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We consider the problem of locating and orienting a network of unattended sensor nodes that have been deployed in a scene at
unknown locations and orientation angles. This self-calibration problem is solved by placing a number of source signals, also
with unknown locations, in the scene. Each source in turn emits a calibration signal, and a subset of sensor nodes in the network
measures the time of arrival and direction of arrival (with respect to the sensor node’s local orientation coordinates) of the signal
emitted from that source. From these measurements we compute the sensor node locations and orientations, along with any
unknown source locations and emission times. We develop necessary conditions for solving the self-calibration problem and
provide a maximum likelihood solution and corresponding location error estimate. We also compute the Cramér-Rao bound of
the sensor node location and orientation estimates, which provides a lower bound on calibration accuracy. Results using both
synthetic data and field measurements are presented.
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1. INTRODUCTION

Unattended sensor networks are becoming increasingly im-
portant in a large number of military and civil applications
[1, 2, 3, 4]. The basic concept is to deploy a large number of
low-cost self-powered sensor nodes that acquire and process
data. The sensor nodesmay include one ormore acoustic mi-
crophones as well as seismic, magnetic, or imaging sensors. A
typical sensor network objective is to detect, track, and clas-
sify objects or events in the neighborhood of the network.

We consider a sensor deployment architecture as shown
in Figure 1. A number of low-cost sensor nodes, each
equipped with a processor, a low-power communication
transceiver, and one or more sensing capabilities, are set out
in a planar region. Each sensor node monitors its environ-
ment to detect, track, and characterize signatures. The sensed
data is processed locally, and the result is transmitted to a lo-
cal central information processor (CIP) through a low-power
communication network. The CIP fuses sensor information
and transmits the processed information to a higher-level
processing center.

Central
information
processor

Higher-level
processing center

Sensors

Figure 1: Sensor network architecture. A number of low-cost sen-
sor nodes are deployed in a region. Each sensor node communicates
to a local CIP, which relays information to a more distant command
center.

Many sensor network signal-processing tasks assume that
the locations and orientations of the sensor nodes are known
[4]. However, accurate knowledge of sensor node locations
and orientations is often not available. Sensor nodes are often
placed in the field by persons, by an air drop, or by artillery
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Figure 2: Sensor self-localization scenario.

launch. For careful hand placement, accurate location and
orientation of the sensor nodes can be assumed; however, for
most other sensor deployment methods, it is difficult or im-
possible to know accurately the location and orientation of
each sensor node. One could equip every sensor node with
a GPS and compass to obtain location and orientation infor-
mation, but this adds to the expense and power requirements
of the sensor node and may increase susceptibility to jam-
ming. Thus, there is interest in developing methods to self-
localize the sensor network with a minimum of additional
hardware or communication.

Self-localization in sensor networks is an active area of
current research (see, e.g., [1, 5, 6, 7, 8] and the references
therein). Iterative multilateration-based techniques are con-
sidered in [7], and Bulusu et al. [5, 9] consider low-cost
localization methods. These approaches assume availability
of beacon signals at known locations. Sensor localization,
coupled with near-field source localization, is considered in
[10, 11]. Cevher andMcClellan consider sensor network self-
calibration using a single acoustic source that travels along
a straight line [12]. The self-localization problem is also re-
lated to the calibration of element locations in sensor arrays
[13, 14, 15, 16, 17, 18]. In the element calibration problem,
we assume knowledge of the nominal sensor locations and
assume high (or perfect) signal coherence between the sen-
sors; these assumptions may not be satisfied for many sensor
network applications, however.

In this paper, we consider an approach to sensor network
self-calibration using sources at unknown locations in the
field. Thus, we relax the assumption that beacon signals at
known locations are available. The approach entails placing
a number of signal sources in the same region as the sensor
nodes (see Figure 2). Each source in turn generates a known
signal that is detected by a subset of the sensor nodes; each
sensor node that detects the signal measures the time of ar-
rival (TOA) of the source with respect to an established net-
work time base [19, 20] and alsomeasures the direction of ar-
rival (DOA) of the source signal with respect to a local (to the
sensor node) frame of reference. The set of TOA and DOA

measurements are collected together and form the data used
to estimate the unknown locations and orientations of the
sensor nodes.

