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Abstract

An efficient algorithm to generate three-dimensional (3D) video sequences is presented in this work. The algorithm
is based on a disparity map computation and an anaglyph synthesis. The disparity map was first estimated by
employing the wavelet atomic functions technique at several decomposition levels in processing a 2D video
sequence. Then, we used an anaglyph synthesis to apply the disparity map in a 3D video sequence reconstruction.
Compared with the other disparity map computation techniques such as optical flow, stereo matching, wavelets,
etc., the proposed approach produces a better performance according to the commonly used metrics (structural
similarity and quantity of bad pixels). The hardware implementation for the proposed algorithm and the other
techniques are also presented to justify the possibility of real-time visualization for 3D color video sequences.
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1. Introduction
Conversion of available 2D content for release in three-
dimensional (3D) is a hot topic for content providers
and for success of 3D video in general. It naturally com-
pletely relies on virtual view synthesis of a second view
given the original 2D video [1]. 3DTV channels, mobile
phones, laptops, personal digital assistants and similar
devices represent hardware, in which the 3D video con-
tent can be applied.
There are several techniques to visualize 3D objects,

such as using polarized lens, active vision, and anaglyph.
However, some of those techniques have certain draw-
backs, mainly the special hardware requirements, such
as the special display used with the synchronized lens in
the case of active vision and the polarized display in the
case of polarized lens. However, the anaglyph technique
only requires a pair of spectacles constructed with red
and blue filters where the red filter is placed over the
left position producing a visual effect of 3D perception.
Anaglyph synthesis is a simple process, in which the red
channel of the second image (frame) replaces the red
channel in the first image (frame) [2]. In the literature,
several methods to compute anaglyphs have been

described. One of them is the original Photoshop algo-
rithm [3], where the red channel of the left eye becomes
the red channel of the anaglyph and vice versa for the
blue and green channels of the right eye. Dubois [4]
suggested the least square projection in each color com-
ponent (R, G, B) from R6 space to the 3D subspace.
Two principal drawbacks of these algorithms are the
presence of ghosting and the loss of color [5].
In the 2D to 3D conversion, depth cues are needed to

generate a novel stereoscopic view for each frame of an
input sequence. The simplest way to obtain 3D informa-
tion is the use of motion vectors directly from com-
pressed data. However, this technique can only recover
the relative depth accurately, if the motion of all scene
objects is directly proportional to their distance from
the camera [1].
In [6], the motion vector maps, which are obtained

from the MPEG4 compression standard, are used to
construct the depth map of a stereo pair. The main idea
here is to avoid the disparity map stage because it
requires extremely computationally intensive operations
and cannot suitably estimate the high-resolution depth
maps in the video sequence applications. In paper [7], a
real-time algorithm for use in 3DTV sets is developed,
where the general method to perform the 2D to 3D
conversion consists of the following stages: geometric
analysis, static cues extraction, motion analysis, depth
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assignment, depth control, and depth image based ren-
dering. One drawback of this algorithm is that it
requires extremely computationally intensive operations.
There are several algorithms to estimate the DM such

as the optical flow differential methods designed by
Lucas & Kanade (L&K) and Horn and Schunk [8,9],
where some restrictions in the motion map model are
employed. Other techniques are based on the disparity
estimation where the best match between pixels in a
stereo pair or neighboring frames is found by employing
a similarity measure, for example, the normalized cross-
correlation (NCC) function or the sum of squared dif-
ference (SSD) between the matched images or frames
[10]. A recent approach called the region-based stereo
matching (RBSM) is presented in [11], where the block
matching technique with various window sizes is com-
puted. Another promising framework consists of stereo
correspondence estimation based on wavelets and multi-
wavelets [12], in which the wavelet transform modulus
(WTM) is employed in the DM estimation. The WTM
is calculated from the vertical and the horizontal detail
components, and the approximation component is
employed to normalize the estimation. Finally, the cross
correlation in wavelet transform space is applied as the
similarity measure.
In this article, we propose an efficient algorithm to

perform a 3D video sequence from a 2D video sequence
acquired by a moving camera. The framework uses the
wavelet atomic functions (WAF) for the disparity map
estimation. Then, the anaglyph synthesis is implemented
in the visualization of the 3D color video sequence on a
standard display. Additionally, we demonstrate the DSP

implementation for the proposed algorithm with differ-
ent sizes of the 2D video sequences.
The main difference with other algorithms presented

in literature is that the proposed framework performing
sufficiently good depth and spatial perception in the 3D
video sequences does not require intensive computa-
tional operations and can generate 3D videos practically
in real-time mode.
In the present approach, we employ the WAFs

because they have already demonstrated successful per-
formance in medical image recognition, speech recogni-
tion, image processing, and other technologies [13-15].
The article is organized as follows: Section 2 presents

the proposed framework, Section 3 contains the simula-
tion results, and Section 4 concludes the article.

