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An integral part of any audio-visual speech processing (AVSP) system is the front-end visual system that detects facial features
(e.g., eyes and mouth) pertinent to the task of visual speech processing. The ability of this front-end system to not only locate,
but also give a confidence measure that the facial feature is present in the image, directly affects the ability of any subsequent
postprocessing task such as speech or speaker recognition. With these issues in mind, this paper presents a framework for a facial-
feature detection system suitable for use in an AVSP system, but whose basic framework is useful for any application requiring
frontal facial-feature detection. A novel approach for facial-feature detection is presented, based on an appearance paradigm. This
approach, based on intraclass unsupervised clustering and discriminant analysis, displays improved detection performance over
conventional techniques.
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1. INTRODUCTION

The visual speech modality plays an important role in the
perception and production of speech. Although not purely
confined to the mouth, it is generally agreed [1] that the
large proportion of speech information conveyed in the vi-
sual modality stems from themouth region of interest (ROI).
To this end, it is imperative that an audio-visual speech pro-
cessing system be able to accurately detect, track, and nor-
malise the mouth of a subject within a video sequence. This
task is referred to as facial-feature detection (FFD) [2]. The
goal of FFD is to detect the presence and location of features,
such as eyes, nose, nostrils, eyebrows, mouth, lips, ears, and
so on, with the assumption that there is only one face in an
image. This differs slightly from the task of facial-feature lo-
cation which assumes that the feature is present and only re-
quires its location. Facial-feature tracking is an extension to

the task of location in that it incorporates temporal infor-
mation in a video sequence to follow the location of a facial
feature as time progresses.

The task of FFD, with reference to an audio-visual
speech processing (AVSP) application, can be broken into
three parts, namely,

(1) the initial location of a facial-feature search area at the
beginning of the video sequence;

(2) the initial detection of the eyes at the beginning of the
video sequence. Detection is required here to ensure
that the scale of the face is known for normalisation of
the mouth in the AVSP application;

(3) the location and subsequent tracking of the mouth
throughout the video sequence.

A depiction of how the FFD system acts as a front-end
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Figure 1: Graphical depiction of overall detection/location/tracking front-end to an AVSP application.
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Figure 2: Graphical depiction of the cascading front-end effect.

to an AVSP application can be seen in Figure 1. This paper
is broken down into a number of sections. Firstly, Section 2
discusses the importance of the front-end FFD system has on
the overall performance of an AVSP application. Section 3
discusses the scope of the FFD problem with reference to
AVSP and how some assumptions can be made to simplify
the system (i.e., lighting, number of people present, scale and
rotation of face, and so on). Under these assumptions, a tech-
nique for generating a binary face map, to restrict the eye
and mouth search space, is explained in Section 5. The im-
portance of the face map can be seen in Figure 1 as it can
drastically reduce the search space in FFD. In Section 6, an
appearance-based paradigm for FFD is defined, with our new
approach of detection based on intraclass unsupervised clus-
tering and discriminant analysis being outlined. Detection
results of this approach highlighting the improved perfor-
mance attained over conventional techniques are also pre-
sented.

2. FRONT-END EFFECT

For biometric processing of the face, it is common practice
to performmanual labelling of important facial features (i.e.,
mouth, eyes, etc.) so as to remove any bias from the front-end
effect. The front-end effect can be defined as the dependence
any visual biometric classifier’s performance has on having
the object it is making a decision about accurately detected.
The severe nature of this effect, with reference to final bio-
metric performance, is best depicted in Figure 2.

If we assume that an erroneous decision will result when
the facial feature being classified is not successfully detected,
we can mathematically express the effect as

ηo = ηd × ηc, (1)

where ηd is the probability that the object has been success-
fully detected, ηc is the probability that a correct decision is
made, given that the object has been successfully detected,
and ηo is the overall probability that the system will make the
correct decision. Inspecting (1), we can see that the perfor-
mance of the overall classification process ηo can be severely
affected by the performance ηd of the detector.

In ideal circumstances, we want ηd to approach unity,
so we can concentrate on improving the performance of ηc,
thus improving the overall system performance. A very sim-
ple way to ensure ηd approaches unity is through manual la-
belling of facial features. Unfortunately, due to the amount
of visual data needing to be dealt with in an AVSP appli-
cation, manual labelling is not a valid option. The require-
ment for manually labelling facial features also brings the
purpose of any automatic classification system (i.e., speech
or speaker recognition) into question due to the need for
human supervision. With these thoughts in mind, an inte-
gral part of any AVSP application is the ability to make ηd
approach unity via an automatic FFD system and reliably
keep it near unity to track that feature through a given video
sequence.

