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Because of their excellent error-correcting performance, low-density parity-check (LDPC) codes have recently attracted a lot of
attention. In this paper, we are interested in the practical LDPC code decoder hardware implementations. The direct fully parallel
decoder implementation usually incurs too high hardware complexity for many real applications, thus partly parallel decoder
design approaches that can achieve appropriate trade-offs between hardware complexity and decoding throughput are highly
desirable. Applying a joint code and decoder design methodology, we develop a high-speed (3, k)-regular LDPC code partly parallel
decoder architecture based on which we implement a 9216-bit, rate-1/2 (3, 6)-regular LDPC code decoder on Xilinx FPGA device.
This partly parallel decoder supports a maximum symbol throughput of 54 Mbps and achieves BER 107° at 2 dB over AWGN

channel while performing maximum 18 decoding iterations.
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1. INTRODUCTION

In the past few years, the recently rediscovered low-density
parity-check (LDPC) codes [1, 2, 3] have received a lot of at-
tention and have been widely considered as next-generation
error-correcting codes for telecommunication and magnetic
storage. Defined as the null space of a very sparse M X N
parity-check matrix H, an LDPC code is typically represented
by a bipartite graph, usually called Tanner graph, in which
one set of N variable nodes corresponds to the set of code-
word, another set of M check nodes corresponds to the set
of parity-check constraints and each edge corresponds to
a nonzero entry in the parity-check matrix H. (A bipartite
graph is one in which the nodes can be partitioned into two
sets, X and Y, so that the only edges of the graph are be-
tween the nodes in X and the nodes in Y.) An LDPC code
is known as (j, k)-regular LDPC code if each variable node
has the degree of j and each check node has the degree of
k, or in its parity-check matrix each column and each row
have j and k nonzero entries, respectively. The code rate of a
(j, k)-regular LDPC code is 1 — j/k provided that the parity-
check matrix has full rank. The construction of LDPC codes
is typically random. LDPC codes can be effectively decoded
by the iterative belief-propagation (BP) algorithm [3] that,
as illustrated in Figure 1, directly matches the Tanner graph:

decoding messages are iteratively computed on each variable
node and check node and exchanged through the edges be-
tween the neighboring nodes.

Recently, tremendous efforts have been devoted to ana-
lyze and improve the LDPC codes error-correcting capabil-
ity, see [4, 5, 6, 7, 8, 9, 10, 11] and so forth. Besides their
powerful error-correcting capability, another important rea-
son why LDPC codes attract so many attention is that the
iterative BP decoding algorithm is inherently fully parallel,
thus a great potential decoding speed can be expected.

The high-speed decoder hardware implementation is ob-
viously one of the most crucial issues determining the extent
of LDPC applications in the real world. The most natural so-
lution for the decoder architecture design is to directly in-
stantiate the BP decoding algorithm to hardware: each vari-
able node and check node are physically assigned their own
processors and all the processors are connected through an
interconnection network reflecting the Tanner graph con-
nectivity. By completely exploiting the parallelism of the BP
decoding algorithm, such fully parallel decoder can achieve
very high decoding speed, for example, a 1024-bit, rate-1/2
LDPC code fully parallel decoder with the maximum symbol
throughput of 1 Gbps has been physically implemented us-
ing ASIC technology [12]. The main disadvantage of such
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FIGURE 1: Tanner graph representation of an LDPC code and the decoding messages flow.

fully parallel design is that with the increase of code length,
typically the LDPC code length is very large (at least several
thousands), the incurred hardware complexity will become
more and more prohibitive for many practical purposes,
for example, for 1-K code length, the ASIC decoder imple-
mentation [12] consumes 1.7M gates. Moreover, as pointed
out in [12], the routing overhead for implementing the en-
tire interconnection network will become quite formidable
due to the large code length and randomness of the Tan-
ner graph. Thus high-speed partly parallel decoder de-
sign approaches that achieve appropriate trade-offs between
hardware complexity and decoding throughput are highly
desirable.

For any given LDPC code, due to the randomness of its
Tanner graph, it is nearly impossible to directly develop a
high-speed partly parallel decoder architecture. To circum-
vent this difficulty, Boutillon et al. [13] proposed a decoder-
first code design methodology: instead of trying to conceive
the high-speed partly parallel decoder for any given ran-
dom LDPC code, use an available high-speed partly par-
allel decoder to define a constrained random LDPC code.
We may consider it as an application of the well-known
“Think in the reverse direction” methodology. Inspired by
the decoder-first code design methodology, we proposed
a joint code and decoder design methodology in [14] for
(3, k)-regular LDPC code partly parallel decoder design. By
jointly conceiving the code construction and partly paral-
lel decoder architecture design, we presented a (3, k)-regular
LDPC code partly parallel decoder structure in [14], which
not only defines very good (3, k)-regular LDPC codes but
also could potentially achieve high-speed partly parallel
decoding.