In general, neither the source locations nor their signal
emission times are assumed to be known. If the source sig-
nal emission times are unknown, then the time of arrival
to any one sensor node provides no information for self-
localization; rather, time difference of arrival (TDOA) be-
tween sensor nodes carries information for localization. If
partial information is available, it can be incorporated into
the estimation procedure to improve the accuracy of the cali-
bration. For example, [21] considers the case in which source
emission times are known; such would be the case if the
sources were electronically triggered at known times.

We show that if neither the source locations nor their
signal emission times are known and if at least three sensor
nodes and two sources are used, the relative locations and
orientations of all sensor nodes, as well as the locations and
signal emission times of all sources, can be estimated. The
calibration is computed except for an unknown translation
and rotation of the entire source-signal scene, which cannot
be estimated unless additional information is available. With
the additional location or orientation information of one or
two sources, absolute location and orientation estimates can
be obtained.

We consider optimal signal processing of the measured
self-localization data. We derive the Cramér-Rao bound
(CRB) on localization accuracy. The CRB provides a lower
bound on any unbiased localization estimator and is useful
to determine the best-case localization accuracy for a given
problem and to provide a baseline standard against which
suboptimal localization methods can be measured. We also
develop a maximum likelihood (ML) estimation procedure,
and show that it achieves the CRB for reasonable TOA and
DOA measurement errors.

There is a great deal of flexibility in the type of signal
sources to be used. We require only that the times of arrival
of the signals can be estimated by the sensor nodes. This can
be accomplished by matched filtering or generalized cross-
correlation of the measured signal with a stored waveform
or set of waveforms [22, 23]. Examples of source signals are
short transients, FM chirp waveforms, PN-coded or direct-
sequence waveforms, or pulsed signals. If the sensor nodes
can also estimate signal arrival directions (as is the case with
vector pressure sensors or arrays of microphones), these esti-
mates can be used to improve the calibration solution.

An outline of the paper is as follows. Section 2 presents
a statement of the problem and of the assumptions made.
In Section 3, we first consider necessary conditions for a
self-calibration solution and present methods for solving the
self-calibration problem with a minimum number of sensor
nodes and sources. These methods provide initial estimates
for an iterative descent computation needed to obtain ML
calibration parameter estimates derived in Section 4. Bounds
on the calibration uncertainty are also derived. Section 5
presents numerical examples to illustrate the approach, and
Section 6 presents conclusions.
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2. PROBLEM STATEMENT ANDNOTATION

Assume we have a set of A sensor nodes in a plane, each
with unknown location {ai = (xi, yi)}Ai=1 and unknown ori-
entation angle θi with respect to a reference direction (e.g.,
North). We consider the two-dimensional problem in which
the sensor nodes lie in a plane and the unknown reference
direction is azimuth; an extension to the three-dimensional
case is possible using similar techniques. A sensor node may
consist of one or more sensing element; for example, it could
be a single sensor, a vector sensor [24], or an array of sensors
in a fixed known geometry. If the sensor node does not mea-
sure the DOA, then its orientation angle θi is not estimated.

In the sensor field are also placed S point sources at lo-
cations {s j = (x̃ j , ỹ j)}Sj=1. The source locations are in gen-
eral unknown. Each source emits a known finite-length sig-
nal that begins at time t j ; the emission times are also in gen-
eral unknown.

Each source emits a signal in turn. Every sensor node at-
tempts to detect the signal, and if detected, the sensor node
estimates the TOA of the signal with respect to a sensor net-
work time base, and a DOA with respect to the sensor node’s
local reference direction. The time base can be established
either by using the electronic communication network link-
ing the sensor nodes [19, 20] or by synchronizing the sen-
sor node processor clocks before deployment. The time base
needs to be accurate to a number on the order of the time of
arrival measurement uncertainty (1ms in the examples con-
sidered in Section 5). The DOAmeasurements are made with
respect to a local (to the sensor node) frame of reference.
The absolute directions of arrival are not available because
the orientation angle of each sensor node is unknown (and
is estimated in the calibration procedure). Both the TOA and
DOA measurements are assumed to contain estimation er-
rors. We denote the measured TOA at sensor node i of source
j as ti j and the measured DOA as θi j .

We initially assume every sensor node detects ev-
ery source signal; partial measurements are considered in
Section 4.4. If so, a total of 2AS measurements are obtained.
The 2ASmeasurements are gathered in a vector

X =
[
vec(T)

vec(Θ)

]T

(2AS× 1), (1)

where vec(M) stacks the elements of a matrixM columnwise
and where

T =



t11 t12 · · · t1S
t21 t22 · · · t2S
...

