the algorithm, which is given in
Equation 17, takes into consideration not only the target
enhancement but also the ability of the algorithm to
suppress the background. This is achieved by grading
each block with a score that evaluates the difference
between the maximal 5 values of the block and the
block average values, normalized by the standard

The IR image NPA
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2200
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1050
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1200

Figure 22 Frame 50 of each real data IR sequence.

Table 2 Description of the IR sequences

IR sequence Scene description

NPA Two targets in wispy clouds

J13C One slow target in clear of cloudy scene

NA23 One fast target in bright clouds

J2A Two targets in fluffy clouds

M21F One weak target in hot hazy night sky
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deviation. The goal is, of course, to obtain TBs with
high scores and background blocks with low scores.
The purpose of the final grading of the algorithm,

defined in Equation 18 is to evaluate the separation
between the TB(s) and the background blocks. The

grading provides an evaluation of the difference between
the TB score (and if there is more than one target, the
mean of the TBs) and the mean of the background
blocks, normalized by the standard deviation of the
background. The final grade obtained for each sequence

Frame 70 from IR sequence NPA Result Image of IR sequence NPA

Frame 70 from IR sequence J13C Result Image of IR sequence J13C

Frame 70 from IR sequence M21F Result Image of IR sequence M21F

Frame 70 from IR sequence J2A Result Image of IR sequence J2A

Frame 70 from IR sequence NA23 Result Image of IR sequence NA23

Figure 23 Output images of the temporal tracking algorithm.
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is given in Table 3. The table also shows the grade of
the two temporal processing algorithms presented in
Varsano et al. [13] - the VF and the NF and the tem-
poral processing algorithm described in [2].
The variety of the target scores for the different

sequences can be understood by examining the

amplitude of the maximum target peak relative to the
profiles average values.
A comparison of our and Varsano et al. [13] methods

of temporal processing shows that scores that are given
by the algorithm of Varsano et al. [13] are higher
(except for NPA) than ours. The difference in the scores

a. Target blocks and profiles from the IR sequence NPA

b. Target block and profile from the IR sequence M21F

c. Target block and profile from the IR sequence J13C

d. Target blocks and profiles from the IR sequence J2A

e. Target block and profile from the IR sequence NA23
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Figure 24 Real IR data results. Target blocks and profiles from the IR sequence (a) NPA, (b) M21F, (c) J13C, (d) J2A, and (e) NA23.
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may be attributed to the differences in the metrics and
TP calculation, i.e., the difference in the metric calcula-
tion is due to the fact that we have more score frames
and hence we calculate their average, as described at
Figure 25 and 25 in Table 1; the temporal processing
method used gives us a better target to noise ratio.
The sequences in NPA differ from those in NA23:

although the target in NPA seems weaker, its block
score is higher than that of NA23 as a result of the
strong clutter in the NA23 scene as shown at Table 4.
As stated in the following section, the window size para-
meters are not optimized in terms of both the TB and
the background. Thus, choosing an inappropriate win-
dow size will lower the TB score. Therefore, although
the target in NA23 is stronger than that in NPA, the TB
score obtained after the temporal processing is lower.
Finally, the lowest target score is that for the M21F
sequence. The target here is quite weak, and the scene
is noise dominated, hence the low target amplitude and
the low TB score. The algorithm score for this sequence
was the lowest among the scores of all the sequences.
Optimal window size
Choosing the appropriate set of parameters for the tem-
poral algorithm is crucial for the detection capabilities
of the system. The dependence of the algorithm on the
window size was evaluated on real data, and the optimal
set of parameters was obtained for each IR sequence.
The expected optimal window sizes depend on both

the shape of the target’s temporal profile, mainly on the
target’s peak width, which is inversely proportional to

the target’s velocity, and on the background scene, i.e.,
on the presence of clouds and their size and velocity, as
stated in section “Window size”.
To determine the optimal set of window sizes on a

real data sequence, the algorithm was run on the
sequence with various sets of parameters. The set that
yielded the highest algorithm grade, defined in Equation
18, was chosen for the evaluation.
Figure 26 shows the results of the simulation on the