3. RESTRICTED SCOPE FOR AVSP

As discussed in Section 2, accurate FFD is crucial to any AVSP
system as it gives an upper bound on performance due to
the front-end effect. FFD is a challenging task because of the
inherent variability [2] as follows.

Pose: the images of a face vary due to the relative camera-
face pose, with some facial features such as an eye or nose
becoming partially or wholly occluded.
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Presence or absence of structural components: facial fea-
tures such as beards, mustaches, and glasses may or may not
be present adding a great deal of variability in the appearance
of a face.

Facial expression: a subject’s face can vary a great deal due
to the subject’s expression (e.g., happy, sad, disgusted, and so
on).

Occlusion: faces may be partially occluded by other ob-
jects.

Image orientation: facial features directly vary for differ-
ent rotations about the camera’s optical axis.

Imaging conditions: when captured, the quality of the im-
age, and the facial features which exist within the image may
vary due to lighting (spectra, source distribution and inten-
sity) and camera characteristics (sensor response, lenses).

With over 150 reported approaches [2] to the field of face
detection, the field is now becoming well established. Un-
fortunately, from all this research there is still no one tech-
nique that works best in all circumstances. Fortunately, the
scope of the FFD task can be greatly narrowed due to the
work in this paper, being primarily geared towards AVSP. For
any AVSP application, the main visual facial feature of im-
portance is the mouth. The extracted representation of the
mouth does, however, require some type of normalisation for
scale and rotation. It has been well documented [3] that the
eyes are an ideal measure of scale and rotation of a face. To
this end, FFD for AVSP will be restricted to eye and mouth
detection.

To further simplify the FFD problem for AVSP, we can
make the following number of assumptions about the images
being processed:

(1) there is a single subject in each audio-visual sequence,
(2) the subject’s facial profile is limited to frontal, with

limited head rotation (i.e., ±10 degrees),
(3) subjects are recorded under reasonable (both intensity

and spectral) lighting conditions,
(4) the scale of subjects remains relatively constant for a

given video sequence.

These constraints are thought to be reasonable for most
conceivable AVSP applications and are complied with in the
M2VTS database [4] used throughout this paper for exper-
imentation. Under these assumptions, the task of FFD be-
comes considerably easier. However, even under these less
trying conditions, the task of accurate eye and mouth detec-
tion and tracking, so as to provide suitable normalisation and
visual features for use in an AVSP application, is extremely
challenging.

3.1. Validation

To validate the performance of an FFD system, a measure of
relative error [3] is used, based on the distances between the
expected and the estimated eye positions. The distance be-
tween the eyes (deye) has been long regarded as an accurate
measure of the scale of a face [3]. Additionally, the detection
of the eyes is an indication that the face search area does in-
deed contain a frontal face suitable for processing with an
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Figure 3: Relations between expected eye (cl , cr) and mouth (cm)
positions and their estimated ones.

AVSP system. The distances dl and dr , for the left and right
eyes, respectively, are used to describe the maximum dis-
tances between the true eye centers cl , cr ∈ R2 and the es-
timated positions ĉl , ĉr ∈ R2 as depicted in Figure 3.

These distances are then normalised by dividing them by
the distance between the expected eye centers (deye = ‖cl −
cr‖), making the measures independent of the scale of the
face in the image and the image size,

eeye = max
(
dl, dr

)

deye
(2)

The metric in (2) is referred to as the relative eye error eeye. A
similar measure is used to validate the performance of mouth
location. A distance dm is used to describe the distance be-
tween the true mouth position cm ∈ R2 and the estimated
position ĉm ∈ R2. This distance is then normalised by the
distance between the expected eye centers, to make the mea-
sure also independent of the scale of the face in the image and
the image size,

emouth = dm
deye

. (3)

The metric in (3) is referred to as the relative mouth er-
ror emouth. Based on previous work by Jesorsky et al. [3],
the eyes were deemed to be found if the relative eye error
eeye < 0.25. This bound allows a maximum deviation of half-
an-eye width between the expected and estimated eye posi-
tions. Similarly, the mouth was deemed to be found if the
relative mouth error emouth < 0.25.