2. The proposed algorithm
The proposed framework consists of the following
stages: 2D color video sequence decomposition, RGB
component separation, DM computation using wavelets
at multiple decomposition levels (M-W), in particular
wavelet atomic functions (M-WAF), disparity map
improvement via dynamic range compression, anaglyph
synthesis employing the nearest neighbor interpolation
(NNI), and 3D video sequence reconstruction and visua-
lization. Below, we explain in detail the principal 3D
reconstruction stages (Figure 1).

2.1. Disparity map computation
Stereo correspondence estimation based on the M-W
(M-WAF) technique is proposed to obtain the disparity
map. The stereo correspondence procedure consists of
two stages: the WAF implementation and the WTM
computation.
Here, we present a novel type of wavelets known as

WAFs, first introducing basic atomic functions (up,
fupn, πn) used as the mother functions in wavelet con-
struction. The definition of AFs is connected with a
mathematical problem: the isolation of a function that

Figure 1 The proposed framework.

Table 1 Filter coefficients {hk} for scale function �(x)
generated from different WAF based on up, fup4, and π6.

K Up fup4 π6

0 0.757698251288 0.751690134933 0.7835967912

1 0.438708321041 0.441222946160 0.4233724330

2 -0.047099287129 -0.041796290935 -0.0666415128

3 -0.118027008279 -0.124987992607 -0.0793267472

4 0.037706980974 0.034309220121 0.0420426990

5 0.043603935723 0.053432685600 -0.0008988715

6 -0.025214528289 -0.024353106483 -0.0144489586

7 -0.011459893503 -0.022045882572 0.0211760726

8 0.013002207742 0.014555894480 -0.0046781803

9 -0.001878954975 0.007442614689 -0.0141324153

10 -0.003758906625 -0.006923189587 0.0104455879

11 0.005085949920 -0.001611566664 0.0003223058

12 -0.001349824585 0.002253528579 -0.0059986067

13 -0.003639380570 0.000052445920 0.0075295865

14 0.002763059895 -0.000189566204 -0.0011585840

15 0.001188712844 -0.000032923756 -0.0064315112

16 -0.001940226446 -0.000258206216 0.0047891344
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has derivatives with a maximum and minimum similar
to those of the initial function. To solve this problem
requires an infinitely differentiable solution to the differ-
ential equations with a shifted argument [15]. It has
been shown that AFs fall within an intermediate cate-
gory between splines and classical polynomials: like B-
splines, AFs are compactly supported, and like polyno-
mials, they are universal in terms of their approximation
properties.
The simplest and most important AF is generated by

infinity-to-one convolutions of rectangular impulses that
are easy to analyze via the Fourier transform. Based on
N-to-one convolution of (N + 1) identical rectangle
impulses, the compactly supported spline θN(x) can be
defined as follows:

θN (x) =
1
2π

∞∫
−∞

ejux
(
sin

(
u/2

)
u/2

)N+1

du. (1)

The function up(x) is represented by the Fourier
transform for infinite convolutions of rectangular
impulses with variable length of duration 2-k, as in
Equation 2:

up (x) =
1
2π

∞∫
−∞

ejux
∞∏
k=1

sin
(
u · 2−k

)
u · 2−k

du. (2)

The AF fupN(x) is defined by the convolution of spline
θN-1 (x) and AF up(x) in the interval [-(N+2)/2, (N+2)/
2]. Thus, fupN(x) can be written in the following form:

fupN (x) =

∞∫
−∞

ejux
(
sin

(
u/2

)
u/2

)N ∞∏
k=1

sin
(
u · 2−k

)
u · 2−k

du, fup0 (x) ≡ up (x) . (3)

The generalization of AF up(x) as presented above, the
AF upm(x) is defined as follows:

upm(x) =
1
2π

∞∫
−∞

ejxu
∞∏
k=1

sin2

(
mu

(2m)k

)

mu

(2m)k
m sin

(
u

(2m)k

)du, m = 1, 2, 3, up1(x) = up(x). (4)

