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The mathematical formulation used in tomography has been successfully applied to time-frequency analysis, which represents an
important “imaging modality” of the structure of signals. Based on the interrelation between CT and time-frequency analysis, new
methods have been developed for the latter. In this paper, an original method for constructing the time-frequency representation
of signals from the squared magnitudes of their fractional Fourier transforms is presented. The method uses a-norm minimization
with & — 1 which is motivated by Rényi entropy maximization. An iterative optimization method with adaptive estimation of the
convergence parameter is elaborated. The proposed method exhibits advantages in the suppression of interference terms for signals

with simple time-frequency configurations.
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1. INTRODUCTION

Time-frequency representation (TFR) [1] is an important
tool for nonstationary signals and time-varying systems anal-
ysis or synthesis. Constructing such a representation, clearly
and accurately describing the energy distribution of the sig-
nal over the time-frequency plane, is therefore of fundamen-
tal importance.

Prior to presenting the mathematical background of the
proposed method, the concept of the time-frequency plane
and the constrains imposed on the TFR in order to yield
a reasonably accurate time-frequency description will be
briefly reviewed. Continuous-time complex-valued deter-
ministic signals with finite energy will be considered.

In the time domain, a signal is completely described by
a function s(t) and its instantaneous power by |s(£)|%. A
time-varying instantaneous frequency can be associated with
the signal at each time . By analogy, in the frequency do-
main, the signal may be described by its Fourier transform
(FT), and its energy distribution over frequency given by the
Fourier transform squared. A concept dual to the instanta-
neous frequency is the group delay, which characterizes the
occurrence of a frequency component in time.

The time-frequency representation TFR(f, w) charac-

terizes the energy distribution of a signal over the time-
frequency plane. As an energy distribution, this function
should be nonnegative everywhere, analogous to the simul-
taneous probability density function of a 2-dimensional ran-
dom vector. The energy spectrum and the instantaneous
power (which represent the marginal densities of the joint
time-frequency distribution) should be obtained by integrat-
ing the distribution along the time and frequency axes, re-
spectively. This property, referred to as the time-frequency
marginals, strongly influences the time-frequency resolution.
These and many other properties (e.g., the first-order condi-
tional moments which represent the instantaneous frequency
and group delay) are generally accepted as desirable proper-
ties of the TFR [2]. Unfortunately, no distribution can satisfy
all these properties simultaneously.

Although a notion of “ideal” time-frequency distribution
has been mentioned in some works, the situation in time-
frequency analysis is controversial and ideal time-frequency
distribution cannot exist. Nowadays, various methods for
time-frequency analysis are frequently published. Because
infinite resolution cannot be achieved in both time and fre-
quency simultaneously, various compromises have been pro-
posed. The most commonly used techniques are Cohen class
distributions which are briefly discussed in Section 2. Instead
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of directly transforming a time-domain function by inte-
gration to yield a time-frequency representation, a general
technique is proposed to constructTFR; indirectly to satisfy
certain predetermined criteria such as maximum entropy.
This paper applies this technique to the case of generalized
marginals (Section 3).

The main part of this paper (Section 4) is devoted to nu-
merical methods for reconstruction of a TFR from an incom-
plete set of fractional Fourier transforms (FrFT) by means of
optimization techniques. Since Shannon entropy maximiza-
tion method cannot be used generally due to the nonnegativ-
ity requirement, Rényi entropy is chosen as an alternative re-
construction functional. A gradient-based method (derived
by the technique of Lagrange multipliers) with adaptive esti-
mation of a convergence parameter is developed and applied
to various signals (Section 5).

2. COHEN CLASS

The Wigner (Wigner-Ville) distribution (WD) [1, 3] is a
principal representative of distributions which describe the
time-frequency energy distribution; the WD is defined as the
FT of the instantaneous autocorrelation function

rs(t,T):s(t+%>s*<t—§) (1)

(where * denotes complex conjugation), that is,
WD, (£ @) = Jrs(t, e i dr. 2)

The WD is a real-valued function, often assuming negative
values. WD-based analysis results in an intuitive interpreta-
tion only for certain types of signals (namely, linear chirps
and Dirac pulses in either the time or frequency domain).
The analyzed signal is usually considered to be a composi-
tion of signals with simple TFR, called components. In gen-
eral, due to the nonlinearity of the WD, interference terms
(cross-terms) may result, such as intercomponent interfer-
ence and internal interference in the case of nonlinear fre-
quency modulation [1]. These undesirable terms can have
amplitudes exceeding those of actual autocomponents. (In-
terference structure of WD reflects also phase shift between
components that can be of interest in some application, but
phase relations cannot be simply identified in WD image.)
Due to these phenomena, a smoothing filter is applied to the
result of the WD in order to suppress interference and noise.