In this paper, applying the joint code and decoder design
methodology, we develop an elaborate (3, k)-regular LDPC
code high-speed partly parallel decoder architecture based
on which we implement a 9216-bit, rate-1/2 (3, 6)-regular
LDPC code decoder using Xilinx Virtex FPGA (Field Pro-
grammable Gate Array) device. In this work, we significantly
modify the original decoder structure [14] to improve the de-
coding throughput and simplify the control logic design. To
achieve good error-correcting capability, the LDPC code de-
coder architecture has to possess randomness to some extent,
which makes the FPGA implementations more challenging
since FPGA has fixed and regular hardware resources. We
propose a novel scheme to realize the random connectivity
by concatenating two routing networks, where all the ran-
dom hardwire routings are localized and the overall routing

complexity is significantly reduced. Exploiting the good min-
imum distance property of LDPC codes, this decoder em-
ploys parity check as the earlier decoding stopping criterion
to achieve adaptive decoding for energy reduction. With the
maximum 18 decoding iterations, this FPGA partly parallel
decoder supports a maximum of 54 Mbps symbol through-
put and achieves BER (bit error rate) 107 at 2dB over
AWGN channel.

This paper begins with a brief description of the LDPC
code decoding algorithm in Section 2. In Section 3, we briefly
describe the joint code and decoder design methodology for
(3, k)-regular LDPC code partly parallel decoder design. In
Section 4, we present the detailed high-speed partly parallel
decoder architecture design. Finally, an FPGA implementa-
tion of a (3, 6)-regular LDPC code partly parallel decoder is
discussed in Section 5.

2. DECODING ALGORITHM

Since the direct implementation of BP algorithm will incur
too high hardware complexity due to the large number of
multiplications, we introduce some logarithmic quantities
to convert these complicated multiplications into additions,
which lead to the Log-BP algorithm [2, 15].

Before the description of Log-BP decoding algorithm,
we introduce some definitions as follows. Let H denote the
M x N sparse parity-check matrix of the LDPC code and
H;j denote the entry of H at the position (i, j). We de-
fine the set of bits n that participate in parity-check m as
N(m) = {n : Hp, = 1}, and the set of parity-checks m in
which bit n participates as Jl(n) = {m : Hy, = 1}. We de-
note the set N'(m) with bit n excluded by N'(m) \ n, and the
set M (n) with parity-check m excluded by Jl(n) \ m.

Algorithm 1 (Iterative Log-BP Decoding Algorithm).

Input

The prior probabilities p% = P(x, = 0) and p), = P(x, = 1) =
1-p%n=1,...,N;

Output

~

Hard decision X = {X1,..., XN };
Procedure
(1) Initialization: For each n, compute the intrinsic (or
channel) message y, = log p/pl and for each (m,n) €
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{(i,j) | Hij = 1}, compute

. 1+ eIl
O = sign (y,) log (m>, (1)
where
. +L yn 20,
n) = 2
sign (yn) <|_L b <0, (2)

(2) Iterative decoding
(i) Horizontal (or check node computation) step: for
each (m,n) € {(i, j) | H;;j = 1}, compute

1+e@
ﬂm,"_log<le—a> 1_[

n' eN(m)\n

sign (), (3)

. Whe(e o= Zn’eN(m)\n |am,n’ | )
(ii) Vertical (or variable node computation) step: for

each (m,n) € {(i, j) | Hy;j = 1}, compute

. 1 + e“)’m,n‘
An = SIgN (Ymn) log (W), (4)
where Ymn = Yn + 2pwettin)\m Pmon. For each
n, update the pseudoposterior log-likelihood ratio
(LLR) A, as

An = Yn + Z ﬁm,n- (5)

mel(n)

(iii) Decision step:
(a) perform hard decision on {Ay,..., AN} to ob-
tain X = {Xy,..., XN} such that X, = 0 if
A >0andx, = 1ifA < 0;
(b) if H-X = 0, then algorithm terminates, else go
to horizontal step until the preset maximum
number of iterations have occurred.

We call ay,, and By, in the above algorithm extrinsic
messages, where a,,, , is delivered from variable node to check
node and f3,,,, is delivered from check node to variable node.

Each decoding iteration can be performed in fully paral-
lel fashion by physically mapping each check node to one in-
dividual check node processing unit (CNU) and each variable
node to one individual variable node processing unit (VNU).

Moreover, by delivering the hard decision &; from each VNU
to its neighboring CNUs, the parity-check H - X can be eas-
ily performed by all the CNUs. Thanks to the good min-
imum distance property of LDPC code, such adaptive de-
coding scheme can effectively reduce the average energy con-
sumption of the decoder without performance degradation.