IR sequence NPA. The results show that the highest
algorithm score was obtained for a group width of size
14 samples, an overlap of size 7 samples and a variance
window of size 6 samples with a linear (DC) window of
size 50 samples. The final algorithm grade provides an
evaluation of the difference between the target’s block
score (if there is more than one target, the relevant
scores are averaged) and the mean background score,
normalized by the standard deviation of the background
blocks. Thus, the optimal window set will tend to maxi-
mize the target score while minimizing the background
and standard deviation scores. Table 5 summarizes the
optimal window sets for three IR sequences.

Evaluation of the complete system on real data
The hyperspectral movie is created as described in Var-
sano et al. [13]. The movie consists of a sequence of 30
× 30 × 96 cubes (width × height × bands). A synthetic
target is implanted into the sequence. The target is sine-
shaped, 2 × 2 pixels wide, and has a horizontal and ver-
tical velocity of 0.1 ppf. White Gaussian noise is added
to each spectral signature and the noise variance is set
to be [0.1 × Max(signature)]2.
The movie then constitutes the input into our system.

The MF with the estimated covariance matrix is applied
for the first-stage processing of each hypercube, and the
temporal processing algorithm described in section “Sys-
tem architecture” is used for the target detection in the
second stage. The output of the second stage constitutes
the input into the DPA. The DPA allows us to track the

Table 3 Algorithm performance grade for each sequence

Image sequence Grade

Our study Varsano et al. [13] VF NF

NPA 78.42 52.68 2.70 2.85

M21F 8.65 10.82 1.20 13.89

NA23 13.06 35.70 0.54 0.47

J13C 8.59 9.04 9.35 31.60

VF, variance filter; NF, noise filter.
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Figure 25 Metric definition.
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target from pixel to pixel; an updated summation score
for each pixel is kept for each pixel, based on its similar-
ity to expected target behavior. Penalties are introduced
to lower the score of pixels apparently acting in a non-
physical manner. In the final stage, the last processed
frame is taken and the highest pixel is declared as a
“target” and its track is found. In this section, we will
define three tests to evaluate the effect of each stage of
the algorithm.
Metric definition
The performance metric, Equations 17 and 18, was used
to evaluate various stages of the analysis. The three tests
based on this metric were applied. Test 3 uses a MF for
the cube collapsing. The resulting cubes are then evalu-
ated as described in Equations 17 and 18; the cube with

the highest score will be evaluated as representative of
the efficacy of using the MF alone.
Test 4 (full system test) uses a MF detector as the

input of the temporal processing velocity filter. Test 5
(full system test) adds to Test 4 the DPA. These tests
were created to evaluate the effect of the IR tracking
algorithms on the overall score of the hyperspectral
tracking system.
The MF and the temporal processing algorithm create

images with pixel scores according to their likelihood of
being a target, whereas the DPA accumulates the scores
of pixels according to the probability of the path going
through them to be the target’s path.

Discussion of the results obtained on real data
Here, we present the results of applying the complete
system algorithm on a hyperspectral movie based on
blocks from the real IR sequence NA23. The algorithm

Table 4 Target maximal peak for the different IR
sequences

Sequence Target peak

NPA Approximately 30

J2A Approximately 140

M21F Approximately 18

NA23 Approximately 60

J13C Approximately 150

Figure 26 Algorithm score versus window size sets for the IR sequence NPA.

