
EURASIP Journal on Applied Signal Processing 2003:6, 565–579
c© 2003 Hindawi Publishing Corporation

Logic Foundry: Rapid Prototyping for FPGA-Based
DSP Systems

Gary Spivey
Rincon Research Corporation, Tucson, AZ 85711, USA
Email: spivey@rincon.com

Shuvra S. Bhattacharyya
Electrical and Computer Engineering Department and UMIACS, University of Maryland, College Park, MD 20742, USA
Email: ssb@eng.umd.edu

Kazuo Nakajima
Electrical and Computer Engineering Department, University of Maryland, College Park, MD 20742, USA

New Architecture Open Lab, NTT Communication Science Labs, Kyoto, Japan
Email: kazuo@cslab.kecl.ntt.co.jp

Received 13 March 2002 and in revised form 9 October 2002

We introduce the Logic Foundry, a system for the rapid creation and integration of FPGA-based digital signal processing sys-
tems. Recognizing that some of the greatest challenges in creating FPGA-based systems occur in the integration of the various
components, we have proposed a system that targets the following four areas of integration: design flow integration, component
integration, platform integration, and software integration. Using the Logic Foundry, a system can be easily specified, and then
automatically constructed and integrated with system level software.
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1. INTRODUCTION

A large number of system development and integration com-
panies, labs, and government agencies (hereafter referred to
as “the community”) have traditionally produced digital sig-
nal processing applications requiring rapid development and
deployment as well as ongoing design flexibility. Frequently,
these demands are such that there is no distinction between
the prototype and the “real” system. These applications are
generally low-volume and frequently specific to defense and
government requirements. This task has generally been per-
formed by software applications on general-purpose com-
puters. Often these general-purpose solutions are not ade-
quate for the processing requirements of the applications,
and the designers have been forced to employ solutions in-
volving special-purpose hardware acceleration capabilities.

These special-purpose hardware accelerators come at a
significant cost. The community does not possess the large
infrastructure or volume requirements necessary to pro-
duce or maintain special-purpose hardware. Additionally,
the investment made in integrating special-purpose hard-
ware makes technology migration difficult in an environ-

ment where utilization of leading-edge technology is criti-
cal and often pioneered. Recent improvements in Field Pro-
grammable Gate Array technology have made FPGA’s a vi-
able platform for the development of special-purpose digi-
tal signal processing hardware [1], while still allowing design
flexibility and the promise of designmigration to future tech-
nologies [2]. Many entities within the community are eyeing
FPGA-based platforms as a way to provide rapidly deploy-
able, flexible, and portable hardware solutions.

Introducing FPGA components into DSP system imple-
mentations creates an assortment of challenges across sys-
tem architecture and logic design. Where system architects
may be available, skilled logic designers are a scarce resource.
There is a growing need for tools to allow system architects
to be able to implement FPGA-based platforms with lim-
ited input from logic designers. Unfortunately, getting de-
signs translated from software algorithms to hardware im-
plementations has proven to be difficult.

Current efforts like MATCH [3] have attempted to
compile high-level languages such as Matlab directly into
FPGA implementations. Certain tools such as C-Level De-
sign have attempted to convert “C” software into a hardware
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description language (HDL) format such as Verilog HDL or
VHDL that can be processed by traditional FPGA design
flows. Other tools use derived languages based on C such as
Handel-C [4], C++ extensions such as SystemC [5], or Java
classes such as JHDL [6]. These tools give designers the abil-
ity to more accurately model the parallelism offered by the
underlying hardware elements. While these approaches at-
tempt to raise the abstraction level for design entry, many
experienced logic designers argue that these higher levels of
abstraction do not address the underlying complexities re-
quired for efficient hardware implementations.

Another approach has been to use “block-based design”
[7] where system designers can behaviorally model at the sys-
tem level, and then partition and map design components
onto specific hardware blocks which are then designed to
meet timing, power, and area constraints. An example of this
technique is the Xilinx system generator for the mathworks
simulink interface [8]. Using this tool, a system designer can
develop high-performance DSP systems for Xilinx FPGA’s.
Designers can design and simulate a system using Matlab,
Simulink, and a Xilinx library of bit/cycle-true models. The
tool will then automatically generate synthesizable HDL code
mapped to Xilinx pre-optimized algorithms [8]. However,
this block-based approach still requires that the designer be
intimately involved with the timing and control aspects of
cores in addition to being able to execute the back-end pro-
cesses of the FPGA design flow. Furthermore, the only blocks
available to the designer are the standard library of Xilinx IP
cores. Other “black-box” cores can be developed by a logic
designer using standard HDL techniques, but these cannot
currently be modeled in the same environment. Annapolis
MicroSystems has developed a tool entitled “CoreFire” that
uses prebuilt blocks to obviate the need for the back-end
processes of the FPGA design flow, but is limited in applica-
tion to Annapolis MicroSystems hardware [9]. In both of the
above cases, the system designer must still be intimate with
the underlying hardware in order to effectively integrate the
hardware into a given software environment.

Some have proposed using high-level, embedded system
design tools, such as Ptolemy [10] and Polis [11]. These tools
emphasize overall system simulation and software synthe-
sis rather than the details required in creating and integrat-
ing FPGA-based hardware into an existing system. An effort
funded by the DARPA adaptive computing systems (ACS)
was performed by Sanders (now BAE Systems) [12] that
was successful in transforming an SDF graph into a reason-
able FPGA implementation. However, this effort was strictly
limited to the implementation of a signal processing data-
path with no provisions for runtime control of processing
elements. Another ACS effort, Champion [13], was imple-
mented using Khoros’s Cantata [14] as a development and
simulation environment. This effort was also limited to dat-
apaths without runtime control considerations. While data-
path generation is easily scalable, control synthesis is not. In-
creased amounts of control will rapidly degrade system tim-
ing, often to the point where the design becomes unusable.

In the above brief survey of relevant work, we have ob-
served that while some of these efforts have focused on the

design of FPGA-based DSP processing systems, there has
been less work in the area of implementing and integrat-
ing these designs into existing software application environ-
ments. Typically a specific hardware platform has been tar-
geted, and integration into this platform is left as a task for
the user. Software front-ends are generally designed on an
application-by-application basis and for specific software en-
vironments. Because the community requirements are often
rapidly changing and increasing in complexity, it is neces-
sary for any solution to be rapidly designed and modified,
portable to the latest, most powerful processing platform,
and easily integrated into a variety of front-end software ap-
plication environments. In other words, in addition to the
challenge of creating an FPGA-based DSP design, there is an-
other great challenge in implementing that design and inte-
grating it into a working software application environment.