In the partly parallel decoding, the operations of a cer-
tain number of check nodes or variable nodes are time-
multiplexed, or folded [16], to a single CNU or VNU. For
an LDPC code with M check nodes and N variable nodes, if
its partly parallel decoder contains M, CNUs and N, VNUs,
we denote M/M,, as CNU folding factor and N/N, as VNU
folding factor.

3. JOINT CODE AND DECODER DESIGN

In this section, we briefly describe the joint (3, k)-regular
LDPC code and decoder design methodology [14]. It is well
known that the BP (or Log-BP) decoding algorithm works
well if the underlying Tanner graph is 4-cycle free and does
not contain too many short cycles. Thus the motivation of
this joint design approach is to construct an LDPC code that
not only fits to a high-speed partly parallel decoder but also
has the average cycle length as large as possible in its 4-cycle-
free Tanner graph. This joint design process is outlined as fol-
lows and the corresponding schematic flow diagram is shown
in Figure 2.

(1) Explicitly construct two matrices H; and H; in such a
way that H = [H], H} ] defines a (2, k)-regular LDPC
code C, whose Tanner graph has the girth! of 12.

(2) Develop a partly parallel decoder that is configured by

a set of constrained random parameters and defines

a (3, k)-regular LDPC code ensemble, in which each

code is a subcode of C, and has the parity-check matrix

H = [H?, HI]T.

Select a good (3, k)-regular LDPC code from the code

ensemble based on the criteria of large Tanner graph

average cycle length and computer simulations. Typi-
cally the parity-check matrix of the selected code has
only few redundant checks, so we may assume that the

code rate is always 1 — 3/k.

(3

~—

! Girth is the length of a shortest cycle in a graph.
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FIGURE 3: Structure of H = [HT, HI]".

Construction of H = [HI,HI]T

The structure of H is shown in Figure 3, where both H; and
H, are L - k by L - k? submatrices. Each block matrix I, in
H, is an L X L identity matrix and each block matrix P, ,
in H, is obtained by a cyclic shift of an L X L identity ma-
trix. Let T denote the right cyclic shift operator where T#(Q)
represents right cyclic shifting matrix Q by u columns, then
P, = T"(I) where u = ((x — 1) - y) mod L and I represents
the L x L identity matrix, for example, if L = 5, x = 3, and
y=4,wehaveu = (x — 1) - ymodL = 8mod5 = 3, then

Py, =T(I) = (6)

OO = O O
O = O OO
— o O O O
S O OO
ool "

Notice that in both H; and H,, each row contains k 1’s
and each column contains a single 1. Thus, the matrix H =
[H,H?]" defines a (2, k)-regular LDPC code C, with L -
k? variable nodes and 2L - k check nodes. Let G denote the
Tanner graph of C,, we have the following theorem regarding
to the girth of G.

Theorem 1. If L cannot be factored as L = a - b, where a,b €
{0, ...,k — 1}, then the girth of G is 12 and there is at least one
12-cycle passing each check node.

Partly parallel decoder

Based on the specific structure of H, a principal (3, k)-regular
LDPC code partly parallel decoder structure was presented in
[14]. This decoder is configured by a set of constrained ran-
dom parameters and defines a (3, k)-regular LDPC code en-
semble. Each code in this ensemble is essentially constructed
by inserting extra L - k check nodes to the high-girth (2, k)-
regular LDPC code C, under the constraint specified by the
decoder. Therefore, it is reasonable to expect that the codes
in this ensemble more likely do not contain too many short
cycles and we may easily select a good code from it. For real
applications, we can select a good code from this code ensem-
ble as follows: first in the code ensemble, find several codes

with relatively high-average cycle lengths, then select the one
leading to the best result in the computer simulations.

The principal partly parallel decoder structure presented
in [14] has the following properties.

(i) It contains k> memory banks, each one consists of sev-
eral RAMs to store all the decoding messages associ-
ated with L variable nodes.

(ii) Each memory bank associates with one address gener-
ator that is configured by one element in a constrained
random integer set R.

(iii) It contains a configurable random-like one-dimen-
sional shuffle network & with the routing complexity
scaled by k2.

(iv) It contains k> VNUs and k CNUs so that the VNU and
CNU folding factors are L-k*/k* = Land 3L-k/k = 3L,
respectively.

(v) Each iteration completes in 3L clock cycles in which
only CNUs work in the first 2L clock cycles and both
CNUs and VNUs work in the last L clock cycles.

Over all the possible 9% and &, this decoder defines a (3, k)-
regular LDPC code ensemble in which each code has the
parity-check matrix H = [H7, H!]7, where the submatrix
H; is jointly specified by %R and S.

4. PARTLY PARALLEL DECODER ARCHITECTURE

In this paper, applying the joint code and decoder design
methodology, we develop a high-speed (3, k)-regular LDPC
code partly parallel decoder architecture based on which a
9216-bit, rate-1/2 (3, 6)-regular LDPC code partly parallel
decoder has been implemented using Xilinx Virtex FPGA
device. Compared with the structure presented in [14], this
partly parallel decoder architecture has the following distinct
characteristics.