...
. . .

...
tA1 tA2 · · · tAS


 ,

Θ =



θ11 θ12 · · · θ1S
θ21 θ22 · · · θ2S
...

...
. . .

...
θA1 θA2 · · · θAS


 .

(2)

Each sensor node transmits its 2S TOA and DOA measure-
ments to a CIP, and these 2AS measurements form the data
with which the CIP computes the sensor calibration. Note
that the communication cost to the CIP is low, and the cali-
bration processing is performed by the CIP.

The above formulation implicitly assumes that sensor
node measurements can be correctly associated to the corre-
sponding source. That is, each sensor node TOA and DOA
measurement corresponding to source j can be correctly
attributed to that source. There are several ways in which
this association can be realized. One method is to time-
multiplex the source signals so that they do not overlap. If
the source firing times are separated, then any sensor node
detection within a certain time interval can be attributed to
a unique source. Alternately, each source can emit a unique
identifying tag, encoded, for example, in its transmitted sig-
nal. In either case, failed detections can be identified at the
CIP by the absence of a report from sensor node i about
source j. Finally, we can relax the assumption of perfect as-
sociation by including a data association step in the self-
localization algorithm, using, for example, the methods in
[25, 26].

Define the parameter vectors

β = [x1, y1, θ1, . . . , xA, yA, θA]T (3A× 1),

γ = [x̃1, ỹ1, t1, . . . , x̃S, ỹS, tS]T (3S× 1),

α = [βT, γT]T (
3(A + S)× 1

)
.

(3)

Note that β contains the sensor node unknowns and γ con-
tains the source signal unknowns. We denote the true TOA
and DOA of source signal j at sensor node i as τi j(α) and
φi j(α), respectively, and include their dependence on the pa-
rameter vector α; they are given by

τi j(α) = t j +

∥∥ai − s j
∥∥

c
,

φi j(α) = θi +∠
(
ai, s j

)
,

(4)

where ai = [xi, yi]T , s j = [x̃ j , ỹ j]T , ‖ · ‖ is the Euclidean
norm, ∠(ξ, η) is the angle between the points ξ, η ∈ �2, and
c is the signal propagation velocity.

Each element of X has measurement uncertainty; we
model the uncertainty as

X = µ(α) + E, (5)

where µ(α) is the noiseless measurement vector whose ele-
ments are given by (4) for values of i and j that correspond
to the vector stacking operation in (1), and where E is a ran-
dom vector with known probability density function.

The self-calibration problem then is, given the measure-
ment X , estimate β. The parameters in γ are in general un-
known and are nuisance parameters that must also be esti-
mated. If some parameters in γ are known, the complexity
of the self-calibration problem is reduced, and the resulting
accuracy of the β estimate is improved.
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Table 1: Minimal solutions for sensor self-localization.

Case # Unknowns Minimum A, S Comments

Known locations
3A A = 1, S = 2 Closed form solution

Known times

Known locations 3A + S A = 1, S = 3 Closed form solution

Unknown times 3A + S A = 2, S = 2 1D iterative solution

Unknown locations
3(A−1)+2S A = 2, S = 2 Closed form solution

Known times

Unknown locations
3(A + S− 1)

A = 2, S = 3 or
2D iterative solution

Unknown times A = 3, S = 2

3. EXISTENCE ANDUNIQUENESS OF SOLUTIONS

In this section, we address the existence and uniqueness of
solutions to the self-calibration problem and establish the
minimum number of sensor nodes and sources needed to
obtain a solution. We assume that every sensor node detects
every source and measures both TOA and DOA. In addi-
tion, we assume that the TOA and DOA measurements are
noiseless and correspond to values that correspond to a pla-
nar sensor-source scenario; that is, we assume they are solu-
tions to (4) for some vector α ∈ �3(A+S). We establish the
minimum number of sources and sensor nodes needed to
compute a unique calibration solution and give algorithms
for finding the self-calibration solution in the minimal cases.
These algorithms provide initial estimates to an iterative de-
scent algorithm for the practical case of nonminimal noisy
measurements presented in Section 4.