To help address this challenge, we have created the Logic
Foundry. The Logic Foundry uses a platform-based design
approach. Platform-based design starts at the system level
and achieves its high productivity through extensive, planned
design reuse. Productivity is increased by using predictable,
preverified blocks that have standardized interfaces [7]. To
facilitate the rapid implementation and deployment of these
platform-based designs, we have identified four areas of in-
tegration as targets for improvement in a rapid prototyping
environment for digital signal processing systems. These four
areas are design flow integration, component integration, plat-
form integration, and software integration.

Design flow integration

In addition to standardized component development meth-
odologies [15, 16], we have also proposed that these prever-
ified blocks be assembled with all the information required
for back-end FPGA design automation. This will allow logic
designers to integrate the FPGA design flow into their com-
ponents. With tools we have developed as part of the Logic
Foundry, a system designer can perform back-end FPGA
processing automatically without any involvement with the
technical details of timing and layout.

Component integration

We have proposed that any of the aforementioned pre-
verified blocks, or components, that are presented to the high-
level system designer should consist of standardized inter-
faces that we call portals. Portals are made up of a collection
of data and control pins that can be automatically connected
by the Logic Foundry while protecting all timing concerns.
The Logic Foundry was built with the requirement that it
had to handle runtime control of its components; therefore
we have designed a control portal that can scale easily with
the number of components in the system without adversely
affecting overall system timing.

Platform integration

With the continuing gains in hardware performance, faster
FPGA platforms are continually being developed. These plat-
forms are often quite different than the current generation
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platforms. This can cause portability problems if the unique
platform interface details have been tied deeply into the
FPGA design (e.g., memory latency). Additionally, underly-
ing FPGA technology changes (e.g., from Altera to Xilinx)
can easily break former FPGA designs. Because of the com-
munity need to frequently upgrade to the latest, most pow-
erful hardware platforms, Logic Foundry components are
developed in a platform-independent manner. By providing
abstract interface portals for system input/output, and mem-
ory accesses, designs can be easily mapped into most plat-
form architectures.

Software integration

In addition to the hardware portability challenges, software
faces the same issues as unique driver calls and system access
methodologies become embedded deeply in the software ap-
plication program. This can require an application program
to be substantially rewritten for a new FPGA platform. It is
also desirable to be able to make use of the same FPGA accel-
eration platform from different software environments such
as Python, straight C code, Matlab, or Midas 2k [17] (a soft-
ware system developed by Rincon Research for digital signal
processing). For example, the same application could be used
in a fieldedMidas 2k application as a researcher would access
in a Matlab simulation. Porting the application amongst the
various environments can be a difficult endeavor. In order
to accommodate a wide variety of software front-ends, the
Logic Foundry isolates front-end software applications envi-
ronments and back-end processing environments through a
standardized API. While other tools such as Handel-C and
JHDL provide an API that allows software to abstractly in-
teract with the I/O interfaces, the application must still be
aware of internal hardware details. Our API, known as the
DynamO API, provides dynamic object (DynamO) creation
for the software front-end that completely encapsulates both
I/O details and component control parameters such as reg-
ister addresses and control protocols. Using the DynamO
object and API, an application programmer interacts solely
with the conceptual objects provided by the logic designer.

Each area of integration in the Logic Foundry can be used
independently. While the Logic Foundry provides easy link-
ages between all areas, a user might make use of but one
area, allowing the Logic Foundry to be adopted incremen-
tally throughout the community. For clarity, we will begin
the Logic Foundry discussion with a design example, ex-
plaining how the design would be implemented in an FPGA,
and then how a software system might make use of the hard-
ware implementation. Section 2 introduces this design that
will serve as an example throughout the paper. Sections 3
through 6 detail the four areas of integration, and how they
are addressed by the Logic Foundry design environment.

2. DESIGN EXAMPLE

For an FPGA-based system example, we examine a signal
processing system that contains a tune/filter/decimate (TFD)
process being performed in a general-purpose computer (see
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Figure 1: Tune/filter/decimate.

Figure 1). The TFD is a standard digital signal processing
technique used to downconvert a tuned signal to baseband
and often implemented in FPGA’s [18].

We would like to move the TFD functionality to an FPGA
platform for processing acceleration. Inside the FPGA, the
TFD block will be made up of three cores, a tuner with a
modifiable frequency parameter, an FIR filter with reloadable
taps, and a decimator with a modifiable decimation amount.
The tuner core will contain a numerically controlled oscilla-
tor (NCO) core as well. The TFD will be required to interface
to streaming inputs and streaming outputs that themselves
interface via the pins of the FPGA to the general-purpose
host computer.

The system will stream data through the TFD in blocks
of potentially varying size. While this is occurring, the sys-
tem may dynamically change the tune frequency, filter taps,
or decimation value in both a data-asynchronous and data-
synchronousmanner. We define a data-asynchronous param-
eter access as a parameter access that occurs at an indetermi-
nate point in the data stream. A data-synchronous parameter
access occurs at a determinate point in the data stream.

The output of the TFD will be read into a general-
purpose computer where software will pass the result on to
other processes such as a demodulator. We would like to in-
put the data from either the general-purpose computer or
from an external I/O port on the FPGA platform. Rather
than having a runtime configurable option, we would like to
be able to quickly make two different FPGA images for each
case.

In our example, we assume that we will be using an An-
napolis MicroSystems Starfire [19] card as an FPGA plat-
form. This card has one Xilinx FPGA, plugs into a PCI bus,
and is delivered with software drivers. Our systems applica-
tion software will be Midas 2k [17].

3. DESIGN FLOW INTEGRATION

An FPGA design flow is the process of turning an FPGA de-
sign description into a correctly timed image file with which
the FPGA is to be programmed. Implementing a design on an
FPGA requires that (typically) a design be constructed in an
HDL such as VHDL. This must be done by a uniquely skilled
logic designer who is generally not involved in the system de-
sign process. It is important to note that often, due to the
difference in resources between FPGA’s and general-purpose
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Figure 2: MEADE node structure for the Tune/filter/decimate.

processors, the realized algorithm on an FPGA may be quite
different than the algorithm originally specified by the sys-
tem designer.

While many languages are being proposed as system de-
sign languages (among them C++, Java, and Matlab), none
of these languages perform this algorithmic translation step.
A common belief in the industry is that there will always be a
place for the expert in the construction of FPGA’s [20]. While
an expert may be required for optimal design entry, many
mundane tasks are performed in the design process using a
unique set of electronic design automation (EDA) tools. It is
desirable to automate many of these steps without inhibiting
the abilities of the skilled logic designer.

3.1. MEADE

To more efficiently integrate FPGA designs into a user-
defined EDA tool flow, we have developed MEADE—the
modular, extensible, adaptable design environment [21, 22].
MEADE has been implemented in Perl because of its
widespread use in the community and dominant success as
a glue language and text parser, two requirements for an in-
tegration framework for FPGA design flows.

