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The implementation of large linear control systems requires a high amount of digital signal processing. Here, we show that re-
configurable hardware allows the design of fast yet flexible control systems. After discussing the basic concepts for the design and
implementation of digital controllers for mechatronic systems, a new general and automated design flow starting from a system of
differential equations to application-specific hardware implementation is presented. The advances of reconfigurable hardware as
a target technology for linear controllers is discussed. In a case study, we compare the new hardware approach for implementing

linear controllers with a software implementation.
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1. INTRODUCTION

Modern controller design methods try to support the de-
sign of controllers at least semiautomatically. The need for
a transparent and straightforward design process often leads
to software implementations of controllers, that is, micro-
processor programs specified in a high-level language using
floating-point arithmetic. This approach, however, is inap-

propriate for applications with high sampling rates (f, >
20kHz). Such applications are typically micromechanic sys-
tems like hard disk drives [1, 2, 3]. Exploding density of the
hard disks requires controllers with enhanced accuracy. This
leads to very high sampling rates. Here, FPGA technology is
a way to perform high-speed controllers with high flexibil-
ity. With high-level design tools such as VHDL and logic-
synthesis CAD tools and FPGA as target technology, a rapid
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prototyping of complex linear control systems becomes pos-
sible. Low-cost FPGA will allow their use in the final product
in the near future. To support the use of hardware imple-
mentations, however, new automated design flow methods
are required.

The advances in silicon technology and the high compu-
tational power of modern microprocessors and DSPs allow
for implementation of flexible linear controllers in software.
However, the implementation of state-space controllers for
applications with high sample rates requires short computa-
tional times. As the number of required calculations grows
nonlinearly with the number of states, application-specific
hardware is often unavoidable to provide sufficient compu-
tational power. Yet dedicated hardware is very inflexible since
it is impossible to adapt the implementation on changing re-
quirements, new applications, or modified parameters. Re-
configurable hardware structures provide a way out of this
dilemma. With reconfigurable hardware, it is possible to de-
sign an application-specific hardware along with the high
flexibility of software solutions. For linear controllers, par-
allelism can be used as needed and the implementation can
be changed if required.

In this paper, we describe an approach for an automated
mapping of linear controllers to reconfigurable hardware.
Furthermore, we quantitatively compare such solutions to
software implementations. We develop a generic hardware
structure which can be easily adapted to new applications.
In difference to [4], where a special instruction set processor
for implementing digital control algorithms is described, our
approach implements all parts of the controller in hardware.

Important issues for using reconfigurable hardware are:

(1) What speedup can be obtained by the use of hardware
as compared to a pure software solution?
(2) Do typical control systems fit current FPGA devices?

As a case study, we have implemented a linear controller for
an inverse pendulum in hardware and software on an FPGA-
based reconfigurable hardware platform and have compared
the results. The experiments show the potential of recon-
figurable hardware to implement fast and flexible solutions
of linear control systems. Compared to pure software solu-
tions which can also change the controller parameters during
runtime, the new approach [5] has several advantages.

(1) The obtainable sample period only scales linearly with
the problem size which allows for controller imple-
mentations with very high sample rates.

(2) FPGAs offer the same flexibility as software implemen-
tations along with the speed of application-specific
hardware.

(3) If the applications require higher clock rates as sup-
ported by the used FPGA technology, it is very easy
to adapt the designed hardware to other faster silicon
technologies such as gate arrays.

(4) By implementing different controllers in parallel for
the same application, it could become very easy
to switch between the controllers to adapt the sys-
tem to changing-environmental parameters. By proper
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FIGURE 1: General structure of a control system.

blending mechanisms, the controller will not remain
in an undefined state during switching.

Especially the last item will be the subject of our future
work. The paper is organized as follows. In Section 2, we give
a basic overview of the mathematical principles of digital lin-
ear control systems design. The design flow for the imple-
mentation of linear systems of differential equations in re-
configurable hardware is described in Section 3. A descrip-
tion of the proposed architecture of the software and hard-
ware implementation is given in Section 4. Section 5 intro-
duces a case study on how linear controllers can be imple-
mented on FPGAs and describes the complete design flow
for the example. In this section, we also compare a soft-
ware implementation of the example with the pure hardware
solution. We conclude with a discussion of future work in
Section 6.