The four cases below make different assumptions on
what is known about the source signal locations and emis-
sion times. Of primary interest is the case where no source
parameters are known; however, the solution for this case
is based on solutions for cases in which partial information
is available, so it is instructive to consider all four cases. In
all four cases, the number of measurements is 2AS, and de-
termination of β involves solving a nonlinear set of equa-
tions for its 3A unknowns. Depending on the case consid-
ered, we may also need to estimate the unknown nuisance
parameters in γ. The result in each case is summarized in
Table 1.

Case 1 (known source locations and emission times). A
unique solution for β can be found for any number of sensor
nodes as long as there are S ≥ 2 sources. In fact, the loca-
tion and orientation of each sensor node can be computed
independently of other sensor node measurements. The lo-
cation of the ith sensor node ai is found from the intersec-
tion of two circles with centers at the source locations and
with radii (ti1 − t1)/c and (ti2 − t2)/c. The intersection is in
general two points; the correct location can be found us-
ing the sign of θi2 − θi1. We note that the two circle inter-
sections can be computed in closed form. Finally, from the
known source and sensor node locations and the DOA mea-
surements, the sensor node orientation θi can be uniquely
found.

ai

s2s1

θi2
− θi1

Figure 3: A circular arc is the locus of possible sensor node loca-
tions whose angle between two known points is constant.

Case 2 (known source locations and unknown emission
times). For S ≥ 3 sources, the location and orientation of
each sensor node can be computed in closed form inde-
pendently of other sensor nodes. A solution procedure is as
follows. Consider the pair of sources (s1, s2). Sensor node i
knows the angle θi2 − θi1 between these two sources. The set
of all possible locations for sensor node i is an arc of a circle
whose center and radius can be computed from the source
locations (see Figure 3). Similarly, a second circular arc is ob-
tained from the source pair (s1, s3). The intersection of these
two arcs is a unique point and can be computed in closed
form. Once the sensor node location is known, its orienta-
tion θi is readily computed from one of the three DOA mea-
surements.

A solution for Case 2 can also be found using S = 2
sources andA = 2 sensor nodes. The solution requires a one-
dimensional search of a parameter over a finite interval. The
known location of s1 and s2 and the known angle θ11 − θ12
means that sensor node 1 must lie on a known circular arc as
in Figure 3. Each location along the arc determines the source
emission times t1 and t2. These emission times are consistent
with the measurements from the second sensor node for ex-
actly one position a1 along the arc.

Case 3 (unknown source locations and known emission
times). In this case and in Case 4 below, the calibration
problem can only be solved to within an unknown trans-
lation and rotation of the entire sensor-source scene be-
cause any translation or rotation of the entire scene does not
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change the ti j and θi j measurements. To eliminate this am-
biguity, we assume that the location and orientation of the
first sensor node are known; without loss of generality, we
set x1 = y1 = θ1 = 0. We solve for the remaining 3(A − 1)
parameters in β.

For the case of unknown source locations, a unique so-
lution for β is computable in closed form for S = 2 and any
A ≥ 2 (the case A = 1 is trivial). The range to each source
from sensor node 1 can be computed from r j = (t1 j − t j)/c,
and its bearing is known, so the locations of the two sources
can be found. The locations and orientations of the remain-
ing sensor nodes are then computed using the method of
Case 1.

Case 4 (unknown source locations and emission times). For
this case, it can be shown that an infinite number of calibra-
tion solutions exist for A = S = 2,1 but a unique solution
exists in almost all cases for either A = 2 and S = 3 or A = 3
and S = 2. In some degenerate cases, not all of the γ param-
eters can be uniquely determined, although we do not know
a case for which the β parameters cannot be uniquely found.

Closed form calibration solutions are not known for this
case, but solutions that require a two-dimensional search can
be found. We outline one such solution that works for either
A = 2 and S ≥ 3 or S = 2 and A ≥ 3. Assume as before that
sensor node 1 is at location (x1, y1) = (0, 0) with orientation
θ1 = 0. If we know the two source emission times t1 and t2,
we can find the locations of sources s1 and s2 as in Case 3.
From the two known source locations, all remaining sensor
node locations and orientations can be found using the pro-
cedure in Case 1, and then all remaining source locations can
be found using triangulation from the known arrival angles
and known sensor node locations. These solutions will be in-
consistent except for the correct values of t1 and t2. The cal-
ibration procedure, then, is to iteratively adjust t1 and t2 to
minimize the error between computed and measured time
delays and arrival angles.