MEADE requires users to specify a node to represent a
design “building block.” A node can be a small function such
as an adder, or a large design like a turbo decoder. Further-
more, nodes can be connected to other nodes or contain
other nodes, allowing for design reuse and large system def-
initions. In the TFD example, nodes exist for the TFD, the
tuner, the filter, the decimator, and theNCO within the tuner
(see Figure 2).

MEADE nodes are directory structures with an accom-
panying database that fully describes the aspects of the node.
The database is contained in a .meade subdirectory via per-
sistent Perl objects [23]. The database includes information
about node elements such as HDL models and testbenches,
target and included libraries, and included packages. This in-
formation includes file location, any node children, and spe-
cial “blackboards” that can be written and read by MEADE
components for extensible requirements.

MEADE nodes also provide the ability to specify unique
“builds” within a given node. Using the “build” mechanism,
a node can be delivered with VHDL and SystemC implemen-

tations, or with generic, Xilinx, or Altera implementations.
These builds can easily be specified by a top level so that if an
Altera build is desired, the top node specifies the Altera build,
and then any build that has an Altera option uses its custom
Altera elements. Those elements that are generic continue to
be used.

To manipulate the nodes and node information, MEADE
contains an extensible set ofMEADE procedures, actions, and
agents. MEADE procedures are sequences of MEADE ac-
tions. A MEADE action can be performed by one or more
MEADE agents. These agents are used to either perform spe-
cific design flow tasks or encapsulate EDA tools. For exam-
ple, a simulation procedure can be defined as a sequence
of actions—make, debug setup, simulate, debug, and out-
put comparison (see Figure 3). If a design house has mul-
tiple different simulators, such as Mentor Graphics Model-
Sim or Cadence NC-Sim, or third party debuggers such as
Novas Debussy, an agent for each simulator exists and is se-
lectable by the user at runtime. The same holds true for any
other tools (analysis, synthesis, etc.). We have currently im-
plemented simulation agents forMentor GraphicsModelSim
simulator, analysis agents for ModelSim and Novas’ Debussy
debugger, and synthesis agents for Synplify’s Synplicity syn-
thesis tool.

MEADE provides node generation procedures that con-
struct standard nodes with HDL templates for the design
and testbenches. To accommodate rapid testbench construc-
tion, MEADE employs a client/server testbench model [24]
and supplies a group of test modules for interfacing to HDL
debuggers. Design flow scripting is typically automated by
MEADE, but custom tool scripts can be designed by the node
designer. This information is localized to the node being de-
signed by the designer building the node. When used in a
larger system, the system designer does not need to know the
information required to build a subnode, as that informa-
tion is automatically acquired from the subnode by MEADE.
This feature makes MEADE nodes very usable as methods of
IP transfer between different design groups using MEADE.

3.2. EP3

While most of the flow management in MEADE can be done
by tracking files and data through the MEADE agents, some
processes require that files be manipulated in unique and
complex manners. Additionally, this manipulation is not al-
ways desirable to be done in the background in the event that
the core designer may have expert custom tailoring that the
agent designer cannot anticipate. In these instances, we have
found that a preprocessor step is an excellent option formany
of the detailed MEADE files.

The advantage of using a preprocessor rather than a code
generation program is that it gives the HDL designer the abil-
ity to use automation where wanted, but the freedom to en-
ter absolute specifications at will. This is an important fea-
ture when developing sophisticated systems as the designer
typically ventures into areas that the tool programmer had
not thought of. Traditional preprocessors come with a lim-
ited set of directives, making some file manipulations hard or
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Figure 3: The MEADE simulate procedure.

impossible. To this end we developed the extensible Perl pre-
processor (EP3) [25]. EP3 enables a designer to create their
own directives and embed the power of the Perl language into
all of their files—linking them with the node and enabling
MEADE to dynamically create files for its processes. Because
it is a preprocessor rather than an explicit file manipulator,
the designer can easily and selectively enact or eliminate spe-
cial preprocessing directives in choice files for specific agents.

Originally, EP3 was designed as a Verilog HDL prepro-
cessor, but as it was developed, we decided that it should be
simply an extensible standard preprocessor with the ability
to dynamically include directive modules (for VHDL, etc.) at
compile time or in the middle of a run. EP3 scans a file, looks
for directives, strips off the delimiter, and then calls a func-
tion of the same name. The standard directives are defined
within the EP3 program. Library directives or user-defined
directives may be loaded as Perl modules via a command line
switch for inclusion at the beginning of the EP3 run. Perl sub-
routines (and hence EP3 directives) may be dynamically in-
cluded during the EP3 run by simply including the subrou-
tine in the text of the file to be preprocessed.

EP3 has been extended to not only parse files, but also
to read in specification files, build large tables of informa-
tion, and subsequently do dynamic code construction based
on the information. This allows for a simple template file
to create a very complex HDL description with component
instantiations and interconnections done automatically and
with error checking.

3.3. Design flow integration example

Consider the construction of the NCO node in the TFD
example. We begin by first creating a MEADE node with
the command: meade node NCO. This creates a directory
entitled NCO. Inside of this directory, src and sim sub-
directories are created. Template source files (NCO.ep3,
NCO pkg.ep3, and NCO tb.ep3) are copied from the global
MEADE configuration space and modified with the new
node name NCO . Element objects for each of these files are
automatically created in the node’s database. The database
would also be populated with a target compilation library
for the node and a standard build. The package file includes

the VHDL component specification for this entity—this def-
inition is automatically included in the design file and the
testbench automatically by EP3 so that component specifica-
tions can be entered once rather than the several times stan-
dard HDL entry requires. The testbench file includes mod-
ules that provide system and data clocks, resets, and inter-
faces to debuggers in a format for runtime configuration by
the MEADE simulation agents.

After editing the files to create the desired VHDL compo-
nent, the command meade make will invoke the EP3 agent
to run EP3 on the files and produce the output files NCO.vhd,
NCO pkg.vhd, and NCO tb.vhd. The make procedure is of-
ten a subset of other procedures and does not necessarily
have to be run independently. Entering the command meade
sim will execute the default simulator, MentorGraphics’
ModelSim. This involves the creation of a modelsim.ini file
that provides linkages to all required simulation libraries. In
a low-level node such as this one, there are few libraries—
however, all of the MEADE support modules that are in-
cluded in the testbench have their libraries automatically in-
cluded in the modelsim.ini file at this time. The command
line (which can be quite extensive) is formed for the appro-
priate options and the simulation is run. There are many op-
tions that can be handled by the simulation agent, such as
whether or not the simulation is to be interactive or batch
mode, which debugger format is to be used for data dumps,
and simulation frequency, to name a few. Simulation out-
put is directed to an appropriate text output files or simula-
tion dump files and managed for the user as are any simula-
tion make files that are created to avoid excessive recompiles.
Using similar procedures in MEADE, the node can be run
through a debugger (meade analyze), or synthesized to a
structural netlist (meade synthesize).