2. LINEAR CONTROLLERS
2.1.

The basic idea of controlling a system (called control path or
plant) is to take influence on its dynamic behavior via a con-
trol feedback loop. A controller takes measurements from the
control path and computes new input variables to the sys-
tem. This results in a typical feedback structure is shown in
Figure 1. Generally, the system consisting of controller and
control path is continuous, nonlinear, and time variant. In
most cases, however, the controller and control path can
be modeled as linear time-invariant systems (see Figure 1),
where the plant is specified by a system of linear differential
equations.

Structure

2.2. Mathematical foundations

In order to explain our methodology, we start from the gen-
eral controller structure in Figure 2, which shows a mul-
tivariable feedback controller with plant [6]. The essential
parts of the multivariable controller are the state feedback,
the disturbance rejection, and the observer. An observer is
used to reconstruct states that could not be measured and it
has the same order as the plant itself. The observer consists
of a model of the plant and a model of the disturbance which
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is used to reconstruct the disturbance for a disturbance re-
jection. The actual controller is a state vector feedback con-
troller. Figure 2 shows the generalized structure of the con-
troller for the inverse pendulum that is used in the case study
in Section 5. For our example, shown in Section 5, we do not
need all the components of this structure. The implemented
controller of the inverse pendulum consists of the state feed-
back —R and the observer which is necessary for reconstruct-
ing the complete state vector. The disturbance feedforward
component was not necessary for the example. In general,
the whole controller (gray part of Figure 2) can be expressed
by a linear time-invariant state system ((1) and (2)).

The state-space approach is a unified method for model-
ing and analyzing linear time-invariant control systems. The
equations are divided into two parts: a system of (1) relates
the state variables x and the input signals u. A second sys-
tem of (2) relates the state variables x and the current input
u to the output signals y. The general form of the state-space
equations is B

X =Ax+Bu, (1)
y= Cx+Du. (2)

Numerical processing

A common method for the realization of digital control sys-
tems is now to (a) transform the differential equations into
difference equations and (b) convert the variables and pa-
rameters from the floating-point to fixed-point or integer
numbers. The differential equations (1) and (2) are trans-
formed into a system of recursive difference state equations
(time discretization)

x(k +1) = Aax(k) + Bau(k),

3
y(k) = Cax(k) + Dau(k). )
Now the state and the output signals are represented by the
sequences {x(k)} and {y(k)}.

Numerical integration methods like implicit rectangular
or trapezoidal integration are thereby widely used to trans-
form controllers from continuous time to discrete time. With
an implicit rectangular integration method, the following
equations represent the transformed matrices, where T is the
discrete sample time and I is the identity matrix:

Ag=1-(a-1)]",
Ban=A4-Ts-B,

Bi= A4 Ba, (4)
Ci=C,

Ds=(C-Ba)+D.

Obviously matrix C remains unaltered whereas A, B, and D
change during the transformation process. Up to now, we
have been using floating-point variables. The next step will
be to scale the control system (scaling) so that the inputs,
states, and outputs fit a given numerical range. For deter-
mining the minimum and maximum values of the controller
state vector x, it is necessary to run simulations with worst-
case controller excitations. The minimum and maximum
values of the controller inputs and outputs can be found
more easily because they are always defined by controller out-
put limitations (for outputs) and sensor signal ranges (for
inputs).
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When using implicit rectangular or trapezoidal integra-
tion methods, we have to take into account that the matrices
A, B, C, and D as well as the state vector x are transformed
(4). For scaling, the minimum and maximum values of x
must be transformed as well:

XTI = x4 Ay - T - B. (5)

Assume we have signed numbers and a numerical range
(Rangey,,) symmetric to zero. To avoid a range overflow
during multiplication of two numbers, each variable is scaled
to the smaller range Range,,, defined as

B | Range,., | Range,.,
RangeMult - ( 2 ) ( 2

_ Rangey,m

=2..] E )

Additionally, the so-called Headroom (in percent) for each
variable can be defined. Together with the physical ranges
PhyRange, the number range Range,,,, (6), and the Head-
room, the scaling factor s; for each element of x,;, y, and u
variables can be computed: B

(6)

3 PhyRange,
~ Rangey,,, - (1 — (0,01 - Headroom))

(7)