The function πm(x) can be represented by the inverse

Fourier transform πm (t) =
1
2π

∞∫
−∞

eixtFm (t)dt using

such representation for function Fm(t):

Fm (t) =
m∏
k=1

sin (2m − 1) t +
∑M

V=2 (−1)v sin (2m − 2v + 1) t

(3m − 2) t
. (5)

The detailed definitions and properties of these func-
tions can be found in [15].
The wavelet decomposition procedures employ several

decomposition levels to enhance the quality of the
depth maps. The discrete wavelet transform (DWT) and
inverse DWT are usually implemented using the filter

bank techniques for a scheme with only two filters: low
pass (LP) H(z) (decomposition) and H̃(z) (reconstruc-

tion), and high pass (HP) G(z) (decomposition) and

G̃(z) (reconstruction), where: G(z) = zH(-z) and

G̃(z) = z-1H(-z) [16]. The scale function �(x) is asso-
ciated with filter H(z) in accordance to scaling equation:

φ(x) =
2

H(1)

∑
k∈Z hkφ(2x − k) and can be expressed by

it Fourier transform φ̂(ω) =
∞∏
k=1

H(ej
ω

2k )
H(1)

. The wavelet

functions are computed using linear combination of
scale functions

ψ(x) =
2

H(1)

∑
k gkφ(2x − k), where gk = (−1)k+1h∗

−k−1,

and {hk} are the coefficients of the LP filter in it Fourier
series:

H(ω) =
√
2H0(ω) =

∑
k

hkejkω for H0(ω) : hk =

√
2

2π

π∫
−π

H0(ω)ejkωdω, (6)

and wavelet ψ̃(x) =
2

H̃(1)

∑
k g̃kφ̃(2x − k) . The HP fil-

ter is represented by Fourier series with coefficients {hk}:

G(ω) = ejωH ∗ (ω + π) =
∑
k

(−1)k+1h∗−k−1e−jkω. (7)

The coefficients {hk} should satisfy such normalization

condition:
1√
2

∑
k hk = H0(0) = 1 . Finally, wavelets of

decomposition and reconstruction are employed in such
a form: ψ̃i,k = 2−i/2ψ̃(x/2i − k) and

ψi,k = 2−i/2ψ(x/2i − k) , respectively, where i and k are

indexes of translation and scale [16].
The procedure to synthesis the WAF consists of per-

forming a scale function �(x) that should generate the
sequence of compact subspaces satisfying such property,
each next subspace Vj+1 is into a previous one Vj: Vj ⊂
L2(X), j Î X; ⋃jVj = L2(X); ⋂jVj = {0}; f(x) Î Vj ⇔ f(2x) Î
Vj+1. Finally, it should be existed such scale function
�(x) that: (a) with their shifts forms the Riesz bases; (b)
it has symmetric and finite Fourier transform φ̃(ω).
Because the scale AF �(x) and WAF ψ(x) are not com-
pactly supported but they rapidly decrease (due to infi-
nite differentiability), it is possible to select an effective
support from such limit conditions: ||j-jef||•100% ≤
0.001%, ||ψ-ψef||•100% ≤ 0.001%. Filter coefficients hk
for the scale function �(x) generated from different
WAFs: up, fupn, upn, πn can be found in [17]. In Table
1, we only present the coefficients hk for scale function
�(x) generated from AF up, fup4 and π6 that exposes
better perception quality in synthesized 3D images as
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one see below in simulation results. The effective sup-
ports for scale function �(x) and wavelet ψ(x) generated
from used AF are [-16, 16].
The Wavelet technique, which the developed method

uses, is based on the DWT. In proposed framework for
DM estimation, the wavelets on each decomposition
level are computed as follows [12]:

Ws =| Ws | � �s, (8)

| Ws |=
√

| Dh,s |2 + | Dv,s |2 + | Dd,s |2
| As | , (9)

where Ws is the wavelet for a chosen decomposition
level s; Dh, s, Dv, s, Dd, s are the horizontal, vertical, and
diagonal detail components at each a level s, As is the
approximation component, and θs is the phase that is
defined as follows:

θs =
{

εs if Dh,s > 0
π − εs if Dh,s < 0

, εs = arctg
Dh,s

Dv,s
. (10)