The WD (possibly followed by linear, time-invariant fil-
tering) has two noteworthy features: the order of nonlin-
earity is quadratic and the resulting distributions are time-
frequency shift covariants. Such distributions have been uni-
fied by Cohen. The general form of the shift-covariant distri-
butions is given by [4]

¥t w) = i j J J 80, )1t 7) €TI0 49 4 dt’,
(3)

where ¢ denotes the distribution kernel.

3. RADON-WIGNER TRANSFORM

3.1. Time-frequency marginals

The instantaneous power and the energy spectrum are con-
sidered as desired densities over time and frequency, re-
spectively. The representation TFR,(t, w) satisfies the above-
mentioned marginal property if the univariate densities de-
termined by the integration of a joint density function along
t and w variables fulfill the following relations:

1 2
~ JTFRS(t,w)dw — s, N

2
P

1
- JTFRS(t, w)dt = |S(w)

where S(w) denotes the unitary version of the Fourier trans-
form

S(w s(t) e It dt. (5)

)= |
- Ven

Cohen and Posch [5] have shown that nonnegative-
valued distributions with correct marginals exist; minimiz-
ing cross-entropy is an attractive method for constructing
nonnegative distributions [6]. This method yields a solu-
tion which may be written as a product of three functions,
namely, prior distribution function, time-dependent func-
tion, and frequency-dependent function. In practical appli-
cations, this separability simplifies the mathematical deriva-
tion and decreases the computational complexity, but un-
fortunately the solution obtained is not sufficiently general
to express complex TFR. This drawback arises mainly in the
case of uniform prior distribution and can be compensated
by imposing additional constraints based on FrFT and line
integrals along paths not parallel to either the time or fre-
quency axes [7].

3.2. Fractional Fourier transform (FrFT)

The conventional marginals (4) may be viewed as specific
cases (¢ = 0 or 77/2) of the generalized marginals, expressed
as [8]

qu,{TFRS(t,w)}(u) YOI (6)

where R, denotes the Radon transform operator, ¢ is the
rotation angle of the time-frequency plane, and S, (u) is the
FrFT of s(t). The existence of such a TFR satisfying (6) is ob-
vious as a consequence of the well-known Fourier-slice the-
orem. The geometrical interpretation of the rotation angle
¢ depends on the used time and frequency unit. To avoid
this ambiguity, a time-scaled signal s,(x) = a'?s(ax), as a
function of the dimensionless time-variable x, may be used
instead of s(f). The FT of s,(x) (with respect to the vari-
able x) is Su(y) = a~"2S(a"'y), where y is the dimension-
less angular frequency. The common choice for the scaling
factor aisa = (l‘m/a)m)l/2 provided that intervals (—t,,, t;)
and (—wpm, wy,) represent the time and frequency supports of
the signal [9]. This particular option reshapes the rectangular
time-frequency support into a square-shaped region.
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The FrFT is a unitary transformation defined as [10]

Sy(u) = Fp S0} ) = [ sOBy (L, ()

where B, (t, u) is the following transform kernel:

By(t, u)
8t —u), p=0,
O(t+u), ¢ = =*7,

ej[¢/2—(n/4) sgn(¢)]

/27| sin @]

B(pthrr(t: u))

ej((u2+t2)/2)cot¢—jutcsc ?, pe (77.[’ 0) U (0’ 7'[),

lpl >m, neZ

(8)

Note that the FrFT incorporates the identity (So(u) = s(u))
and the ordinary FT (5) (Sn/2(u) = S(u)) as specific cases of
(7) for ¢ = 0 and ¢ = 71/2, respectively. The FrFT effectively
results in a rotation of the time-frequency plane; it is easy to
show that the inverse transform kernel BJ (t, u) is the eigen-
function of the time-frequency operator

it =1tcosp+dsing, 9)

where & = (1/j)(9/0t) and £ = t, likewise, the inverse FT
kernel e/“* is the eigenfunction of the frequency operator @.
Mean values (first- and second-order moments) of the oper-
ator # characterize the average location and the spread of the
signal in the time-frequency plane with respect to the lines
tcos¢ + wsing = const. In general, the inverse of the FrFT
is a decomposition of a signal using an orthonormal basis
of linearly frequency-modulated functions. The linear fre-
quency modulation may be recognized in FrFT kernel as a
quadratic-phase term; other terms ensure unitarity and an-
gle additivity properties of the transform [8].