Si

Let S = diag(s;) be the diagonal matrices composed of the
scaling factors s;. With these scaling matrices, the new dis-
crete and scaled system matrices are as follows:

Ag=S8, -Ai-S

Bs,d = \S;dl : Ed : §u)

(8)
Cs,d = ‘5;1 -

D,y =S,"-Di-S,

The scaling of the matrices with S is necessary since input,
output, and state vectors are also scaled with S. Neverthe-
less, the coefficients of the matrices A, 4, B; 4, C, 4, and D 4
could be out of the selected number range because only the
ranges of the inputs, outputs, and states were taken into
consideration until now. To avoid overflow, each equation
has to be prepared to allow the representation of the co-
efficients within RangeMult. For this, one uses bit shifting
operations to allow an efficient implementation of multi-
plications. Right shifting causes reduced precision with the
controller evaluation. So the choice of the word length em-
ployed with arithmetic operations is closely related to the
shift amount (Shiftap, Shiftcp):

Ay =25 A,
B;,d — 2ShiftAB . Es,d:
Ciy = 2% . C 4,

Q;,d _ ZShiftCD . Qs,d-

(9)

The right shift operation leads to the new matrices A,
B 4> C, 4> and Dy ;. Since the matrices contain only fixed val-
ues, shifting must be done only once and guarantees that no
overflows will occur during computations. To obtain correct
values, the computation results must be corrected by a final
left shift operation (note that Shiftsz and Shiftcp are nega-
tive)

x(k+1) =275 (AL - x(k) + Byg - u(k)),  (10)

y(k) = 27Shifer . (C ;- x(k) + Dy - u(k)), (1)
x(k) = x(k +1). (12)

The choice of the word length is a compromise between the
numerical precision of the controller and the hardware re-
sources required for the implementation. It is useful to pro-
vide different word lengths for states, inputs, outputs, and
internal multiplication/addition registers. Before hardware
synthesis, our approach provides a simulation-based selec-
tion of the number of bits for the controller variables before
starting the target-specific synthesis of the controller. For the
modeling and simulation of scaled state-space controllers, we
designed a component for our existing simulation environ-
ment CAMeL (Computer-Aided Mechatronics Laboratory)
[7], with a word length that is tunable during runtime.

3. AUTOMATED DESIGN FLOW

In this section, we give a brief description of our design
flow for automatically implementing digital linear controller
systems in hardware. The overall design flow is shown in
Figure 3. After modeling the control path mathematically, an
analysis and simulation is performed. On the basis of this
result, we design the model of the controller. The complete
control loop is then simulated. These steps are aided by the
tool CAMeL. Up to now, our model is continuous, so the
next step is discretization. This is automatically done by an
algorithm performing implicit rectangular or trapezoidal in-
tegration (4). Since floating-point logic leads to very com-
plex hardware, we scale all variables to a fixed-point range
(Section 2). The scaling factors can be determined by sim-
ulation with CAMeL or analytical methods [7]. Based on
the scaling factors and the not-scaled matrices A4, B4, Ca,
and Dy, the scaled matrices A, B; 4, C; 4, and D; ; are au-
tomatically computed by a small C-program. After this, the
program generates a VHDL package which defines the con-
stants and data types used for the application. This package
is included by a parameterizable and generic VHDL tem-
plate shown in Figure 4. This description can be synthesized
by standard synthesis tools to generate the FPGA bit stream
to perform the solving of (10), (11), and (12). Thus, after
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determining the scaling factors, the design flow down to the
hardware is fully automatic.

4. IMPLEMENTATION OF LINEAR CONTROL SYSTEMS

ON RECONFIGURABLE HARDWARE

We compare two different implementations of digital control
systems: a hardware controller and a software program run-
ning on a microprocessor. To prototype the system, an Aptix
System Explorer (http://www.aptix.com/products/mp3.htm)
with a Xilinx Virtex FPGA module (XCV2000E, [8]) is used.
The FPGA is connected to the control path via a D/A con-
verter and signal transducers and can be configured either
for the hardware or for the software solution.

4.1.

The task of the controller hardware is to compute (10), (11),
and (12). Here, x(k), x(k + 1), u(k), and y(k) are vectors
and A, 4, B,y C,4> and D,  are the matrices obtained af-
ter discretization and scaling. All matrix and vector elements
are fixed-point values. Since both (10) and (12) have exactly
the same structure, they can be computed in parallel on two
identical units called MECs (matrix equation calculators).
Each equation is computed once per sample period which
is an integral multiple of the clock period.