Using MEADE, designers who may be either learning an
HDL or unfamiliar with the nuances of many of the tools are
able to effectively construct and debug designs. MEADE has
been used successfully to automate mundane aspects of the
design flow in many applications, including HDL file gen-
eration and manipulation, generation of simulation, anal-
ysis, and synthesis configuration files, tool invocation, and
design file management. Admittedly, some designers find
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tool encapsulation intrusive and would rather work outside
of MEADE when developing cores. In these cases, a finished
design can be encapsulated by MEADE in a relatively simple
manner.

Upon node completion, everything about the node is en-
capsulated in the MEADE database. This includes such fea-
tures as which files are required for simulation, which files
are required for synthesis, required simulation libraries and
simulation target libraries, and any subnodes that may be
required by the node. When the tuner component is con-
structed, a child reference to the NCO node is simply in-
cluded in tuner’s required element files. When any MEADE
operations are performed on the tuner node, all tool files and
command lines are automatically constructed to include the
directions specified in the NCO node.

4. COMPONENT INTEGRATION

One of the challenges in rapidly creating FPGA-based sys-
tems is effective design reuse. Many designers find it prefer-
able to redesign a component rather than invest the time
required to effectively integrate a previously designed com-
ponent. As integration is typically done in the realm of the
logic designer, a system designer cannot prototype a system
without requiring the detailed skills of the logic designer. The
Logic Foundry provides a component abstraction that makes
component integration efficient and provides MEADE con-
structs that allow a system designer to create prototype sys-
tems from existing components.

A Logic Foundry component specifies attributes and por-
tals. If you think of a component as a black box contain-
ing some kind of functionality, then attributes are the lights,
knobs, and switches on that box. Essentially, an attribute
is any publicly accessible part of the component, providing
state inspectors and behavioral controls. Portals are the ele-
ments on a component that provide interconnection to the
outside and are made up of user-defined pins.

4.1. The attribute interface

Other attempts at component-based FPGA-based develop-
ment systems have assumed that the FPGA implementation
is simply a static data modifying piece in a processing chain
[12, 13]. Logic Foundry components are designed assuming
that they will require runtime control and thus are speci-
fied as having a single attribute interface through which all
data-asynchronous control information flows. The specifi-
cation of this interface is left as an implementation-specific
detail for each platform (interface mapping to platforms is
described in Section 5). Each FPGA in a system has exactly
one controlling attribute interface and every component has
exactly one attribute interface. All data-asynchronous com-
munications to the components are done through this inter-
face.

An attribute interface consists of an attribute bus, a
strobe signal from the controlling attribute interface, and an
event signal from each component. We have implemented
the attribute bus with a tristate bus that traverses the en-

Strobe Event Attr bus Controlling
attribute
interface

Component
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attribute
interface

Component
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attribute
interface

Component
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attribute
interface

Component
3

attribute
interface

Figure 4: The attribute interface.

tire chip and connects each component’s attribute interface
to the controlling attribute interface (see Figure 4). Because
attribute accesses are relatively infrequent and asynchronous,
the attribute bus uses a multicycle path to eliminate tim-
ing concerns and minimize routing resources. Using a sim-
ple incrementer component that has an input, an output,
and a single amount attribute, we have effectively imple-
mented a design for 1 incrementer, 10 serial incrementers,
and 50 serial incrementers with no degradation in perfor-
mance.

Each component in a system has a unique address in
the system. The controlling attribute interface decodes this
address and enables the component via a unique strobe
line from the controlling attribute interface to the addressed
component. These strobe lines are distributed via delay
chains and are also used by the components for attribute
bus synchronization. Using delay chains costs very little in
an FPGA as there are typically a large number of unused reg-
isters throughout a design. Data and control are multiplexed
on the bus and handled by state machines in each compo-
nent which provide address, control, and data buses inside
each component.

Each component also has an individual event signal that
is passed back to the controlling attribute interface. With the
strobe and the event lines, communication can be initiated
by each end of the system. This architecture elegantly han-
dles data-asynchronous communication requirements for
our FPGA-based processing systems.

Consider the case in the TFD example where a user
wishes to dynamically alter the decimation amount. With
the implementation that we have developed for the Annapo-
lis MicroSystems Starfire board, the application would first
write the controlling attribute interface with the component
address of the decimator, the address of the amount register
within the decimator component, the number of words in the
transfer, the data to be written, and a control word to initiate
the transfer. The controlling attribute interface then begins
the process of transferring the data across the attribute bus
using the distributed delay chain to strobe the component
enable. When the transfer is completed, the controlling at-
tribute interface sets a done flag in its control register and
awaits the next transfer.



Logic Foundry: Rapid Prototyping for FPGA-Based DSP Systems 571

m

Attr I/F

Data

Valid

Ready

Tuner
Algorithm

NCO

Data

Valid

Ready

Tuner

Data

Valid

Ready

Attr I/F

Data

Valid

Ready

Filter
Algorithm

Data

Valid

Ready

Filter

Data

Valid

Ready

Attr I/F

Data

Valid

Ready

Decimator
Algorithm

Data

Valid

Ready

Decimator

Figure 5: Component FIFO interface.

4.2. Data portals

Components may have any number of input/output portals,
and in a DSP system, these are generally characterized by a
streaming data portal. Each streaming portal is implemented
using a FIFO with ready and valid signals (see Figure 5). Us-
ing FIFO’s on the inputs and outputs of a component iso-
lates, both the input and the output of each cell from timing
concerns as all signals going to and coming from an interface
are registered. This allows components to be assembled in a
larger system without fear of timing restrictions arising from
component loading.

By using FIFO’s to monitor data flow, flow control is au-
tomatically propagated throughout the system. It is the re-
sponsibility of every component to ensure that this behavior
is followed inside the component. When an interface can-
not accept data, the component is responsible for stopping.
If the component cannot stop, then it is up to the compo-
nent to handle any dropped data. In our DSP environment,
each data transfer represents a sample. By using flow control
on each stream, there is no need to insert delay elements for
balancing stream paths—synchronization is self-timed [26].

FIFO’s are extremely easy to implement in modern
FPGA’s by using the lookup table (LUT) as a small RAM
component. So, rather than providing a flip-flop for each bit
as a registration between components, a single LUT can be
used and (in the case of the Xilinx Virtex part) a 16 deep
FIFO is created. In the Virtex parts, each FIFO controller
requires but four configurable logic blocks (CLB’s). In the
larger FPGA’s that we are targeting, this usage of resources
is barely noticeable. Control of the FIFO is performed with
simple, valid, and ready signals. Whenever both valid and
ready signals are active, data transitions occur.