(i) It employs a novel concatenated configurable ran-
dom two-dimensional shuffle network implementa-
tion scheme to realize the random-like connectivity
with low routing overhead, which is especially desir-
able for FPGA implementations.

(ii) To improve the decoding throughput, both the VNU
folding factor and CNU folding factor are L instead of
L and 3L in the structure presented in [14].

(iii) To simplify the control logic design and reduce the
memory bandwidth requirement, this decoder com-
pletes each decoding iteration in 2L clock cycles in
which CNUs and VNUs work in the 1st and 2nd L
clock cycles, alternatively.

Following the joint design methodology, we have that this
decoder should define a (3, k)-regular LDPC code ensemble
in which each code has L - k? variable nodes and 3L - k check
nodes and, as illustrated in Figure 4, the parity-check ma-
trix of each code has the form H = [H], H}, H! ] where H;
and H; have the explicit structures as shown in Figure 3 and
the random-like Hj is specified by certain configuration pa-
rameters of the decoder. To facilitate the description of the
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decoder architecture, we introduce some definitions as fol-
lows: we denote the submatrix consisting of the L consecutive
columns in H that go through the block matrix I, as H*»)
in which, from left to right, each column is labeled as h}"’y )

with 7 increasing from 1 to L, as shown in Figure 4. We label

the variable node corresponding to column hﬁ"’y " as vlgx’y 'and

the L variable nodes vfx’y 'fori=1,..., L constitute a variable
node group VG,,,. Finally, we arrange the L - k check nodes
corresponding to all the L - k rows of submatrix H; into check
node group CG;.

Figure 5 shows the principal structure of this partly par-
allel decoder. It mainly contains k* PE blocks PE, ,, for 1 < x
and y < k, three bidirectional shuffle networks 7, m,, and
w3, and 3 - k CNUs. Each PE,,, contains one memory bank
RAMs,, that stores all the decoding messages, including the
intrinsic and extrinsic messages and hard decisions, associ-
ated with all the L variable nodes in the variable node group
VG,,,, and contains one VNU to perform the variable node
computations for these L variable nodes. Each bidirectional
shuffle network 7; realizes the extrinsic message exchange be-
tween all the L - k? variable nodes and the L - k check nodes in
CG;. The k CNU, j, for j = 1,..., k, perform the check node
computations for all the L - k check nodes in CG;.

This decoder completes each decoding iteration in 2L
clock cycles, and during the first and second L clock cycles,
it works in check node processing mode and variable node
processing mode, respectively. In the check node processing
mode, the decoder not only performs the computations of
all the check nodes but also completes the extrinsic message
exchange between neighboring nodes. In variable node pro-
cessing mode, the decoder only performs the computations
of all the variable nodes.

The intrinsic and extrinsic messages are all quantized to
five bits and the iterative decoding datapaths of this partly
parallel decoder are illustrated in Figure 6, in which the dat-
apaths in check node processing and variable node process-
ing are represented by solid lines and dash dot lines, respec-
tively. As shown in Figure 6, each PE block PE,, contains

five RAM blocks: EXT_RAM_i for i = 1,2, 3, INT_RAM, and
DEC_RAM. Each EXT_RAM_i has L memory locations and
the location with the address d — 1 (1 < d < L) contains
the extrinsic messages exchanged between the variable node
v,(jx’y " in VG,,, and its neighboring check node in CG;. The
INT_RAM and DEC_RAM store the intrinsic message and
hard decision associated with node v;x’y ) at the memory lo-
cation with the address d — 1 (1 < d < L). As we will see
later, such decoding messages storage strategy could greatly
simplify the control logic for generating the memory access
address.

For the purpose of simplicity, in Figure 6 we do not show
the datapath from INT_RAM to EXT_RAM _#’s for extrinsic
message initialization, which can be easily realized in L clock
cycles before the decoder enters the iterative decoding pro-
cess.

4.1. Check node processing

During the check node processing, the decoder performs the
computations of all the check nodes and realizes the extrinsic
message exchange between all the neighboring nodes. At the
beginning of check node processing, in each PE, , the mem-
ory location with address d — 1 in EXT_RAM_i contains 6-
bit hybrid data that consists of 1-bit hard decision and 5-bit
variable-to-check extrinsic message associated with the vari-

able node v,(jx’y ) in VG;,,. In each clock cycle, this decoder
performs the read-shuffle-modify-unshuffle-write operations
to convert one variable-to-check extrinsic message in each
EXT_RAM._i to its check-to-variable counterpart. As illus-
trated in Figure 6, we may outline the datapath loop in check
node processing as follows:

(1) read: one 6-bit hybrid data h)(cl)y is read from each
EXT_RAM_iin each PE, ;

(2) shuffle: each hybrid data h,(f)y goes through the shuffle
network 71; and arrives at CNU; j;

(3) modify: each CNU; ; performs the parity check on the 6
input hard decision bits and generates the 6 output 5-
bit check-to-variable extrinsic messages /39(3)}, based on
the 6 input 5-bit variable-to-check extrinsic messages;

(4) unshuffle: send each check-to-variable extrinsic mes-
sage [3,(})}, back to the PE block via the same path as its
variable-to-check counterpart;

(5) write: write each ﬁ,(f)y to the same memory location in
EXT_RAM _i as its variable-to-check counterpart.