4. MAXIMUM LIKELIHOOD SELF-CALIBRATION

In this section, we derive ML estimator for the unknown sen-
sor node location and orientation parameters.

The ML algorithm involves the solution of a set of
nonlinear equations for the unknown parameters, includ-
ing the unknown nuisance parameters in γ. The solution is
found by iterative minimization of a cost function; we use
the methods in Section 3 to initialize the iterative descent.
In addition, we derive the CRB for the variance of the un-
known parameters in α; the CRB also gives parameter vari-
ance of the ML parameter estimates for high signal-to-noise
ratio (SNR).

The ML estimator is derived from a known parametric
form for the measurement uncertainty in X . In this paper, we

1Note that for A = S = 2, there are 8 measurements and 9 unknown pa-
rameters. The set of possible solutions in general lies on a one-dimensional
manifold in the 9-dimensional parameter space.

adopt a Gaussian uncertainty. The justification is as follows.
First, for sufficiently high SNR, TOA estimates obtained by
generalized cross-correlation are Gaussian distributed with
negligible bias [23]. The variance of the Gaussian TOA error
can be computed from the signal spectral characteristics [23].
For broadband signals with flat spectra, the TOA error stan-
dard deviation is roughly inversely proportional to the sig-
nal bandwidth [21]. Furthermore, most DOA estimates are
also Gaussian with negligible bias for sufficiently high SNR
[27]. For single sources, the DOA standard deviation is pro-
portional to the array beamwidth [28]. Thus, Gaussian TOA
andDOAmeasurement uncertaintymodel is a reasonable as-
sumption for sufficiently high SNR.

4.1. Themaximum likelihood estimate

Under the assumption that the measurement uncertainty E
in (5) is Gaussian with zero mean and known covariance Σ,
the likelihood function is

f (X ;α) = 1
(2π)AS|Σ|1/2 exp

{
− 1

2
Q(X ;α)

}
, (6)

Q(X ;α) = [X − µ(α)
]T
Σ−1

[
X − µ(α)

]
. (7)

A special case is when the measurement errors are uncorre-
lated and the TOA and DOA measurement errors have vari-
ances σ2t and σ2θ , respectively; (7) then becomes

Q(X ;α) =
A∑
i=1

S∑
j=1

[(
ti j − τi j(α)

)2
σ2t

+

(
θi j − φi j(α)

)2
σ2θ

]
. (8)

Depending on the particular knowledge about the source sig-
nal parameters, none, some, or all of the parameters in αmay
be known. We let α1 denote vector of unknown elements of
α and let α2 denote the vector of known elements in α. Using
this notation along with (6), the ML estimate of α1 is

α̂1,ML = argmax
α1

f
(
X, α2;α

) = argmin
α1

Q(X ;α). (9)

4.2. Nonlinear least squares solution

Equation (9) involves solving a nonlinear least squares prob-
lem. A standard iterative descent procedure can be used, ini-
tialized using one of the solutions in Section 3. In our imple-
mentation, we used the Matlab function lsqnonlin.

The straightforward nonlinear least squares solution we
adopted converged quickly (in several seconds for all exam-
ples tested) and displayed no symptoms of numerical insta-
bility. In addition, the nonlinear least squares solution con-
verged to the global minimum in all cases we considered.
We note, however, that alternative methods for solving (9)
may reduce computation. For example, we can divide the pa-
rameter set and iterate first on the sensor node location pa-
rameters and second on the remaining parameters. Although
the sensor node orientations and source parameters depend
nonlinearly on the sensor node locations, computationally
efficient approximations exist (see, e.g., [29]), so the com-
putational savings of lower-dimensional searches may ex-
ceed the added computational cost of iterations nested in
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iterations if the methods are tuned appropriately. Similarly,
one can view the source parameters as nuisance parameters
and employ estimate-maximize (EM) algorithms to obtain
the ML solution [30].

4.3. Estimation accuracy

The CRB gives a lower bound on the covariance of any unbi-
ased estimate of α1. It is a tight bound in the sense that α̂1,ML

has parameter uncertainty given by the CRB for high SNR;
that is, as maxi Σii → 0. Thus, the CRB is a useful tool for
analyzing calibration uncertainty.