3.3. Reconstruction of WD

The WD as specific case of TFR satisfies generalised mar-
ginals (6) for all angles ¢ € (0, ) [8]. Magnitude-squared
FrFT is then referred to as the Radon-Wigner transform of
signal s(f). As derived originally by J. Radon, a function of
two variables (such as an image) may be uniquely recon-
structed from a full set of its line integrals. Specifically, the
WD may be computed from the squared magnitude of the
FrFT mwp,(u, @) = 27|S,(u) 12 of the signal by the following
inversion formula:

1 T —00 ) .
= —jup
WDs(t, w) - Jo .[700 ‘[700 mwp, (U, @) e

% ejp(tcosgo+wsingo) Ipldu dp d(P
(10)

Computation of (10) is usually divided into several steps, the
arrangement of which results in various techniques for the
TFR construction. One such technique, that is commonly
used, is the filtered back-projection method. In practice, the
filtering, which is equivalent to differentiation followed by

Hilbert transformation, usually involves additional smooth-
ing and spectral limiting. The additional filter transfer func-
tion G(p, ¢) can be interpreted as the Cohen class kernel
¢(0, 7) expressed in polar coordinates. This approach is un-
suitable in terms of computational efficiency compared to
conventional procedures for computation of the Cohen dis-
tribution, which use Cartesian time-frequency coordinates.
However, using polar coordinate kernels simplifies the for-
mulation of generalized marginal consistency conditions.
Conditions for other properties can also be reformulated
for the filter transfer function G(p, ¢) instead of the ¢(0, 1)
kernel.

4. ITERATIVE RECONSTRUCTION OF THE TFR

As discussed in Section 3.3, filtered back-projection ap-
proach in the time-frequency representation results in Cohen
class distributions. Since these distributions offer a trade-off
between the cross-terms suppression and the autocompo-
nent resolution, we will consider an optimization-based in-
version from small number of projections as an alternative
to the direct linear methods. The constraint imposed is that
the generalized marginals (6) are correct for several angles
@1,...,9u, that s,

RAT(t, )} (1) = mi(u), i=1,...,M, (11)

where T is to be reconstructed and m;(u) = 27[S,, (1) 1%

The constraint of correct marginals when combined with
optimization procedures (e.g., least squares method, entropy
maximization, and cross-entropy minimization) provides a
tool for time-frequency distribution construction [6, 7, 11,
12]. In the case of Shannon entropy maximization with gen-
eralized marginals as constraints, Lagrange multipliers tech-
nique with nonlinear Gauss-Seidel-type iteration procedure
may be advantageously used [13]. In this particular method,
Lagrange multipliers are repeatedly and successively updated
fori=1,..., M to satisfy (11); only one marginal is assumed
to be exactly correct in each iteration. The iteration proce-
dure converges provided that a nonnegative solution exists.

Unfortunately, Shannon-entropy-based methods may
fail because the nonnegative TFR with correct marginals may
not exist. For this reason, the application of an adapted Rényi
entropy seems to be more suitable for TFR reconstruction.

4.1. Rényientropy of TFR

The Rényi entropy [14] is a generalization of the Shannon
entropy, which is defined for the discrete probability function
p=1{pi....pn}as

N
H(p) = - > pilog, p: (12)

i=1

Roughly spoken, Shannon entropy is a weighted arithmetic
mean of the individual components — log, p; with weights p;.
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This arithmetic mean may be further generalized by defining
a continuous monotonic function f(x) to give

1<§Pif(_10gzpi)>- (13)

Choosing f(x) = 27®* where « represents the order of
Rényi entropy (instead of f(x) = ax + b in the case of an
arithmetic mean), corresponds to the Rényi entropy of order
o,

HY(p) =

T2 o% (Zpl) (14)

Rényi entropy retains most of the basic properties of Shan-
non entropy [14, 15]. Moreover, as « approaches 1, Rényi
entropy reduces to Shannon entropy. Since in many applica-
tions Shannon entropy maximization yields excellent results,
this in turn will be of great help in determining the proper
order a.