Once the Ws is computed for each an image stereo
pair or neighboring frames for a video, the disparity
map for each level of decomposition can be formed
using the cross-correlation function in wavelet trans-
form space:

Cor(L R),s(x, y) =
∑

(i,j)∈P

WL
(
i, j

) · WR
(
x + i, y + j

)
√∑

i,j∈P W
2
L

(
i, j

) · ∑
i,j∈P

W2
R

(
x + i, y + j

) , (11)
where WL and WR are the wavelet transform for the

left and right images in each decomposition level s, and
P is sliding processing window. Finally, the disparity
map for each level of decomposition is computed by
applying the NNI technique. In this work, we propose
using four levels of decomposition in DWT.
A block diagram of the proposed M-WAF framework

is presented in Figure 2.

2.2. Disparity map improvement and anaglyph synthesis
The classical methods used in anaglyph construction
can produce ghosting effects and color loss. One way to
reduce these artifacts in anaglyph synthesis is to use the
dynamic range compression of the disparity map [18].
The dynamic range compression permits retaining the
depth ordering information, which reduces the ghosting
effects in the non-overlapping areas in the anaglyph.
Therefore, the dynamic range reduction of the disparity
map values can be employed to enhance the map qual-
ity. Using the Pth law transformation for dynamic range
compression [18], the original disparity map D is chan-
ged as follows:

Dnew = a · DP , (12)

where Dnew is the new disparity map pixel value, 0 <a
< 1 is a normalizing constant, and 0 <P < 1.
At the final stage, the anaglyph synthesis is performed

using the improved disparity map. To generate an ana-
glyph, the neighboring frames in a grid dictated by the
disparity map should be re-sampled. During numerous
simulations, the bilinear, sinc and NNIs were implemen-
ted to find an anaglyph with a better 3D perception.
The NNI showed a better performance during the simu-
lations and it was sufficiently fast in comparison with
the other investigated interpolations. Thus, the NNI was
chosen to successfully create the required anaglyph in
this application. The NNI is performed for each pair of
neighboring frames in the video sequence. NNI [19] that
uses this framework changes the values of the pixels to
the closest neighbor value. To perform the NNI in the
current decomposition level and to form the resulting
disparity map, intensity of each pixel is changed. The
new intensity value is determined by comparing a pixel
in the low resolution disparity from ith decomposition
level with the closest pixel value in the actual disparity
map from (i - 1)th decomposition level.

2.3. DSP implementation
Our study also involved employing the promising 3D
visualization algorithms in real-time modes using a DSP.
The core of the EVM DM642™ is a digital media pro-
cessor that is characterized by a large set of integrated
features of the card, such as: a TMS320DM642™ DSP
at 720 MHz (1.39 instructions per cycle or 570 million
instructions per second), 32 Mb of SDRAM, 4 Mb of
Linear Memory Flash, 2 video decoders, 1 video coder,
FPGA™ implementation to display, double UART with
RS-232 drivers, several input-output video formats and
others. The communication between the code composer
studio (CCS) and the EVM is achieved with an external
emulator via JTAG connectors [20]. Using MATLAB’s
Simulink™ module, a project was created in which the
DSP model and its respective task BIOS were selected.
Then, a function is created to contain three sub func-
tions: video capture, 3D video reconstruction using
WAF, and the output interface to a video display. Next,
a CCS™ project is conducted in Simulink™. During
this step in the process, the MATLAB™ module sends
a signal to the CCS and creates the project on C. To
perform the video sequence processing using the DSP,
the MATLAB™ program is first transformed into ‘C’
code for CCS via Simulink™. Once the CCS project has
been created, the necessary changes are made to obtain
the processing time values. The corresponding results
for the designed and the reference frameworks are pre-
sented in the next section. Serial connection of three
EVM DM642 is used in this application, where the first
and second DSPs compute the disparity maps using M-
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WAF procedure, and the third DSP generates the ana-
glyph. The developed algorithm in Simulink™ is shown
in Figure 3.