The CRB can be computed from the Fisher information
matrix of α1. The Fisher information matrix is given by [22],

Iα1 = E
{[∇α1 ln f (T,Θ;α)

][∇α1 ln f (T,Θ;α)
]T}

. (10)

The partial derivatives are readily computed from (6) and
(4); we find that

Iα1 =
[
G′
(
α1
)]T

Σ−1
[
G′
(
α1
)]
, (11)

whereG′(α1) is the 2AS×dim(α1) matrix whose i jth element
is ∂µi(α1)/∂(α1) j .

For Cases 3 and 4, the Fisher information matrix is rank
deficient due to the translational and rotational ambiguity in
the self-calibration solution. In order to obtain an invertible
Fisher informationmatrix, some of the sensor node or source
parameters must be known. It suffices to know the location
and orientation of a single sensor node, or to know the lo-
cations of two sensor nodes or sources. These assumptions
might be realized by equipping one sensor node with a GPS
and a compass, or by equipping two sensor nodes or sources
with GPSs. Let α̃1 denote the vector obtained by removing
these assumed known parameters from α1. To compute the
CRB matrix for α̃1 in this case, we first remove all rows and
columns in Iα1 that correspond to the assumed known pa-
rameters then invert the remaining matrix [22],

Cα̃1 =
[
Iα̃1
]−1

. (12)

4.4. Partial measurements

So far we have assumed that every sensor node detects and
measures both the TOA and DOA from every source signal.
In this section, we relax that assumption. We assume that
each emitted source signal is detected by only a subset of
the sensor nodes in the field and that a sensor node that de-
tects a source may measure the TOA and/or the DOA for that
source, depending on its capabilities.We denote the availabil-
ity of ameasurement using two indicator functions Iti j and I

θ
i j ,

where

Iti j , I
θ
i j ∈ {0, 1}. (13)

If sensor node imeasures the TOA (DOA) for source j, then
Iti j = 1 (Iθi j = 1); otherwise, the indicator function is set to
zero. Furthermore, let L denote the 2AS×1 vector whose kth
element is 1 if Xk is measured and is 0 if Xk is not measured;
L is thus obtained by forming A × S matrices It and Iθ and
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Figure 4: Example scene showing ten sensor nodes (stars) and
eleven sources (squares). Also are shown the 2σ location uncertainty
ellipses of the sensor nodes and sources; these are on average less
than 1m in radius and show as small dots. The locations of sensor
nodes A1 and A2 are assumed to be known.

stacking their columns into a vector as in (1). Finally, define
X̃ to be the vector formed from elements ofX for whichmea-
surements are available, so Xk is in X̃ if Lk = 1.

The ML estimator for the partial measurement case is
similar to (9) but uses only those elements of X for which
the corresponding element of L is one. Thus,

α̂1,ML = argmin
α1

Q̃
(
X̃ ;α

)
, (14)

where (assuming uncorrelated measurement errors as in
(8)),

Q̃
(
X̃ ;α

) = A∑
i=1

S∑
j=1

[(
ti j − τi j(α)

)2
σ2t

I ti j +

(
θi j − φi j(α)

)2
σ2θ

Iθi j

]
.

(15)

The Fisher information matrix for this case is similar to (11),
but includes only information from available measurements;
thus

Ĩα1 =
[
G̃′
(
α1
)]T

Σ−1
[
G̃′
(
α1
)]
, (16)

where

[
G̃′
(
α1
)]

i j = Li · ∂µi
(
α1
)

∂
(
α1
)
j

. (17)

The above expression readily extends to the case when the
probability of sensor node i detecting source j is neither zero
nor one. If Σ is diagonal, the FIM for this case is given by
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Figure 5: Two standard deviation location uncertainty ellipses for sensor nodes A3 and A9 from Figure 4.

Iα1 =
[
G′
(
α1
)]T

Σ−1PD
[
G′
(
α1
)]
, (18)

where PD is a diagonal matrix whose kth diagonal element is
the probability that measurement Xk is available.

We note that when partial measurements are available,
the ML calibration may not be unique. For example, if only
TOAmeasurements are available, a scene calibration solution
and its mirror image have the same likelihoods. A complete
understanding of the uniqueness properties of solutions in
the partial measurement case is a topic of current research.

5. NUMERICAL RESULTS

This section presents numerical examples of the self-
calibration procedure. First, we present a synthetically gener-
ated example consisting of ten sensor nodes and 2–11 sources
placed randomly in a 2 km×2 km region. Second, we present
results from field measurements using four acoustic sensor
nodes and four acoustic sources.