In the TFD example, each component receives input and
output FIFO’s. Note that the NCO inside of the tuner com-
ponent is simply a MEADE node and not a component, and
thus receives no FIFO’s. This allows logic designers to build
components out of many subnodes, but expose only the top
level component to the system designer.

4.3. The component specification file

A component is implemented as a MEADE node that con-
tains a component specification file (see Figure 6). The com-
ponent specification file describes any attributes for a com-
ponent, as well as a component’s ports and the pins thatmake

Attribute interface

Amount
Import Export

@attribute portal
@data portal in import
@data portal out export

@attribute {
name => amount,
width => IMPORT DATA WIDTH
length => 1,
source => BOTH,
}

Figure 6: The component specification file.

up those ports. In the TFD example, attributes can be de-
clared of varying widths, lengths, and initial values. The at-
tribute can be written by the system, the hardware, or both.
Attribute addresses may be autogenerated. Because attribute
ports, and streaming data in and out ports are standard for
components, EP3 directives exist to construct these ports.
However, any port type can be declared.

A component’s attributes can have an open-ended num-
ber of parameters, including address, size, depth, initial values,
and writing source (either hardware, software, or both).

The component specification file is included via EP3 in
the component HDL specification. EP3 automatically gener-
ates all of the attribute assignments and read statements and
connects up the attribute interface. This has to be done in the
actual HDL specification because synthesis tools require that
all assignments to a given register occur in the same process
block. Because the component author likely wants internal
access to most of the created attributes, EP3 has to insert the
system portion of the attributes in the same process block.
This same component specification file is ultimately parsed
by the top level software to describe to the system the view of
the component.

It should also be noted that all attribute addresses are
relative to the component. Components are individually ad-
dressed by the attribute interface. In this manner, multi-
ple instances of the same component can easily coexist with
identical attribute addresses, but different component ad-
dresses.

4.4. Component integration example

The component construction process is very similar to
the node construction process described in Section 3.3 as
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Figure 7: Streaming portals.

a component is simply a special type of MEADE node. Con-
sider construction of the decimator component from the
TFD example. Entering the command: meade component
decimator creates aMEADE node entitled decimator. In ad-
dition to the node’s design and template files (which repre-
sent an incrementer by default), a standard component defi-
nition file is also copied into the node. This file can be edited
to add or subtract any component attributes or portals.

In the case of the decimator component, the definition
file would not have to be altered as the stock definition file
has an input portal, an output portal, and a single attribute
entitled amount. The decimator.vhd file would be edited
to change the templates increment function to a decimate
function. The portions of the template file that manage the
attribute interface and portal FIFO instantiations would nor-
mally remain unaltered as they are autogenerated via EP3 di-
rectives.

The testbench template contains servers for the data por-
tals as well as the attribute portal so that system level com-
mands (portal writes/reads and attribute sets/gets) can be
simulated easily in the testbench. While most of the test-
bench would be unaltered, the stimulus section of the test-
bench would be modified to make the appropriate attribute
set/get calls and portal writes and reads.

Performing simulation or synthesis procedures on the
component node is identical to the standard MEADE node.
This process is simplified greatly by MEADE as the FIFO in-
terconnects, attribute interfaces, and testbench modules are
all automatically included as child nodes byMEADE without
any intervention from the component node designer.

5. PLATFORM INTEGRATION

When designing on a particular platform, certain aspects
of the component such as memory and control interfaces
are often built into the design. This poses a difficulty in al-
tering the design, even on the same platform. Changing a
data source from an external source to direct memory access
(DMA) from the PCI bus could amount to a considerable
design change as memory resources and data availability are
considerably altered. This problem is exacerbated by com-
pletely changing platforms. However, as considerably better
platforms are always being developed, it is necessary to be
able to rapidly port to these platforms.

Some work has recently been undertaken in this arena as
a joint venture between Wind River with their Board Sup-

port Package (BSP) and Celoxica’s platform abstraction layer
(PAL) [27]. A similar methodology was undertaken by JHDL
[6] with its HWSystem class. These efforts attempt to ab-
stract the I/O interfaces between a processing platform and
its host software environment, allowing an application that
is developed on one platform to be migrated to another plat-
form. However, the issues of platform-specific I/O to desti-
nations other than the host software environment and on-
board memory interfaces are not specifically addressed.

To combat this problem, the Logic Foundry employs an
abstract portal for all design level interfaces. A Logic Foundry
design is specified in a design node (as opposed to a com-
ponent node) with abstract portals. Design nodes represent
complete designs that are platform-independent and use
generic portals. Abstract portals are connected to component
portals when building a design. These abstract portals can
then be mapped to a specific platform portal in what we call
an implementation node. This form of interface abstraction
is common in the design of reusable software; our contribu-
tion here is to develop its capabilities in the context of FPGA
implementation and DSP hardware/software integration.

5.1. Abstract portal types

There are various portal types for differing needs. While new
portal types can easily be developed to suit any given need,
each abstract portal type requires a corresponding imple-
mentation portal for every platform. For this reason, we at-
tempt to reuse existing portals whenever possible. We cur-
rently support three portal types: the streaming portal, the
memory portal, and the block portal.

5.1.1 The streaming portal

A streaming portal is used whenever an application expects
to stream data continuously. Depending on the implemen-
tation, this may or may not be the case (compare an A/D
converter direct input to a PCI bus input that is buffered in
memory via a DMA), but the design will be able to handle a
streaming input with flow control.

A streaming input portal consists of a data output, a data
valid output, and a data ready input. The design deasserts
the data ready flag when it cannot accept data. Whenever
the valid and ready signals are asserted, data transitions oc-
cur across the portal. A streaming output portal is identi-
cal to a streaming input portal with the directions changed.
Streaming portals connect directly to the streaming portals
of a component (see Figure 7).
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Streaming portals may be implemented in many differ-
ent ways—among these, a direct DMA input to the design,
a direct hardware input, a gigabit Ethernet input, or a PMC
bus interface. At the design level, all of these interface types
can be abstracted as a streaming portal.

5.1.2 Thememory portal

There are different types of memory accesses that need to
be accounted for local memory, external memory, dedicated
memory and an arbitered memory, dual-port varieties, and
so forth. All memory portals consist of data in, data out, ad-
dress, read enable, write enable, and clock pins. We provide a
group of portals that build on these common characteristics.

(a) Local (on-chip) memory

For many FPGA applications, we allow the assumption that
the design has access to some amount of dedicated local
memory (e.g., Block RAMS in a Xilinx Virtex Part). The
Logic Foundry integrates such local memories as subnodes of
a design rather than memory portals as the performance and
control gains are too significant to be ignored. This does not
greatly affect portability as successive generations of FPGAs
tend to have more local memory rather than less. Addition-
ally, drastically limiting the amount of memory available to
a design would likely require algorithmic changes that would
render the design unportable anyway.