All the CNUs deliver the parity-check results to a central
control block that will, at the end of check node processing,
determine whether all the parity-check equations specified
by the parity-check matrix have been satisfied, if yes, the de-
coding for current code frame will terminate.

To achieve higher decoding throughput, we implement
the read-shuffle-modify-unshuffle-write loop operation by
five-stage pipelining as shown in Figure 7, where CNU is
one-stage pipelined. To make this pipelining scheme feasi-
ble, we realize each bidirectional I/O connection in the three
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shuffle networks by two distinct sets of wires with opposite
directions, which means that the hybrid data from PE blocks
to CNUs and the check-to-variable extrinsic messages from
CNUs to PE blocks are carried on distinct sets of wires. Com-
pared with sharing one set of wires in time-multiplexed fash-
ion, this approach has higher wire routing overhead but ob-
viates the logic gate overhead due to the realization of time-
multiplex and, more importantly, make it feasible to directly
pipeline the datapath loop for higher decoding throughput.
In this decoder, one address generator AG\” associates

X,y
with one EXT_RAM_i in each PE, . In the check node pro-

cessing, AG,(C’;)}, generates the address for reading hybrid data
and, due to the five-stage pipelining of datapath loop, the ad-
dress for writing back the check-to-variable message is ob-

tained via delaying the read address by five clock cycles. It
is clear that the connectivity among all the variable nodes
and check nodes, or the entire parity-check matrix, realized
by this decoder is jointly specified by all the address genera-
tors and the three shuffle networks. Moreover, fori = 1, 2, 3,
the connectivity among all the variable nodes and the check
nodes in CG; is completely determined by AGS;)J, and ;. Fol-
lowing the joint design methodology, we implement all the
address generators and the three shuffle networks as follows.

4.1.1 Implementations of AG,Q} and m,

The bidirectional shuffle network m; and AG,(C}; realize the
connectivity among all the variable nodes and all the check
nodes in CG; as specified by the fixed submatrix H;. Recall
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that node vfix’y ) corresponds to the column hl(-x’y ' asillustrated

in Figure 4 and the extrinsic messages associated with node
v;""" are always stored at address d — 1. Exploiting the ex-
plicit structure of H;, we easily obtain the implementation
schemes for AGE;} and 7 as follows:

(i) each AG)(C}}), is realized as a [log, L]-bit binary counter
that is cleared to zero at the beginning of check node
processing;

(ii) the bidirectional shuffle network m; connects the k
PE, , with the same x-index to the same CNU.

2)

4.1.2 Implementations of AGfC, ) and m,

The bidirectional shuffle network m; and AG)%), realize the
connectivity among all the variable nodes and all the check
nodes in CG; as specified by the fixed matrix H,. Similarly,
exploiting the extrinsic messages storage strategy and the ex-
plicit structure of H,, we implement AG%), and 7, as follows:

(i) each AG,(C?; is realized as a [log, L]-bit binary counter
that only counts up to the value L — 1 and is loaded
with the value of ((x — 1) - y) mod L at the beginning
of check node processing;

(ii) the bidirectional shuffle network 7, connects the k
PE,, with the same y-index to the same CNU.

Notice that the counter load value for each AG,%), directly
comes from the construction of each block matrix Py, in H,

as described in Section 3.

4.1.3 Implementations of AG’) and 7

The bidirectional shuffle network 73 and AGS)), jointly de-
fine the connectivity among all the variable nodes and all the
check nodes in CGs;, which is represented by Hj as illustrated
in Figure 4. In the above, we show that by exploiting the spe-
cific structures of H; and H, and the extrinsic messages stor-
age strategy, we can directly obtain the implementations of

each AG,(C’;)}, and m;, for i = 1,2. However, the implementa-

tions of AGS)), and 73 are not easy because of the following
requirements on Hs:

(1) the Tanner graph corresponding to the parity-check
matrix H = [H!, HY, HI]7 should be 4-cycle free;

(2) to make H random to some extent, Hs should be
random-like.

As proposed in [14], to simplify the design process, we
separately conceive AGS; and 73 in such a way that the im-

plementations of AGJ(C,3 )), and 3 accomplish the above first and
second requirements, respectively.