Extending (14) to bivariate continuous functions yields
the Rényi entropy of the TFR, which has the form

HY (TER,) = (JJ(TFR (b w)) dt da)),
(15)
where the signal energy E;, given by
E= o | [ TR w)dt e, (16)
27

normalizes the TFR,.

Regardless of the probability distribution interpretation
of TFR, negative values for integer orders & may be for-
mally accepted in (15) provided that the integral argument
also in (15) yields positive value. In the context of time-
frequency analysis, H, ;3“) (TFR;) has been proposed in [16, 17]
to measure signal complexity interpreted as a number of sig-
nal components. For this purpose, the order a equal to three
has been preferred in [16] since the argument of the loga-
rithm in (15) takes on nonpositive values only exceptionally,
and the cross-components contributions to this term asymp-
totically vanish. In this paper, a maximization of Rényi en-
tropy for a noninteger « close to 1, namely, in the range
(1,2), is considered. Since ath power, as a real-valued func-
tion, does not allow negative values, absolute values will be
used, consequently, the Hrx maximization is reduced to a-
norm minimization. This simple modification ensures con-
vexity of the resulting objective functional. The convexity is a
valuable property in optimization procedures, and in the case
of Shannon entropy, it cannot be achieved by replacing neg-
ative values with its absolute values. It should be noted that
the special case of @ = 2 is equivalent to the minimum Eu-
clidean norm solution, which can be obtained iteratively or
analytically (the latter in the case of circular support [18]).
An iterative procedure for a € (1, 2) is presented below.

4.2. Algorithm description

Optimization may be formulated as minimization of the fol-
lowing convex functional:

| T(t, w)|*dt dw (17)
I,

over a predefined area of support D subject to the generalized
marginals (11) for a set of angles ¢y, ..., ¢p. The constrained
optimization problem can be solved by the method of the
Lagrange multipliers. The Lagrangian in this case may then
be written as

LT A, ht)
=1” I T(t )| “dt do
(44 D

M
_ Z L} MO [RAT( @)} (1) — miw) | du

1{[ | T(t,w)|* —ZA (tcos g;+wsing;) T(t, w)dt dw

i=1

M
+ ,; L)x Ai(w)ym;(u)du.
(18)

For notational convenience, a back-projection operator B;,
projecting the Lagrange multipliers back to the support of
the TER, is introduced. So,
Bi{di(w)}(t, w) = A;(t cos @; + wsin ;). (19)
Variation of (18) with respect to T and then setting the result

of variation to be zero yield an expression for TFR in terms
of Lagrange multipliers

T(t, w)
1/(a—1)

M
> BifLiw)}(t w)

i=1

w85

L)}, w)}
(20)

Substituting (20) into (18) yields the dual Lagrangian

af(a—1)

~ 1-« M
T ) = T” ‘ S B,
i=1

M
+ J 1:21 pitis
(21)

where the formal arguments of the functions of ¢, w, and u
have been omitted and integration is performed over the cor-
responding support regions D and D;.

This dual Lagrangian is clearly a concave functional (for
a > 1). The solution involves finding the nonconstrained
maximum of the dual Lagrangian as a functional in terms
of Lagrange multipliers, for which an iterative algorithm has
been developed. In each iteration, the Lagrange multipliers
are updated according to the following formula, which makes
use of a convergence parameter 4, that must be estimated
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separately,
A("H)(u) _ A(n)(u) _ #ne(A(ﬂ)(u))) (22)
where A" (w) = A\, .., AE\'})]T, and

e=[e,..., eM]T, e = R;T™ —mj, (23)

represents the error of the marginals of (11) in the nth iter-
ation. The convergence parameter y, may be estimated (see
the appendix) as

-1

(u)

2—a)/(a—1)
2(a—1)

o= T

M
> B
j=1

(24)
In the finite-dimensional case, the recursion (22) may be
viewed as an adaptive, gradient-based (steepest-ascent) max-
imization of the dual Lagrangian (21).