(b)Design external memory

In the case of the dedicated memory, it may be desirable
to pipeline memory accesses so that data can be rapidly
streamed with a little latency. In the case of an arbitered
memory, the memory portal must follow a transaction
model, holding its memory access request until acknowl-
edgement is given. These two conflicting models must be
merged into a single abstract memory portal. We do this by
changing the read enable and write enable lines to read re-
quest and write request lines, respectively, and adding control
pins for an access acknowledgement. By using these control
signals for every external memory portal, the implementa-
tion will be able to map the abstract memory portals to avail-
able memory resources, using arbitered or dedicated memo-
ries wherever appropriate.

One issue in the memory portal is the variable width of
the memory port. By specifying a width on the portal, we will
currently allow mapping to a memory implementation that
is as wide as or wider than specified, padding the unused bits.
This can result in an inefficient use of memory when the ab-
stract width is specified as 8 bits and the actual memory is
32 bits wide. In this situation, it might be desirable to pack
memory words into the larger memory, however, each mem-
ory write would have to be replaced by a read-modify-write,
thus slowing memory access times. When the situation is re-
versed and the implementation memory is smaller than the
abstract memory portal, the implementation will be forced
to do address modifications and multiple read/write accesses
for each memory access request.

This situation can be addressed intelligently in certain

Attr

Import

Tuner

Filter

Decimator

Export

@attribute portal
@data portal in import
@data portal out export

@component tuner t
@component filter f
@component decimator d

@connect import to t.import
@connect t.export to f.import
@connect f.export to d.import
@connect d.export to export

Figure 8: Design specification file.

cases. Consider the case where four memories hold four sep-
arate arrays to be processed in a vector fashion. If the data is
eight bits wide, all of the memories can be implemented by
one 32 bit wide memory that shares address control.

5.1.3 The block portal

A block portal is similar to the memory portal and provides
the samememory interface to access a block of data. It differs
from thememory portal in that the block portal also provides
transfer initiation control signals that allow an entity on the
other side of the portal to transfer in/out the block. The block
portal differs from the streaming portal in the location of the
transfer initiation control. In the streaming portal, all trans-
fers are initiated outside of the design block and the design
block responds in a continuous manner. In the block por-
tal, transfer initiation and block size are dictated by the block
portal.

5.2. The design specification file

Logic Foundry designs are constructed asMEADE nodes that
contain a design specification file. The design specification
file describes the components included in a design as well as
the design portals. Components are connected to other com-
ponents or portals via their ports.

The design specification file is included via EP3 in the
design HDL specification. The design HDL specification is a
shell HDL template that is completely filled in as EP3 instan-
tiates and interconnects all of the design components. The
portals become nothingmore thanHDL ports in the top level
HDL design file. EP3 checks to ensure that all port connec-
tions are correct in type, direction, and size. It also assigns
addresses to each component.

However, in the HDL testbench, all of the portals sup-
ply test models so that the design can be fully simulated as
a platform-independent design. Figure 8 shows a sample de-
sign specification file for the TFD design. In this design, data
portals are created (named import and export). The compo-
nents required are declared and then the components and the
portals are connected. The attribute portals of the design and
the components are automatically connected.
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Attribute
interface

DMA
stream
in

Tuner

Filter

Decimator

DMA
stream
out

@design tfd

@starfire map tfd.attr attribute interface
@starfire map tfd.import dma stream in {
memory => {

Memory => Left Local Mem,
Start Addr => 0,
Size => 128 ∗ 1024,
}

}
@starfire map tfd.export dma stream out {
memory => {

Memory => Right Local Mem,
Start Addr => 0,
Size => 128 ∗ 1024,
}

}

Figure 9: Implementation specification file.

In the MEADE design node, the top level HDL specifica-
tion is generated via EP3, and the entire design can be simu-
lated and synthesized with MEADE. If a filter/tune/decimate
(FTD) is desired rather than the TFD, the connection order
is changed and the MEADE procedures can be rerun.

5.3. The implementation specification file

The final platform implementation is implemented as a
MEADE node that contains an implementation specification
file. The implementation specification file includes the de-
sign to be implemented as well as a map for each portal to
an implementation-specific interface. Additionally, individ-
ual components of the design may be mapped to different
FPGAs on a platform with multiple different FPGAs. For the
purposes of this work, we will focus on a single FPGA im-
plementation and do the implementation by hand. If a plat-
form consists of both an FPGA and a DSP chip, the system
we are describing would provide an excellent foundation for
research work in automated partitioning and mapping for
hardware software cosynthesis [28].

The implementation specification file (see Figure 9) is in-
cluded via EP3 in the implementation HDL specification.
Essentially, the implementation HDL specification is a shell
HDL template that is completely filled in as EP3 instantiates
and interconnects all of the interfaces objects and the design
core.

In the implementation file, platform-dependent map-
pings (starfire map represents a mapping call for the An-
napolis MicroSystems Starfire board) map implementation-
specific nodes to the design portals desired. In this example,
a dma stream in node exists that performs the function of a
stream in portal on a Starfire board. This node has param-
eters that indicate which on-board memory to map to, the
start address, and the size of the memory being used.

6. SOFTWARE INTEGRATION

Another challenge encountered when creating a special-
purpose hardware solution is the custom software that must

TFD

Tuner Filter Decimator

Frequency Taps Amount
Import Export

Figure 10: The DynamO object.

be developed to access the hardware. Often, a completely
new software interface is developed for each application to
be placed on a platform. When changing platforms, the en-
tire software development process may be redone for the new
application. It is also desirable to embed the performance
of FPGA-based processors into different application envi-
ronments. This requires understanding of both the applica-
tion environment and the underlying FPGA-based system—
knowledge that is difficult to find.

To resolve this problem, we have developed the DynamO
model. The DynamO model consists of a DynamO object,
a DynamO API, DynamO front-ends, and DynamO back-
ends. The DynamO object represents the entire back-end
system to the front-end application with a hierarchial object
that corresponds to the hierarchy of components and portals
that were assembled in the Logic Foundry design. These ele-
ments are accessed via the DynamO API. The DynamO API
represents the contract that DynamO back-ends and front-
ends need to follow. The front-ends are plug-ins to higher
level development environments like Matlab, Python, Perl,
andMidas 2k [17]. DynamO back-ends are wrappers around
the board-specific drivers or emulators such as the Annapolis
Starfire board [19].

6.1. The Dynamic Object (DynamO)

The DynamO object consists of a top level system compo-
nent. This is a container for the entire back-end system.
DynamO components can contain portals, attributes, and
other components. In addition to these objects, methods
and parameters are provided that allow the DynamO API to
uniquely interact with the given object. In the case of the TFD
example on the Annapolis Starfire board, a DynamO Starfire
back-end creates a DynamO object with a top level system
component TFD. This component would contain an input
portal, an output portal, and three components, tuner, filter,
and decimator. Each of these components would themselves
contain an attribute, frequency, taps, and amount, respectively
(see Figure 10).