3. Simulation results
In the simulation experiments, various synthetic
images are used to obtain the quantitative measure-
ments. The synthetic images were obtained from
http://vision.middlebury.edu/stereo/data. Aloe, Venus,
Lampshade1, Wood1, Bowling1, and Reindeer were the
synthetic images used, all in PNG format (480 × 720
pixels). We also used the following test color video
sequences in CIE format (250 frames, 288 × 352 pix-
els): Coastguard, Flowers, and Foreman. The test video
sequences were obtained from http://trace.eas.asu.edu/
yuv/index.html. In order to use the test color video
sequences in the same sizes, we reformatted them in
480 × 720 pixels on Avi format. Additionally, the real
life video sequences named Video Test1 (200 frames,
480 × 720 pixels) and Video Test2 (200 frames, 480 ×
720 pixels) were recorded to apply the proposed algo-
rithm in a common scenario. Video Test1 shows a
truck moving in the scenery and Video Test2 shows
three people walking toward the camera. Two quality
objective criteria, quantity of bad disparities (QBD)
[12] and similarity structure image measurement
(SSIM) [21], were chosen as the quantitative metrics to
justify the selection of the best disparity map algorithm
in the 3D video sequence reconstruction. The QBD
values have been calculated for different synthetic
images as follows:

QBD =
1
N

∑
x,y

| dE
(
x, y

) − dG
(
x, y

) |2, (13)

where N is the total number of pixels in the input
image, and dE and dG are the estimated and the ground
truth disparities, respectively.
The SSIM metric values are defined as follows:

SSIM
(
x, y

)
=

[
l
(
x, y

)] · [
c
(
x, y

)] · [
s
(
x, y

)]
, (14)

where the parameters l, c, and s are calculated accord-
ing to following equations:

l
(
x, y

)
=

2μX
(
x, y

)
μY

(
x, y

)
+ C1

μ2
X

(
x, y

)
+ μ2

Y

(
x, y

)
+ C1

, (15)

c
(
x, y

)
=

2σX
(
x, y

)
σY

(
x, y

)
+ C2

σ 2
X

(
x, y

)
+ σ 2

Y

(
x, y

)
+ C2

, (16)

s
(
x, y

)
=

σXY
(
x, y

)
+ C3

σX
(
x, y

)
+ σY

(
x, y

)
+ C3

. (17)

In Equations (15) to (17), X is the estimated image, Y is the
ground truth image, μ and s are the mean value and stan-
dard deviation for the X or Y images, and C1 = C2 = C3 = 1.
Table 2 presents the values of QBD and SSIM for the

proposed framework based on M-WAFs and the other
techniques applied to different synthetic images.
The simulation results presented in Table 2 indicate

that the best overall performance of disparity map

Table 2 QBD and SSIM for proposed and existed algorithms for different test images

Image L&K SSD GEEMSF WF Bio6.8 WF Coiflet2 WF Haar WAF π6 M-WF Coiflet2 M-WAF π6

Aloe

SSIM 0.3983 0.6166 0.3017 0.9267 0.5826 0.5776 0.9232 0.5826 0.9232

QBP 0.1121 0.4722 0.9190 0.0297 0.4517 0.4420 0.0130 0.4490 0.0111

Venus

SSIM 0.1990 0.4320 0.2145 0.5979 0.4530 0.4472 0.4604 0.4530 0.6947

QBP 0.3084 0.1428 0.2013 0.1694 0.5014 0.5010 0.1930 0.5011 0.1091

Lampshade1

SSIM 0.0861 0.6320 0.3124 0.7061 0.7061 0.7081 0.6897 0.7061 0.7619

QBP 0.2430 0.2800 0.3410 0.2072 0.2071 0.2071 0.2017 0.2071 0.1426

Wood1

SSIM 0.1089 0.7142 0.7051 0.9367 0.7096 0.7072 0.9448 0.7096 0.9448

QBP 0.1316 0.2376 0.2100 0.1258 0.2400 0.2402 0.1180 0.2400 0.0919

Bowling1

SSIM 0.1118 0.6925 0.7081 0.8828 0.6690 0.6672 0.9084 0.6690 0.9084

QBP 0.1720 0.1885 0.0645 0.0555 0.2010 0.2011 0.0119 0.2010 0.0165

Reindeer

SSIM 0.1557 0.7460 0.7143 0.7393 0.7321 0.7308 0.6819 0.7321 0.7001

QBP 0.3910 0.1250 0.2810 0.1418 0.1565 0.1570 0.1513 0.1520 0.1680
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reconstruction is produced by the M-WAF framework.
The minimum value of QBP and the maximum value of
SSIM are obtained when the M-WAF π6 is used, fol-
lowed by WAF π6. At the final stage, when the ana-
glyphs were synthesized, the NCC was calculated in a
sliding window with 5 × 5 pixels. The SSD algorithm
was implemented in a window of size 9 × 9 pixels. The
L&K algorithm was performed according to [9]. For all
tested algorithms, the dynamic range compression was
applied with the parameters a = P = 0.5. Figure 4 shows
the obtained disparity map for all tested images and all
implemented algorithms; evidently, the M-WAF π6

implementation produces the best overall visual results.
Based on the objective quantity metrics and the sub-

jective results presented in Figure 4, M-WAF π6 has

been selected as the technique to estimate the disparity
map for video sequence visualization.
The anaglyphs, which were synthesized with the M-