Implementations of AG)

We implement each AGS)), as a [log, L1-bit binary counter
that counts up to the value L — 1 and is initialized with a
constant value £, at the beginning of check node process-
ing. Each ¢, , is selected in random under the following two
constraints:

(1) given x, tyy, # Ly, forall y1, y, € {1,...,k};
(2) given y, ty,, — ty,, # ((x1 — x2) - y)modL, for all
X1, X2 € {1,,k}

It can be proved that the above two constraints on t , are
sufficient to make the entire parity-check matrix H always
correspond to a 4-cycle free Tanner graph no matter how we
implement 7z3.

Implementation of m;

Since each AGY) is realized as a counter, the pattern of shuf-
fle network 73 cannot be fixed, otherwise the shuffle pattern
of 713 will be regularly repeated in the Hj, which means that
H; will always contain very regular connectivity patterns no
matter how random-like the pattern of 7 itself is. Thus we
should make 73 configurable to some extent. In this paper,
we propose the following concatenated configurable random
shuffle network implementation scheme for 3.

Figure 8 shows the forward path (from PE,, to CNUj ;)
of the bidirectional shuffle network 3. In each clock cycle, it
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realizes the data shuffle from a,,, to c,,, by two concatenated
stages: intrarow shuffle and intracolumn shuftle. Firstly, the
ay,, data block, where each a,, comes from PE, ,, passes an
intrarow shuffle network array in which each shuffle network

¥ shuffles the k input data ay,, to by, for 1 < y < k. Each

0 s configured by 1-bit control 51gnal s leading to the

fixed random permutation R, if sx = 1, or to the identity
permutation (Id) otherwise. The reason why we use the Id
pattern instead of another random shuffle pattern is to min-
imize the routing overhead, and our simulations suggest that
there is no gain on the error-correcting performance by using
another random shulffle pattern instead of Id pattern. The k-
bit configuration word s") changes every clock cycle and all
the L k-bit control words are stored in ROM R. Next, the b,
data block goes through an intracolumn shuffle network ar-

ray in which each \IJS/C) shuffles the k by, to ¢y, for 1 < x < k.
Similarly, each ‘I’gf) is configured by 1-bit control signal sgf)
leading to the fixed random permutation C, if sgf) =1,o0rto

Id otherwise. The k-bit configuration word s(yc) changes ev-
ery clock cycle and all the L k-bit control words are stored
in ROM C. As the output of forward path, the k c,,, with the
same x-index are delivered to the same CNUj ;. To realize the
bidirectional shuffle, we only need to implement each config-

urable shuffle network ¥\ and ¥’ as bidirectional so that
73 can unshuffle the k? data backward from CNUj3, j to PEy,
along the same route as the forward path on distinct sets of
wires. Notice that, due to the pipelining on the datapath loop,
the backward path control signals are obtained via delaying
the forward path control signals by three clock cycles.

To make the connectivity realized by 73 random-like and
change each clock cycle, we only need to randomly generate

the control words s’ and sgf) for each clock cycle and the
fixed shuffle patterns of each R, and C,. Since most modern
FPGA devices have multiple metal layers, the implementa-
tions of the two shuffle arrays can be overlapped from the
bird’s-eye view. Therefore, the above concatenated imple-
mentation scheme will confine all the routing wires to small
area (in one row or one column), which will significantly
reduce the possibility of routing congestion and reduce the
routing overhead.

4.2. Variable node processing

Compared with the above check node processing, the opera-
tions performed in the variable node processing is quite sim-
ple since the decoder only needs to carry out all the variable
node computations. Notice that at the beginning of variable
node processing, the three 5-bit check-to-variable extrinsic

messages associated with each variable node v{(jx’y ) are stored
at the address d — 1 of the three EXT_RAM_i in PE, . The

5-bit intrinsic message associated with variable node v{(jx’y Vs

also stored at the address d — 1 of INT_RAM in PE, ,. In each
clock cycle, this decoder performs the read-modify-write op-
erations to convert the three check-to-variable extrinsic mes-
sages associated with the same variable node to three hybrid
data consisting of variable-to-check extrinsic messages and

Write

> b‘ts VNU vNU
Read (1st half) (2nd half) : }
!

FIGURE 9: Three-stage pipelining of the variable node processing
datapath.

hard decisions. As shown in Figure 6, we may outline the dat-
apath loop in variable node processing as follows:

(1) read: in each PE,,, three 5-bit check-to-variable ex-

trinsic messages /5)(3)), and one 5-bit intrinsic messages
¥x,y associated with the same variable node are read
from the three EXT_RAM_i and INT_RAM at the same
address;

(2) modify: based on the input check-to-variable extrinsic
messages and intrinsic message, each VNU generates
the 1-bit hard decision X, y and three 6-bit hybrid data

hx )/:
(3) write: each hg(cl)/‘v is written back to the same memory

location as its check-to-variable counterpart and X,
is written to DEC_RAM.