Table 5 Optimal window sets for three IR sequences

Sequence Group width Overlap Variance window

NPA 14 7 6

M21F 19 18 8

NA23 16 5 4
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was run on TBs and their eight surrounding background
blocks. The blocks were chosen to represent three dif-
ferent scenes, which could roughly be categorized as
“clear sky” (containing only sky), “weak clutter” (con-
taining partial weak clutter (with low to medium IR
amplitude)) and “strong clutter” (containing partial clut-
ter with high IR amplitudes). The parameters of the
simulation are summarized in Table 6.
Tables 7, 8, 9, 10, and 11 present the results for

hypercubes of three different backgrounds, based on
blocks from the real IR sequence NA23. Figure 27
shows a single frame from the sequence, divided into
labeled blocks.
Comparison of Tables 9 and 10 shows that scores for

Test 4 were lower than those for Test 3. This difference
may be attributed to differences in the calculation of the
metrics and the temporal processing method, i.e., the
difference in the metric calculation due to the fact that

we have more score frames and hence calculate their
avarage (Figure 25); and as described in Table 1, the
temporal processing method used gives us a better target
to noise ratio.
Previous research [13] has shown that Test 1 allows a

rough assessment of the relative amplitude of the target
pixels vis-à-vis their background. The low values of the
results indicate that the implantation of the target and
taking the maximal score without any processing is not
sufficient for target detection; in other words, the
implantation method does not allow an “easy” detection.
The highest values of Test 1 were obtained for the weak
clutter scenes, which is reasonable since the implanta-
tion method is additive and in weak clutter surround-
ings, the amplitudes are obviously higher than those in
clear sky scenes. A comparison of Tests 1 and 2 allowed
us to estimate the improvement conferred by using pri-
mitive hyperspectral processing, i.e., simply taking the
average of all the bands. Although this method led to an
improvement in the sky and weak clutter scenes, it had
negative impact on strong clutter scenes, a finding that
indicates that simply averaging the bands is disastrous
for certain sets of spectral signatures and cannot itself
be used as a detection method. Thus, the discussion will
focus on the use of “smart” hyperspectral processing
(Test 3), hyperspectral processing and temporal proces-
sing (Test 4), and hyperspectral processing, temporal
processing and the DPA (Test 5). The results of Varsano
et al. [13] have shown that there is an obvious advantage
of using both hyperspectral detection (MF) and tem-
poral processing (Test 4 vs. Tests 1-3).
When the target is implanted in clear sky scenes, the

use of temporal processing significantly improves the
performance vis-à-vis hyperspectral detection alone. In
most cases, the use of the MF compared to simple aver-
aging was clearly advantageous, with the exception of

Table 6 Complete system simulation parameters

Parameter Value

Hyperspectral movie parameters

Movie length 95 frames

Spectral signatures Identical to the ones presented in Varsano et al.
[13], Figure 13

Block size 30 × 30 pixels

Number of
spectral bands

100 bands

IR source
sequence

NA23, taken from Silverman et al. [23]

Noise added White Gaussian noise factor of 0.05 (std = noise
factor * 0.05)

Synthetic target properties

Spatial shape Half sine, 2 × 2 pixels, integral of the spatial
distribution normalized to 0.5

Horizontal velocity 1/8 pixels/frame

Vertical velocity 1/8 pixels/frame

Velocity error Noise factor of 0.25, as described in Varsano et al.
[13], section 6.3

Hyperspectral cube reduction

Reduction filter Match filter, selected according to best
performance

Target block 37 (weak clutter), 38 (sky only), 39 (strong clutter)