The top-level structure of our linear controller design is
shown in Figure 4. Besides the MECs, we have two vector reg-
isters, one for the controller state (REGx) and one for the
output (REG y). The cycle timer is a local state machine for
synchronizing the MECs.

Hardware implementation

Describing the behaviour of the
control path by using ordinary
differential equations

Analysis of eigenvalues, frequency
response etc.; validation of plausibility; and
adjusting the model to the real world

Design of the controller as linear
time-invariant continuous state system; and
simulation of the complete control loop

Transforming the differential equations
of the controller state system to difference
equations

Scaling the system values (input, output,
state) from physical range to numerical
range ([-1, +1[)

Implementing controller as algorithm
and compilation for microcontroller
or synthesis of hardware controller

Realization of target platform (e.g.,

microcontroller or FPGA); hardware
in the loop simulation test

Design flow.

T

/ =

™| MEC / 2

Ax + Bu n P

Cycle timer
u —/%
P A
= MEC S
Cx + Du =
q

F1GURE 4: Architecture of the controller hardware.

The MEC components are identical and compute equa-
tions of the general form

c=M

+Nb (13)
with N and M matrices and a, b, and ¢ vectors. Internally,
an MEC (Figure 5) consists of a vector adder and two scalar
multipliers, each of which computes a matrix-vector product
as a sequence of scalar multiplications of the form

by

ap

—ay byt tan by (14)

by
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FIGURE 5: Architecture of the MEC unit.

Each scalar multiplier in turn consists of a number of booth-
style integer multipliers. The matrices M and N are constant
and hard coded in the vector_gen unit which provides the ma-
trices line by line to the scalar multipliers. The design is com-
pletely specified in VHDL and parameterizable with respect
to the parameters p, 1, g, and the word length, where p is the
dimension of the input vector u, n the number of controller
states, and g the dimension of the output vector y. The re-
source usage of our sample implementation is discussed in
Section 5.2.

4.2. Software implementation

The software implementation is based on the S-core micro-
processor [9] (Figure 6). The S-core processor design is code-
compatible with the Motorola M-core M200 design [10]. It is
a 32-bit single-address RISC machine with load/store archi-
tecture and a performance of up to 50 MIPS. The processor is
available as VHDL core and can be implemented in different
silicon technologies. For the case study in this paper, it is syn-
thesized for the Xilinx Virtex FPGA family and an Infineon
CMOS gate array technology. Programming of the S-core is
supported by the GNU C/C++ tools of the M-core.

5. INVERSE PENDULUM: AN APPLICATION STUDY
5.1. Experiment

Using the design flow presented in Section3 and the
hardware structure proposed in Section 4, we have imple-
mented an FPGA-based linear controller for an inverse pen-
dulum.

The mechanical construction of the pendulum is shown
in Figure 7 and the physical model is given in Figure 8. A
crab is mounted on a spindle which is rotated by a precision
motor. The speed of the motor is simply voltage-controlled.
The pendulum mounted on the crab can swing around by
360 degrees. The spindle as well as the axis where the pen-
dulum is mounted on are connected to incremental trans-
mitters which generate pulses if the spindle rotates or the
pendulum moves. These pulses are used for determining the
crab position (related to a zero position) and the angle of
the pendulum. The task of the linear controller is to bal-
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XK

FIGURE 8: Case study: mechanical model.

ance the pendulum up-side-down over the crab, even if the
pendulum balance is interfered with mechanical pulses. The
physical model (Figure 8) is used to find the parameters for
the mathematical model. The parameter d describes the frac-
tion of the mechanical components, mg and K describe the
masses of the parts of the mechanical construction, and Fx is
the force which is given by the DC motor to the spindle.

The mathematical model of the control path is given by
the following equations:
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Transforming these equations to the general form
x=Ax+Bu (16)

leads to the matrices

0 1 0 0
0 _9c  mcg
mg mg

0 0 0 1
0 9k _ (mg+mg)g  de
mKlG

[
[

With the state vector x = [xk %k ¢¢ ¢c| and the vector
u = [Fk], the mathematical model of the control path is
complete.