The forward path from memory to VNU and backward
path from VNU to memory are implemented by distinct sets
of wires and the entire read-modify-write datapath loop is
pipelined by three-stage pipelining as illustrated in Figure 9.

Since all the extrinsic and intrinsic messages associated
with the same variable node are stored at the same address
in different RAM blocks, we can use only one binary counter
to generate all the read address. Due to the pipelining of the
datapath, the write address is obtained via delaying the read
address by three clock cycles.

4.3. CNU and VNU architectures

Each CNU carries out the operations of one check node,
including the parity check and computation of check-to-
variable extrinsic messages. Figure 10 shows the CNU archi-
tecture for check node with the degree of 6. Each input x”
is a 6-bit hybrid data consisting of 1-bit hard decision and
5-bit variable-to-check extrinsic message. The parity check is
performed by XORing all the six 1-bit hard decisions. Each
5-bit variable-to-check extrinsic messages is represented by
sign-magnitude format with a sign bit and four magnitude
bits. The architecture for computing the check-to-variable
extrinsic messages is directly obtained from (3). The func-
tion f(x) = log((1+e*)/(1 — e7¥1)) is realized by the LUT
(lookup table) that is implemented as a combinational logic
block in FPGA. Each output 5-bit check-to-variable extrinsic
message y'”) is also represented by sign-magnitude format.
Each VNU generates the hard decision and all the
variable-to-check extrinsic messages associated with one
variable node. Figure 11 shows the VNU architecture for
variable node with the degree of 3. With the input 5-bit in-
trinsic message z and three 5-bit check-to-variable extrinsic
messages y' associated with the same variable node, VNU
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FIGURE 11: Architecture for VNU with j = 3.

generates three 5-bit variable-to-check extrinsic messages
and 1-bit hard decision according to (4) and (5), respectively.
To enable each CNU to receive the hard decisions to per-
form parity check as described above, the hard decision is
combined with each 5-bit variable-to-check extrinsic mes-
sage to form 6-bit hybrid data x as shown in Figure 11.
Since each input check-to-variable extrinsic message y¥ is
represented by sign-magnitude format, we need to convert
it to two’s complement format before performing the addi-
tions. Before going through the LUT that realizes f(x) =
log((1+e~*1)/(1 — e~*)), each data is converted back to the
sign-magnitude format.

4.4. Data Input/Output

This partly parallel decoder works simultaneously on three
consecutive code frames in two-stage pipelining mode: while
one frame is being iteratively decoded, the next frame is
loaded into the decoder, and the hard decisions of the
previous frame are read out from the decoder. Thus each
INT_RAM contains two RAM blocks to store the intrinsic
messages of both current and next frames. Similarly, each
DEC_RAM contains two RAM blocks to store the hard de-
cisions of both current and previous frames.

The design scheme for intrinsic message input and hard
decision output is heavily dependent on the floor planning of
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Ficure 12: Data input/output structure.

the k? PE blocks. To minimize the routing overhead, we de-
velop a square-shaped floor planning for PE blocks as illus-
trated in Figure 12 and the corresponding data input/output
scheme is described in the following.

(1) Intrinsic data input. The intrinsic messages of next
frame is loaded, 1 symbol per clock cycle. As shown
in Figure 12, the memory location of each input in-
trinsic data is determined by the input load ad-
dress that has the width of ([log, L1 + [log, k*1) bits
in which [log, k?1 bits specify which PE block (or
which INT_RAM) is being accessed and the other
[log, L1 bits locate the memory location in the selected
INT_RAM. As shown in Figure 12, the primary intrin-
sic data and load address input directly connect to the
k PE blocks PE;,,, for 1 < y < k, and from each PE,,
the intrinsic data and load address are delivered to the
adjacent PE block PE,,,, in pipelined fashion.

(2) Decoded data output. The decoded data (or hard deci-
sions) of the previous frame is read out in pipelined
fashion. As shown in Figure 12, the primary [log, L1-
bit read address input directly connects to the k PE
blocks PE,; for 1 < x < k, and from each PE,, the
read address are delivered to the adjacent block PE, ;41
in pipelined fashion. Based on its input read address,
each PE block outputs 1-bit hard decision per clock
cycle. Therefore, as illustrated in Figure 12, the width
of pipelined decoded data bus increases by 1 after go-
ing through one PE block, and at the rightmost side,
we obtain k k-bit decoded output that are combined
together as the k?-bit primary decoded data output.

5. FPGA IMPLEMENTATION

Applying the above decoder architecture, we implemented
a (3, 6)-regular LDPC code partly parallel decoder for L =
256 using Xilinx Virtex-E XCV2600E device with the pack-
age FG1156. The corresponding LDPC code length is N =
L-k* = 256 - 6> = 9216 and code rate is 1/2. We obtain
the constrained random parameter set for implementing 73
and each AGS)), as follows: first generate a large number of
parameter sets from which we find few sets leading to rela-
tively high Tanner graph average cycle length, then we select
one set leading to the best performance based on computer
simulations.