5. DISCUSSION

The performance of the method has been characterized for
several types of signals; results for single-component signal,
multicomponent signal, and signal with nonlinear frequency
modulation are presented. Discrete-time signals have been
numerically synthesized; number of samples and sampling
frequency determine the time and frequency supports of sig-
nals. With regard to the appropriate time scaling described in
Section 3.2, optimization procedure has been performed on
a square-shaped support with the well-defined rotation an-
gles. Results of the analysis are presented graphically in Fig-
ures 1, 2, 3, and 4, where, for convenience, the time axis is
labeled in samples and the frequency is normalized, with the
value one corresponding to half the Nyquist frequency.

In the case of monocomponent signals, no significant dif-
ferences were found compared to the WD result. As an exam-
ple, a 101-sample linear frequency-modulated signal with a
Gaussian amplitude envelope (the so-called “time-frequency
atom”) is used. The result of reconstructinga TFR for a = 1.1
and a = 1.9 for five uniformly distributed angles (0°, 36°,
72°,108°, 144°) is depicted in Figure 1. In this figure, the ef-
fect of the Rényi entropy order « can be seen. As a approaches
1, the TFR approaches the maximum Shannon entropy solu-
tion which in most cases is identical to the WD result.

Whereas in the case of monocomponent signals, notice-
able differences were not expected between the proposed
method and the WD result, the situation is different for mul-
ticomponent signals. The next example demonstrates that,
for signals with trivial time-frequency distributions, both the
suppression of interference and retention of the autocompo-
nents are possible. In Figure 2, the analyzed signal consists
of two time-frequency components with different frequen-
cies and cos? amplitude envelopes nonoverlapping in time.
In Figure 2b, the TFR was constructed using Shannon en-
tropy method from four projections (¢ = 0°, 90°, 45°, —45°).
In Figure 2a, oscillatory interference appearing midway be-
tween autocomponents can be clearly observed. As known

x1073
54 T(t w)

100

—_O = N W

0.5

0
Frequency -0.5
(normalized)

Time
(samples)

(a)

100

40

0 Time

Frequency (samples)

(normalized)

(b)

100

60
0 - 40
Frequency -0.5

(normalized) -

Time

20 (samples)

(c)

FIGURE 1: Reconstructed time-frequency atom based on (a) Rényi
entropy a = 1.9; (b) Shannon entropy; and (c) Rényi entropy o =
1.1.

from [1], sign of such interference does not fluctuate on
lines parallel to the line connecting the center points of com-
ponents, but interference oscillates with alternating signs in
other directions. Based on this interference geometry, one
can conclude that mainly such Radon-Wigner transforms
are influenced by the interference, for which the integration
paths are near parallel to the line connecting center points of
components, whereas interference contributions to other di-
rections are attenuated due to integration. Proper choice of
angles then allows obtaining almost interference-free distri-
bution.

The FrFT represents an inner product (correlation) of
the analyzed signal with a linearly frequency-modulated pro-
totype. Thus the performance of the FrFT-based approach
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100

60

Time
Frequency (samples)
(normalized) -1 0
(a)
0.02 4 T(t, w)

0.01

—o

Time

Frequency (samples)

(normalized) -1 0

FIGURE 2: Time-frequency representations of two-component sig-
nal: (a) WD and (b) maximum entropy reconstruction from four
angles.

in the case of nonlinear frequency modulation is inferior
to the proposed method. As an example of a frequency-
modulated signal with a higher order of nonlinearity, 201-
sample complex-valued signal with sinusoidal frequency
modulation has been considered. The result of TFR recon-
struction for nine angles 0°,20°,...,160° with « = 1.1 is
given in Figure 3b. In this figure, complicated interference
patterns along the main sinusoidal frequency modulation
curve may be observed; also in comparison to Figure 2, it
may be observed that interference terms have been redis-
tributed from interference regions to autocomponent re-
gions. Due to complex interference structure, no simple rule
for choosing optimal set of angles may be found; uniform
distribution of angles seems to be essential in this case. Com-
pared to the signal with WD as in Figure 2, more angles must
be used in order to reasonably characterize the signal struc-
ture in the time-frequency plane. However, as the number of
projections increases, more interference patterns appear in
the resulting distribution.

This method can be used also for CT originated data, as
demonstrated in Figure 4, where Shepp-Logan phantom has
been used to simulate measured projections.