Target factor 10, 20, 40, 60, 80, 100, 500, 1000

Temporal processing parameters

Sub profile length 15 samples

Overlap 10 samples

DC window 50 samples

DC step size 15 samples

Variance window 4 samples

DPA

EMC (b) [0...6] for g = 0, [0...1] for g = 1

a 1

p 0.5

y 24

Table 7 Evaluation results of Test 1-spectral average

Block Scene Target factor

Description 20 40 60 80

37 Partial weak clutter 1.7622 1.7542 1.7414 1.7204

38 Mainly sky -1.3432 -1.0566 -0.5864 -0.0326

39 Mainly strong clutter -0.0362 -0.0371 -0.0354 -0.0392

Mean 0.1276 0.2201 0.3732 0.5495

Table 8 Evaluation results of Test 2-scalar product

Block Scene Target factor

Description 20 40 60 80

37 Partial weak clutter 1.3957 1.3572 1.3213 1.3103

38 Mainly sky -1.2325 -0.8918 -0.3695 0.2114

39 Mainly strong clutter -1.2276 -1.2379 -1.1656 -1.0806

Mean -0.3548 -0.2575 -0.0712 0.1470
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block 31, for which the performance was similar for the
two techniques. This similarity may be attributed to the
relative “easiness” of detection in this kind of scene and
the fact that the high level of noise might confer a dis-
advantage on the MF but an advantage on the averaging
filter. When weak clutter was present, temporal proces-
sing combined with the MF detector was always better
than hyperspectral detection alone.
A parameter known as the target factor (MaxT) has

been used to describe linearly the power in the target
signature. To define the boundaries of the full system, it
is necessary to define a valid range for the target factor.
Preliminary runs for target factors of 1000, 500, 100,
and 10 showed that target factors of ≥ 100 are “too
easy” to use a detection algorithm, whereas a target fac-
tor of 10 is “too hard” for the full system to detect and
track a target. Therefore, trial runs were performed with
the following values of the target factor: 20-80 with
steps of 20. Figures 28 and 29 show the results for block
38 for target factors of 100 and 20, respectively, for var-
ious stages.

3 Conclusions
In this study, a complete system for the tracking of dim
point targets moving at sub-pixel velocities in a sequence
of hyperspectral cubes or, simply put, a hyperspectral
movie was presented. Our research incorporates algo-
rithms from two different areas, target detection in hyper-
spectral imagery and target tracking in IR sequences.

Table 9 Evaluation results of Test 3 - Match filter

Block Scene Target factor

Description 20 40 60 80

37 Partial weak clutter 2.3023 2.2752 2.2497 2.2419

38 Mainly sky -0.2196 0.2049 0.7912 1.3592

39 Mainly strong clutter -0.2132 -0.2266 -0.1337 -0.0263

Mean 0.62317 0.7512 0.9690 1.1916

Table 10 Evaluation results of Test 4-match filter and
temporal processing

Block Scene Target factor

Description 20 40 60 80

37 Partial weak clutter 2.9422 3.6824 3.7198 3.7072

38 Mainly sky 3.2252 3.6421 3.7222 3.7188

39 Mainly strong clutter 0.5539 1.6206 3.1649 3.4353

Mean 2.2404 2.9817 3.5356 3.6204

Table 11 Evaluation results of Test 5-match filter,
temporal processing and DPA

Block Scene Target factor

Description 20 40 60 80

37 Partial weak clutter 3.6473 3.8205 3.8248 3.8448

38 Mainly sky 3.7568 3.8255 3.8318 3.8365

39 Mainly strong clutter 2.0955 2.3476 3.7458 3.7171

Mean 3.1665 3.3312 3.8008 3.7994

The IR image sequence NA23, Frame 1
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Figure 27 Single frame of IR sequence NA23 with labeled blocks division.
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Figure 28 Block 38, target factor 100: (a) single frame after MF (Test 1), (b) single frame after MF and TP (Test 2).
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Figure 29 Block 38, target factor 20: (a) single frame after MF (Test 1-Frame 64), (b) single frame after MF and TP (Test 2-Frame 12), (c) single
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Performance metrics are defined for each step and are
used in the analysis and optimization; a comparison is
made to previous work in this area.

Abbreviations
DPA: dynamic programming algorithm; LSE: least squares estimation; LMM:
linear mixture model; MF: match filter; NTB: non-target block; SNRs: signal-to-
noise ratios; TB: target block; TBD: track-before-detect; 2D: two-dimensional;
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