Figure 9 illustrates the structure of the controller spec-
ified in Section 2. Compared with Figure 2 in Section 2, the
component A of Figure 9 represents a primitive observer. The
differentiators (in A) are necessary to regenerate the state
vector. Component B corresponds with the controller-R in
Figure 2 and realizes the state controller. For the implemen-
tation, this representation must be transformed into the state
space representation (matrices A, B, C, and D).

Using the representation from (3) for controller de-
sign, we obtain the following controller parameters after dis-

TasLE 1: Comparison between software and hardware implementa-
tion.

Software implementation
e Code size: 8n% + 10n + 77 = 129 Byte
e Clocks per sample = 24n* + 14n + 95 = 219
¢ Word length: 32 Bit

Technology FPGA:

o #CLBs Processor: 4345 (35% FPGA Virtex 2000)
e Delay critical path: 80.05ns

e Max. clock: fis = 12MHz

¢ Max. cycle rate: f,,/219 = 54.79kHz

Technology infineon gate array:

e Clock: fs = 160 MHz
e Cycle rate: f;,/219 = 730.59kHz

Hardware implementation

#MUL: 2(p+1n) = 2(3+2) = 10

#CLBs: 1123 (5% FPGA Virtex 2000)

# of sequential Multiplications: max(n, q) = 3
Clocks per sample = 18 max(n, q) +2 = 56
Word length: 16 Bit extern /32 Bit intern
Delay critical path: 12.838 ns

Max. clock: fis = 77 MHz

Max. cycle rate: fy/56 = 1, 3MHz

cretization (clock rate 1 millisecond):

Ad:[0.88176 0 ]

0 0.88176

Bd:[o 0.11125 0 ]

0 0 0.11125 (18)

Dy = [26860 1327446 447044].

The vector_gen units in the MECs (Section 4.1) contain these
matrix parameters (after scaling) as hard coded constants.
Thus, the VHDL code for the vector_gen units is automati-
cally generated from the control path model.

5.2. Results

The entire controller design in hardware requires about 5%
of the FPGA’s CLB resources and can operate at a maximum
clock frequency of 77 MHz. Each sample requires 56 clock
cycles resulting in a sample rate of 1.38 MHz (sample period
approximately 0.73 microsecond). The S-core processor uses
35% of the FPGA resources, it can be clocked at 12 MHz and
allows a sample rate of 54.79 kHz (sample period is 18.25 mi-
crosecond). By implementing the S-core as an ASIC, operat-
ing frequencies of 160 MHz are possible. With such a system
clock, the example application can be run with a sample rate
of 730 kHz. As shown in Table 1, the sample period increases
quadratically with the problem size in the software imple-
mentation but only linearly in the hardware implementation.
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The experiment shows clearly the advantages of an im-
plementation of digital linear controllers in reconfigurable
hardware for the same flexibility as a software implemen-
tation; it is possible to implement larger control systems as
in software with the same throughput. By exploiting more
parallelism in the MEC units (Section 4.1) (e.g., by using
more multipliers), it is possible to increase further the sam-
ple rate of the hardware architecture. The implicit parallelism
of the reconfigurable hardware allows real-time computation
with high sampling rates. This property leads to controllers
which are more stable than software controllers. Addition-
ally, it is possible to implement also nonstandard fixed-point
number ranges in difference to standard floating-point num-
bers of software implementations for higher precision.

6. CONCLUSIONS

The paper shows how reconfigurable hardware can be used
for the implementation of digital linear controllers that re-
quire a high amount of digital signal processing. We have
presented a new design flow for automatic synthesis of dig-
ital linear controllers from the mathematical description of
the control path. Furthermore, the differences between hard-
ware and software solutions and their computational com-
plexity were discussed for an example of an inverse pen-
dulum controller. The paper shows that it is possible to
implement application-specific hardware structures with a
flexibility comparable to the flexibility of software solu-
tions.

Future work will show that this concept can be used for
the implementation of self-adapting systems. We plan to ap-
ply the described approach to a real-life example of a mecha-
tronic train control system. This case study will be more
complex than in this paper since the following additional
technical requirements have to be considered:

(a) How can reconfigurable hardware be used for imple-
mentation of safety-critical systems?

(b) Can FPGA implementations perform dynamic switch-
ing between different controllers?

In this context, dynamic reconfiguration of FPGA might be
of high importance.
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