WAF algorithm, showed sufficiently good 3D visual per-
ception with reduced ghosting and color loss. The spec-
tacles with blue and red filters are required to observe
Figures 5 and 6.
Processing time values were computed during the DSP

implementation and the Table 3 shows the processing
times for the video sequences using Matlab and the
serial DSP implementation. Here, the tested video
sequences were: Flowers, Coastguard, Video Test1, and
Video Test2 (all with 480 × 720 pixels and with 240 ×
360 pixels in RGB format).
The processing time values were measured since the

moment the sequence was acquired from the DSP until
the anaglyph was displayed in a regular monitor.
The processing times in Table 3 lead to a possible

conclusion that the DSP algorithm can process up to 20
frames per sec for a frame of 240 × 360 pixels size in
RGB format. Additionally, the DSP algorithm can pro-
cess up to 12 frames per sec for a frame of 480 × 720
pixels size in RGB format. Processing time values for
L&K and SSD algorithms implemented in Matlab were
22.59 and 16.26 s, accordingly, because they required
extremely computationally intensive operations.

4. Conclusion
This study analyzed the performance of various 3D
reconstruction methods. The proposed framework based
on M-WAFs is the most effective method to reconstruct
the disparity map for 3D video sequences with different
types of movements. Such framework produces the best
depth and the best spatial perception in synthesized 3D
video sequences against other analyzed algorithms that
is confirmed by numerous simulations for different
initial 2D color video sequences. The M-WAF algorithm
can be applied to any type of color video sequence with-
out additional information. The performance of the DSP
implementation shows that the proposed algorithm can
practically visualize the final 3D color video sequence in
real-time mode. In future, we suppose to optimize the

Table 3 Processing times for different algorithms.

Algorithm Matlab
Time/frame, s (240 ×
360)

Matlab
Time/frame, s (480 ×
720)

Serial Processing in
DSP
Time/frame, s (240 ×
360)

Serial Processing in
DSP
Time/frame, s (480 ×
720)

Classic wavelet families (Coif2, Db6.8,
Haar)

4.20 6.16 0.0314 0.0713

Wavelet atomic functions (up, fup4, π6) 4.23 6.19 0.0312 0.0715

M-WAF (up, fup4, π6) 4.84 6.77 0.0489 0.081

M-classic wavelet families (Coif2, Db6.8,
Haar)

4.85 6.76 0.0480 0.080

Figure 2 The proposed M-WAF algorithm with four levels of
decomposition.
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Figure 3 Developed algorithm in Simulink™.
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b)  
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c)  
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Figure 4 Disparity map obtained using different algorithms for following test images. (a) Aloe, (b) Wood1, and (c) Bowling1.

Ramos-Diaz et al. EURASIP Journal on Advances in Signal Processing 2011, 2011:106
http://asp.eurasipjournals.com/content/2011/1/106

Page 8 of 10



a) b)

c) d)

e) f)

Figure 5 Synthesized anaglyphs using M-WAF π6 for the following test images. (a) Venus, (b) Aloe, (c) Bowling1, (d) Lampshade, (e)
Reindeer, and (f) Wood1.

a) b) 

c) d) 

Figure 6 Synthesized anaglyphs using M-WAF π6 for frames of the following video sequences. (a) Flowers, (b) Coastguard, (c) Video Test1,
and (d) Video Test2.
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proposed algorithm in order to increase the processing
speed up to the film velocity.

List of abbreviations
CCS: code composer studio; 3D: three-dimensional; LP: low pass; M-W:
multiple decomposition levels; NCC: normalized cross-correlation; QBD:
quantity of bad disparities; RBSM: region-based stereo matching; SSD: sum of
squared difference: WAF: wavelet atomic functions; WTM: wavelet transform
modulus.
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