5.1. Synthetic data example

We consider a case in which ten sensor nodes are randomly
placed in a 2 km × 2 km region. In addition, between two
and 11 sources are randomly placed in the same region.
The sensor node orientations and source emission times are
randomly chosen. Figure 4 shows the locations of the sen-
sor nodes and sources. We initially assume that every sen-
sor node detects each source emission andmeasures the TOA
and DOA of the source. The measurement uncertainties are
Gaussian with standard deviations of σt = 1ms for the TOAs
and σθ = 3◦ for the DOAs. Neither the locations nor emis-
sion times of the sources are assumed to be known. In order
to eliminate the translation and rotation uncertainty in the

scene, we assume that either two sensor nodes have known
locations or one sensor node has known location and orien-
tation.

Figure 4 also shows the two standard deviation (2σ) lo-
cation uncertainty ellipses for both the sources and sensor
nodes assuming that the locations of sensor nodes A1 and
A2 are known. The ellipses are obtained from the 2 × 2 co-
variance submatrices of the CRB in (12) that correspond to
the location parameters of each sensor node or source. These
ellipses appear as small dots in the figure; an enlarged view
for two sensor nodes are shown in Figure 5.

The results of the ML estimation procedure are also
shown in Figure 5. The “×” marks show the ML location
estimates from 100 Monte-Carlo experiments in which ran-
domly generated DOA and TOA measurements were gener-
ated. The DOA and TOA measurement errors were drawn
from Gaussian distributions with zero mean and variances
of σt = 1ms and σθ = 3◦, respectively. The solid el-
lipse shows the 2-standard deviation (2σ) uncertainty re-
gion as predicted from the CRB. We find good agreement
between the CRB uncertainty predictions and the Monte-
Carlo experiments, which demonstrates the statistical effi-
ciency of the ML estimator for this level of measurement un-
certainty.

Figure 6 shows an uncertainty plot similar to Figure 4,
but in this case we assume that the location and orien-
tation of sensor node A1 is known. In comparison with
Figure 4, we see much larger uncertainty ellipses for the
sensor nodes, especially in the direction tangent to circles
with center at sensor node A1. The high tangential uncer-
tainty is primarily due to the DOA measurement uncer-
tainty with respect to a known orientation of sensor node
A1. By comparing Figures 4 and 6, we see that it is more
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Figure 6: The 2σ location uncertainty ellipses for the scene in
Figure 4 when the location and orientation of sensor node A1 is
assumed to be known.

desirable to know the locations of two sensor nodes than to
know the location and orientation of a single sensor node;
thus, equipping two sensor nodes with GPS systems re-
sults in lower uncertainty than equipping one sensor node
with a GPS and a compass. In the example shown, we ar-
bitrarily chose sensor nodes A1 and A2 to have known lo-
cations, and in this realization they happened to be rela-
tively close to each other; however, choosing the two sensor
nodes with known locations to be well-separated tends to re-
sult in lower location uncertainties of the remaining sensor
nodes.

We use as a quantitative measure of performance the 2σ
uncertainty radius, defined as the radius of a circle whose area
is the same as the area of the 2σ location uncertainty ellipse.
The 2σ uncertainty radius for each sensor node or source is
computed as the geometric mean of the major and minor
axis lengths of the 2σ uncertainty ellipse. We find that the av-
erage 2σ uncertainty radius for all ten sensor nodes is 0.80m
for the example in Figure 4 and it is 3.28m for the example
in Figure 6.

Figure 7 shows the effect of increasing the number of
sources on the average 2σ uncertainty radius. We plot the av-
erage of the ten sensor node 2σ uncertainty radii, computed
from the CRB, using from 2 through 11 sources, starting ini-
tially with sources S1 and S2 in Figure 4 and adding sources
S3, S4, . . . , S11 at each step. The solid line gives the average
2σ uncertainty radius values when sensor nodes A1 and A2
have known locations, and the dotted line corresponds to the
case that A1 has known location and orientation. The un-
certainty reduces dramatically when the number of sources
increases from 2 to 3 and then decreases more gradually as
more sources are added.
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Figure 7: Average 2σ location uncertainty radius for the scenes in
Figures 4 and 6 as a function of the number of source signals used.
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Partial measurements

Next, we consider the case when not all sensor nodes de-
tect all sources. For a sensor node that is a distance r from
a source, we model the detection probability as

PD(r) = exp−(r/r0)
2
, (19)

where r0 is a constant that adjusts the decay rate on the detec-
tion probability (r0 is the range in meters at which PD = e−1).
We assume that when a sensor node detects a source, it mea-
sures both the DOA and TOA of that source.