The target XCV2600E FPGA device contains 184 large
on-chip block RAMs, each one is a fully synchronous dual-
port 4K-bit RAM. In this decoder implementation, we con-
figure each dual-port 4K-bit RAM as two independent
single-port 256 x 8-bit RAM blocks so that each EXT_RAM_i
can be realized by one single-port 256 x 8-bit RAM block.
Since each INT_RAM contains two RAM blocks for storing
the intrinsic messages of both current and next code frames,
we use two single-port 256 x 8-bit RAM blocks to imple-
ment one INT_RAM. Due to the relatively small memory size
requirement, the DEC_RAM is realized by distributed RAM
that provides shallow RAM structures implemented in CLBs.
Since this decoder contains k* = 36 PE blocks, each one in-
corporates one INT_RAM and three EXT_RAM _i’s, we to-
tally utilize 180 single-port 256 x 8-bit RAM blocks (or 90
dual-port 4K-bit RAM blocks). We manually configured the
placement of each PE block according to the floor-planning
scheme as shown in Figure 12. Notice that such placement
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TasBLE 1: FPGA resources utilization statistics.

Resource Number  Utilization rate Resource Number  Utilization rate
Slices 11,792 46% Slices Registers 10,105 19%
4 input LUTs 15,933 31% Bonded IOBs 68 8%
Block RAMs 90 48% DLLs 1 12%

=§§E
1

FiGgure 13: The placed and routed decoder implementation.

scheme exactly matches the structure of the configurable
shuffle network m; as described in Section 4.1.3, thus the
routing overhead for implementing the 73 is also minimized
in this FPGA implementation.

From the architecture description in Section 4, we know
that, during each clock cycle in the iterative decoding, this
decoder need to perform both read and write operations on
each single-port RAM block EXT_RAM_i. Therefore, sup-
pose the primary clock frequency is W, we must generate
a2 X W clock signal as the RAM control signal to achieve
read-and-write operation in one clock cycle. This 2 x W
clock signal is generated using the delay-locked loop (DLL)
in XCV2600E.

To facilitate the entire implementation process, we exten-
sively utilized the highly optimized Xilinx IP cores to instan-
tiate many function blocks, that is, all the RAM blocks, all
the counters for generating addresses, and the ROMs used to
store the control signals for shuffle network ;. Moreover, all
the adders in CNUs and VNUs are implemented by ripple-
carry adder that is exactly suitable for Xilinx FPGA imple-
mentations thanks to the on-chip dedicated fast arithmetic
carry chain.

This decoder was described in the VHDL (hardware de-
scription language) and SYNOPSYS FPGA Express was used
to synthesize the VHDL implementation. We used the Xil-
inx Development System tool suite to place and route the
synthesized implementation for the target XCV2600E device
with the speed option —7. Table 1 shows the hardware re-
source utilization statistics. Notice that 74% of the total uti-
lized slices, or 8691 slices, were used for implementing all
the CNUs and VNUs. Figure 13 shows the placed and routed
design in which the placement of all the PE blocks are con-
strained based on the on-chip RAM block locations.

Based on the results reported by the Xilinx static timing

analysis tool, the maximum decoder clock frequency can be
56 MHz. If this decoder performs s decoding iterations for
each code frame, the total clock cycle number for decoding
one frame will be 2s - L + L, where the extra L clock cycles
is due to the initialization process, and the maximum sym-
bol decoding throughput will be 56 - k? - L/(2s - L+ L) =
56-36/(2s+1) Mbps. Here, we set s = 18 and obtain the max-
imum symbol decoding throughput as 54 Mbps. Figure 14
shows the corresponding performance over AWGN channel
with s = 18, including the BER, FER (frame error rate), and
the average iteration numbers.

6. CONCLUSION

Due to the unique characteristics of LDPC codes, we be-
lieve that jointly conceiving the code construction and
partly parallel decoder design should be a key for practi-
cal high-speed LDPC coding system implementations. In
this paper, applying a joint design methodology, we devel-
oped a (3, k)-regular LDPC code high-speed partly paral-
lel decoder architecture design and implemented a 9216-
bit, rate-1/2 (3, 6)-regular LDPC code decoder on the Xil-
inx XCV2600E FPGA device. The detailed decoder architec-
ture and floor planning scheme have been presented and a
concatenated configurable random shuffle network imple-
mentation is proposed to minimize the routing overhead
for the random-like shuffle network realization. With the
maximum 18 decoding iterations, this decoder can achieve
up to 54 Mbps symbol decoding throughput and the BER
107® at 2dB over AWGN channel. Moreover, exploiting
the good minimum distance property of LDPC code, this
decoder uses parity check after each iteration as earlier
stopping criterion to effectively reduce the average energy
consumption.
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