6. CONCLUSION

In this paper, it has been explained that mainly limited-angle
approach can contribute to the time-frequency analysis. The
underlying concept of this novel method based on Rényi en-

200

150

Frequency 0
(normalized)
Time
1% (samples)
(a)
x1073
2 T(t, w)

200

Frequency
(normalized) 100
Time
(samples)

FIGURE 3: Time-frequency representations of a signal with sinu-
soidal frequency modulation: (a) WD and (b) the TFR reconstruc-
tion from 9 projections for a = 1.1.

tropy maximization has been described. This method can
be used also for CT image reconstruction. Although this
method is computationally very expensive, it can exhibit
some advantages when compared to the conventional time-
frequency methods. It has also been demonstrated that the
proposed method can successfully suppress undesirable in-
terference terms in the case of signals with simple time-
frequency configurations without unacceptable degradation
of time-frequency localization.

In the conclusion, it is worth noting the differences be-
tween the limited-angle approach in time-frequency recon-
struction and tomography. Whereas a limited number of an-
gles in tomography results from technical constraints, the an-
gle limitation in time-frequency analysis has been imposed
on purpose in order to increase the degree of freedom for
the suppression of interference components. The aims of the
construction procedures thus differ for these two fields of
application. In tomography, the goal of image reconstruc-
tion is to achieve the highest level of detail possible, whereas
in constructing the time-frequency distribution, the level of
detail should not be tried to be arbitrarily small due to the
uncertainty principle. Projections of images may not neces-
sarily have a clear intuitive interpretation in signal theory;
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to obtain
L5 X107 2 b ‘ ei(A"Y) = e (A") + A;(AD -2, (A.3)
. A
0 51 1 { ™ where the linear operator A; is defined as
‘0>\ i
120 \ LM v (2-a)/(a—1)
- (n)
100 '\ \ 120 AXx = a1 Z R Z Bj/\jn Brxk. (A.4)
80 W 0 k=1 i=1
60
y (samples) ;)x\ Then (22) and (A.3) yield
N
-
20/}/ 20 x (samples) (/)(/1(’”1)) _ ¢(A(n)) _ (7 _ Hn-ﬂ) (A(n+1) _ /\(n))’ (A.5)
0
(a) where A = [A4,... ,ﬂM]T and 7 denotes the identity oper-
ator. From the definition of the operator norm induced by a
function norm, it is clear that the local contractivity condi-
tion can be satisfied by imposing the constraint
-3 ”
L5 x10 v
1 17 - unAll < 1, (A.6)
o.g
120 where || - || is a corresponding operator norm.
In the next derivation, the co-norm will be used,
120
60 |lx()|| = max { |x;(u) | }. (A7)
80 iu
y (samples)

60
40
x (samples)

FIGURE 4: Shepp-Logan phantom reconstructed from 10 projec-
tions (120 x 120 pixel) by means of (a) filtered back projection and
(b) Rényi entropy maximization, « = 1.1.

in contrast, time-frequency projections are related directly
to the FrFT. This observation contributes to the theoretical
value of the approaches presented.

APPENDIX

Iteration formula (22) can be treated as a functional mapping

A = (A7), (A1)
Convergence of the iteration to the solution (A = ¢(A),
e(1) = 0) can be ensured by contractivity of ¢. The mapping
¢ is said to be contractive if the inequality
llp(A2) — p(A1)[[ = gllA — A | (A.2)
holds for a number g < 1 and || - || denotes a properly de-
fined norm. However, it is not easy to satisfy the contractivity
condition “globally” for unbounded values of A. In order to
estimate the convergence parameter in (22), we consider “lo-
cal” contractivity based on linearization with respect to A"+
near A" The linearized error term in (22) may be derived

Taking into account the nonnegativity of the impulse re-
sponse of A, one can conclude that (A.6) can be satisfied
by

2
Al <2, e, n< —, A.8
|lunAll W< T (A.8)
where the operator norm is
lAl sup |AX] =1 = max {sup || Ax||}. (A.9)

Operator A; may be expressed in terms of a nonnegative ker-
nel h;(u, v) as

M
[Ax}w) = Jh,-,k(u, V) (0. (A.10)
k=1

Therefore,

M
A )] =S Jh,-,k(u, V) ) [dv = {4 x|} ()
k=1

(A.11)
and xx (1) = 1 corresponds to the worst case of [|x]| = 1 with
respect to supremum. Substituting x = [1,..., 117 into (A.4)
yields

M M 2—a)/(a—1)
T _ _ ()
A, 1) = @D R j_ZlB,A] (u).

(A.12)

This result, when combined with (A.8) and (A.9), finally re-
sults in the estimate (24).
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