Three detection probability profiles are considered, as
shown in Figure 8, and correspond to r0 = 800m, r0 =
2000m, and r0 = ∞. Figure 9 shows the average 2σ uncer-
tainty radius values, computed from the inverse of the Fisher
information matrix in (18), for each of these choices for r0.
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Figure 9: (a) Average 2σ location uncertainty for sensor nodes in Figure 4 for three detection probability profiles. (b) Average number of
sources detected by each sensor node in each case.

In this experiment, we assume that the locations of sensor
nodes A1 and A2 are known. The average number of sources
detected by each sensor node is also shown. For r0 = 2000m,
we see only a slight uncertainty increase over the case where
all sensor nodes detect all sources. When r0 = 800m, the
average location uncertainty is substantially larger, because
the effective number of sources seen by each sensor node is
small. This behavior is consistent with the average number
of sources detected by each sensor node, shown in the figure.
For a denser set of sensor nodes or sources, the uncertainty
reduces to a value much closer to the case of full signal de-
tection; for example, with 30 sensor nodes and 30 sources in
this region the average uncertainty is less than 1m even when
r0 = 800m.

5.2. Field test results

We present the results of applying the auto-calibration pro-
cedure to an acoustic source calibration data collection con-
ducted during the DUNES test at Spesutie Island, Aberdeen
Proving Ground, Maryland, in September 1999. In this test,
four acoustic sensors are placed at known locations 60–100m
apart as shown in Figure 10. Four acoustic source signals are
also used; while exact ground truth locations of the sources
are not known, it was recorded that each source was within
approximately 1m of a sensor. Each source signal is a series
of bursts in the 40–160-Hz frequency band. Time-aligned
samples of the sensor microphone signals are acquired at a
sampling rate of 1057Hz. Times of arrival are estimated by
cross-correlating the measured microphone signals with the
known source waveform and finding the peak of the correla-
tion function. Only a single microphone signal is available
at each sensor node, so while TOA measurements are ob-
tained, no DOAmeasurements are available. Figure 10 shows
the ML estimates of sensor node and source location, assum-
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Figure 10: Actual and estimated sensor node locations, and esti-
mated source locations, using field test data. Sensor node A1 is as-
sumed to have known location and orientation.

ing that sensor node A1 has known location and orientation
but assuming no information about the source locations or
emission times. Since no DOA estimates are available, the lo-
cation, but not the orientation, of each sensor node is esti-
mated. The estimate shown in Figure 10 and its mirror image
have identical likelihoods; we have shown only the “correct”
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estimate in the figure. The location errors of sensor nodes
A2, A2, and A4 are 0.09m, 0.19m, and 0.75m, respectively,
for an average error of 0.35m. In addition, the source loca-
tion estimates are within 1m of the sensor node locations,
consistent with our ground truth records.

Finally, we note that the calibration procedure requires
low sensor node communication and has reasonable com-
putational cost. The algorithms require low communication
overhead as each sensor node needs to communicate only 2
scalar values to the CIP for each source signal it detects. Com-
putation of the calibration solution takes place at the CIP. For
the synthetic examples presented, the calibration computa-
tion takes on the order of 10 seconds using Matlab on a stan-
dard personal computer. For the field test data, computation
time was less than 1 second.

6. CONCLUSIONS

We have presented a procedure for calibrating the locations
and orientations of a network of sensor nodes. The calibra-
tion procedure uses source signals that are placed in the scene
and computes sensor node and source unknowns from esti-
mated TOA and/or DOA estimates obtained for each source-
sensor node pair. We present ML solutions to four variations
on this problem, depending on whether the source locations
and signal emission times are known or unknown. We also
discuss the existence and uniqueness of solutions and algo-
rithms for initializing the nonlinear minimization step in the
ML estimation. A ML calibration algorithm for the case of
partial calibration measurements was also developed.

An analytical expression for the Cramér-Rao lower
bound on sensor node location and orientation error covari-
ance matrix is also presented. The CRB is a useful tool to
investigate the effects of sensor node density and source de-
tection ranges on the self-localization uncertainty.
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