Along with the objects, the DynamO Starfire back-end
would attach methods for attribute sets and gets, and por-
tal reads and writes. Embedded within each object is the in-
formation required by the back-end to uniquely identify it-
self. For example, while the frequency attribute of the tuner
component, the taps attribute of the filter component, and
the amount attribute of the decimator component would all
use the same set/get methods for attributes, the component
and attribute addresses embedded within them would be
different.



Logic Foundry: Rapid Prototyping for FPGA-Based DSP Systems 575

Python

C/C++

Midas 2k

Matlab

System

Attribute get

Attribute set

Attribute event

Portal write

Portal read

Starfire

Chameleon

SystemC

Figure 11: The DynamO API.

Using the DynamO methodology, any back-end recon-
figurable system can dynamically be built by a back-end
based on the current configuration of the hardware. While
the Logic Foundry uses a consistent attribute interface for all
components and thus has but one interface method, a Dy-
namO back-end could be constructed with different types
of attribute access and multiple methods. By attaching these
different methods to the required attributes on object build,
the same level of software application independence can be
achieved.

6.2. The DynamOAPI

The DynamO API represents the contract that DynamO
back-ends and front-ends need to follow. The DynamO API
consists of calls to allocate a system, set and get attributes,
and write and read portals. These calls are implemented by
the back-end library as the functionality is unique to each
back-end platform (see Figure 11).

The API “system” call requires a system specification file
as an argument. The very beginning of this file points to a
back-end implementation and a library to parse the rest of
the specification file. In this manner, different back-ends can,
if desired, have their own specifications unique to a given
platform. By making the parsing of a specification file the
responsibility of the back-end, there is no limitation on fu-
ture back-end implementations. The result of the system call
is an object representing the system being allocated (typically
an FPGA board).

Each attribute in the system is writable by the back-end,
front-end, or even both. This can be specified in the compo-
nent specification file. The back-end is responsible for pro-
viding a method for attribute sets/gets. If a user is using

the complete Logic Foundry implementation, then software
wrappers around the board drivers exist that use the FPGA
attribute portal to write the component attributes.

Portals are designed to have simple read/write interfaces.
The DynamO API uses a packet structure to communicate
with portals. This allows portals to differentiate between con-
trol and data and allows data-synchronous control to be
passed into the portal rather than asynchronously through
the attribute interface. The underlying FPGA hardware must
be configured to handle these packets as well.

6.3. DynamOback-ends

The DynamO back-end connects a platform to the DynamO
API. When the DynamO is allocated, the back-end provides
a library method to parse the specification file, and returns a
hierarchical DynamO object that contains all of the informa-
tion for the requested system. In this manner, the application
environment is given an object with methods that represent
the architecture of the system that is to be interacted with.
No understanding of the implementation details of the un-
derlying hardware is required.

While we hope that others find the Logic Foundry easy
to use, it is important to note that the DynamO specification
file does not require anything from the Logic Foundry. A de-
signer could build a completely unique implementation, and
then specify the underlying objects and methods for access-
ing them into a specification file.

6.4. DynamO front-ends

A DynamO front-end is possible for many software applica-
tion environments. It is easier to implement applications in a
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# Load the library in Python
import dynamo

# Open up a dynamo object
tfd = dynamo.system(“tfd.spec”)

# Get an attribute
tune freq = tfd.tuner.frequency

# Set an attribute
tfd.decimator.amount = 10

# Set an attribute with an array
taps = dynamo.array(‘d’,2)
taps[0] = 123
taps[1] = 456
tfd.filter.taps = taps

# Create a dynamo packet
p = dynamo.DataPacket(‘d’ 1000)

# Initialize p
for i in xrange(1000):
p.data[i] = i∗2
# Write data to the import portal
tfd.import.write(p)

# Read data from the export portal
p = tfd.export.read()

Figure 12: Python DynamO example.

multithreaded environment as the application does not have
to be concerned with the possibility of blocking on portal
reads and writes. We have already implemented a DynamO
front-end for C++, Python, and Rincon Research’s Midas 2k
DSP environment.

The DynamO front-end is responsible for taking the Dy-
namO object returned by the system method and trans-
forming it into an object that the software environment can
understand and access. For instance, using a Python front-
end, the DynamO object is recreated in Python objects, with
its methods mapped to the supplied DynamO object meth-
ods. Figure 12 demonstrates how a Python application script
would interact with the DynamO API and the DynamO ob-
ject in the TFD design example. Note that there is absolutely
no evidence of implementation-specific details such as regis-
ter addresses or communication protocols.

7. EXPERIMENTAL RESULTS

We have developed the Logic Foundry including all of the
major building blocks described—VHDL implementations
for MEADE, EP3, attribute interfaces, component abstrac-
tions and interface portals, the get/set and data write/read
portions of the DynamO API, DynamO back-ends for the
Annapolis MicroSystems Starfire board, and DynamO front-
ends for C++, Python, andMidas 2k. To test the effectiveness
of the Logic Foundry, three systems have been developed, a
series incrementer, the TFD, and a turbo decoder.

7.1. Incrementer design

The incrementer component consists of a streaming input
portal, a streaming output portal, and an amount attribute
that is added to the input before being passed to the output.
We experimented with the incrementer component using an
Annapolis MicroSystems Starfire board. This platform con-
sists of four memory ports attached to an FPGA. Annapolis
MicroSystems provides a shell for the FPGA, DMA bridges to
transfer data from the PCI bus to the memory, and software
driver calls to perform the DMA’s. To create the streaming

input and output portals, we modified the DMA bridges to
add control for streaming data into and out of memory. Ad-
ditionally, a DynamO library was created that provided por-
tal write and read methods using the Annapolis DMA Driver
calls wrapped with the extra control to manage the modifi-
cations to the DMA bridges.

To control the Starfire card, Annapolis MicroSystems
supplies driver calls to do addressable I/O via the PCI bus.
However, the control is tightly timed and the Annapolis Mi-
croSystems architecture implementing our portal function-
ality requires seven control elements at the top level. When
the number of elements attached to the control bus begins
to exceed 10 or so elements, achieving the required timing
of 66MHz on a Xilinx XCV1000-4 can be difficult. For the
Logic Foundry, we have built an attribute interface for all
component control in the Starfire system and created Dy-
namO interfaces to set/get attributes via this interface. The
Starfire control bus is thus required to connect only to the
DMA bridges, the attribute interface, and any top level con-
trol registers required for operation. These connections re-
main constant with the addition of new components.

To test the scalability of the Logic Foundry architecture,
we created incrementer designs consisting of 1, 10, and 50 in-
crementer components connected together in series. In each
case, system timing remained the same as the synthesis and
layout tools were able to achieve the required 66-MHz con-
trol timing for the Starfire control bus, while the attribute
interface is scaled using the multicycle attribute bus (see
Table 1). It was initially our intention to do a design con-
sisting of 100 serial incrementers, however, we reached a limit
for the XCV1000 parts that only allows a tristate net to drive
98 locations. This limits an XCV1000 part to 98 components
which is acceptable for our typical designs.

To create the different designs, we used a simple Perl
script to generate the design specification files that instantiate
and connect the components. All of the simulation, synthe-
sis, and place and route steps were performed using simple
MEADE commands.

7.2. TFD design

In order to create the TFD design, we began with an NCO
element created by using the Xilinx Coregen tool. This re-
sulted in a Xilinx-specific structural VHDL file. To contain
this file, an NCO node was created in MEADE. An element
object was created for the Xilinx VHDL file and the node ob-
ject was edited to contain this element. This node was then
wrapped by a tuner. To accomplish this, a new component
node was created and its element object was edited to point
to the NCO node as child node. The component definition
file was edited to contain a phase increment attribute for the
NCO (rather than a frequency attribute), and then the com-
ponent VHDL files were edited to instantiate the NCO, pro-
vide portal connectivity and control, and perform the tuner
function bymultiplying theNCO outputs with the tuner’s in-
puts. These files, in their preprocessed state, contain approx-
imately 50 lines of user-edited VHDL code for component
functionality and 100 lines of total code. The attribute in-
terfaces and portal FIFO instantiations are all automatically
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Table 1: Summary of designs.

Control Clk System Clk LUT’s Flip-flops Block-rams

1 Incrementer 68.648 62.278 1328 1809 5

10 Incrementers 68.078 65.557 2007 2244 5

50 Incrementers 66.885 70.299 4959 4076 5

TFD 68.018 35.661 2873 2238 6

FTD 67.604 35.177 2873 2222 6

Turbo-decoder 67.290 39.787 17031 5600 27

included via the preprocesser. The processed VHDL files con-
tain approximately 240 lines of VHDL code. The number of
automated lines of code will vary depending on the number
of attributes in the component. This same process was per-
formed to create the filter component (using an FIR VHDL
file created by the Xilinx Coregen tool). The decimator com-
ponent was created with a few simple additions to the default
MEADE template.

When all three components were completed, a design
specification file was created (see Figure 8) as well as an im-
plementation specification file (see Figure 9). These files were
used byMEADE to create a complete implementation for the
FPGA and system controlling software via the DynamO in-
terfaces.

In order to test the ease of component reuse in the Logic
Foundry, we opted to create an FTD system out of the TFD
system components. To accomplish this task, the design spec-
ification file was altered to change the connection order of
the three components. MEADE was used to recreate the de-
sign using the same implementation specification file. Dy-
namO front-end objects were automatically changed due to
the change in the design specification file. In both cases, con-
trol timing was achieved and system timing was limited by
the speed of the tuner component (see Table 1).

7.3. The turbo decoder design

Our final design was to take a large design (several thou-
sand lines of VHDL code) written outside of MEADE, but
with a view to fitting into the Logic Foundry attribute/portal
design structure. When the design was completed, it was
wrapped with a MEADE component in the same manner
as the tuner described above. The turbo decoder design cre-
ated unique challenges—firstly, the streaming portal design
would not work as the turbo decoder worked on blocks of
data and had to individually address these blocks of data. For
this reason we created the block portal interface described in
Section 5.1.3.

The turbo decoder design required seven attributes and
these were easily included via the attribute interface model.
Implementing the block portals was more difficult as the
completed turbo decoder design required eight unique block
portals, five of which requiring simultaneous access. As the
Starfire board had but four memories, this was a problem.
However, as some of the portals did not require independent
addressing, we were able tomerge them into a single memory

and achieve an implementation that required four indepen-
dently addressable memories. To accomplish this, we hand
edited the implementation VHDL file and did not autogen-
erate it from the implementation specification file.

This example showed that we could take a design and use
some of the Logic Foundry without requiring tight integra-
tion into the whole of the Logic Foundry. Software integra-
tion was done automatically, and the component architecture
of the Logic Foundry was used, but the top level FPGA im-
plementation specification and turbo decoder design and test
were performed outside of the Foundry.

7.4. Summary of designs

Table 1 shows results for each of the test designs implemented
for the XCV1000-4 FPGA on the Annapolis MicroSystems
Starfire board. Because control on this system is achieved via
a 66-MHz PCI bus, the control clocks were all constrained
to achieve this timing. In the case of the incrementer de-
signs, the system clock performance was limited by the por-
tal implementations. The other designs (TFD, FTD, turbode-
coder) were limited by issues internal to their design com-
ponents. Further development will be done to optimize the
portal implementations for this architecture. The differences
within design groups (incrementers and downconverters) are
attributable to variances in the Xilinx software. The pseudo-
random nature of the algorithms often results in variances.
By doing a more extensive place-and-route operation, we
would likely see these numbers converge.

8. CONCLUSION

We have introduced the Logic Foundry and shown how this
approach allows for the rapid prototyping and deployment
of FPGA-based systems. By using MEADE and EP3, a de-
sign engineer can rapidly create and operate on design com-
ponents. These components can be entered in a library for
efficient reuse by system designers. By using MEADE and
EP3, system engineers can create an FPGA image file with-
out requiring the specialized design tool knowledge of a logic
designer. Using design portals for interface abstractions, de-
signs can be created in a platform-independent manner and
easily ported from one FPGA platform to another where im-
plementation portals exist. Finally, by using the DynamO
software construction, applications can be built that have no
dependence on the underlying FPGA platform and can easily
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be ported from platform to platform. Inserting a platform
into a different software environment can also be done with
relative ease.

While the entire Logic Foundry fits together as a whole,
it is important to recognize that each piece can be used
independently. One design house may simply want to use
MEADE and EP3 as automation tools for FPGA construc-
tion, where another design house may want to use the Dy-
namO aspects without requiring any of the FPGA construc-
tion mechanisms.

Our future work will focus on the complete implemen-
tation of the data-synchronous control packets, component
event control, and the control write/read portions of the Dy-
namO API. We will also be integrating the Chameleon board
from Catalina Research Incorporated as a demonstration of
platform migration. Additionally, we plan on implementing
a DynamO front-end for Matlab as well as a DynamO back-
end for SystemC to allow algorithm emulation in software.
We have implemented the Logic Foundry at Rincon Research
and the tool is being used extensively in the development of
high performance FPGA implementations of DSP applica-
tions, including turbo coding, digital downconversion, and
despreading applications.
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