All experiments in this paper were carried out on the
audio-visual M2VTS [4] database, which has been used pre-
viously [5, 6] for AVSP work. The database used for our ex-
periments consisted of 37 subjects (male and female) speak-
ing four repetitions (shots) of ten French digits from zero to
nine. For each speaker, the first three shots in the database,
for the frames 1 to 100, had the eyes as well as the outer and
inner labial contours, manually fitted at 10 frame intervals so
as to gain the true eye and mouth positions. This resulted in
over 1000 pretracked frames with 11 pretracked frames per
subject per shot. The eye positions (cl , cr) were deemed to be
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at the center of the pupil. Themouth position cm was deemed
to be the point of bisection on the line between the outer left
and right mouth corners.

4. GAUSSIANMIXTUREMODELS

A well-known classifier design which allows for modelling
complex distributions parametrically are Gaussian mixture
models (GMMs) [7]. Parametric classifiers have benefits over
other classifiers as they give conditional density function es-
timates that can be directly applied to a Bayesian framework.

A GMM models the probability distribution of a statis-
tical variable x as the sum of Q multivariate Gaussian func-
tions

p(x) =
Q∑

i=1
ci�
(
µi,Σi

)∣∣
x, (4)

where �(µ,Σ)|x denotes a normal distribution with mean
vector µ and covariance matrix Σ, and c denotes the mixture
weight of class i. The parameters of the model λ = (c,µ,Σ)
can be estimated using the expectation maximization (EM)
algorithm [8]. K-means clustering [9] was used to provide
initial estimates of these parameters.

5. DEFINING THE FACE SEARCH AREA

The problem of FFD is a difficult problem due to the almost
infinite number of manifestations nonfacial feature objects
can take on in an input image. The problem of FFD can be
greatly simplified if we are able to define an approximate face
search area within the image. By searching within this face
search area, the problem of eye and mouth detection can be
greatly simplified due to the background being restricted to
the face. This area of research is commonly referred to as face
segmentation. Face segmentation can be defined as the seg-
menting of face pixels, usually in the form of a binary map,
from the remaining background pixels in the image. Face seg-
mentation approaches are excellent for defining a face search
area as they aim at finding structural features of the face that
exist even when the pose, scale, position, and lighting condi-
tions of the face vary [2].

To gain this type of invariance, most face segmenta-
tion techniques use simplistic pixel or localised texture-based
schemes to segment face pixels from their background. Tech-
niques using simple grayscale texture measures have been in-
vestigated by researchers. Augusteijn and Skujca [10] were
able to gain effective segmentation results by computing
second-order statistical features on 16× 16 grayscale subim-
ages. Using a neural network, they were able to train the clas-
sifier using face and nonface textures, with good results re-
ported. Human skin colour has been used and has proven
to be one of the most effective pixel representations for face
and skin segmentation [2]. Although different people have
different skin colours, several studies have shown the major
difference lies in the intensity, not chrominance representa-
tion, of the pixels [2, 11]. Several colour spaces have been ex-
plored for segmenting skin pixels [2] with most approaches

adopting spaces in which the intensity component can be
normalised or removed [11, 12]. Yang and Waibel [11] have
achieved excellent segmentation results using normalised
chromatic space [r, g] defined in RGB (red, green, blue) space
as

r = R
R + G + B

, g = R
R + G + B

. (5)

It has been demonstrated in [11, 12] that once the inten-
sity component of an image has been normalised, human
skin obeys an approximately Gaussian distribution under
similar lighting conditions (i.e., intensity and spectra). Un-
der slightly differing lighting conditions, it has been shown
that a generalised chromatic skin model can be generated
using a mixture of Gaussians in a GMM. Fortunately, in
most AVSP applications, it is possible to gain access to nor-
malised chromatic pixel values from the face and back-
ground in training. It is foreseeable that, in most prac-
tical AVSP systems that have a stationary background, it
would be possible to calibrate the system to its chromatic
background through the construction of a chromatic back-
ground model when no subjects are present. Constructing
an additional background GMM, segmentation performance
can be greatly improved over the typical single hypothesis
approach.

The task of pixel-based face segmentation using chro-
matic information can be formulated into the decision rule

log p
(
org|λskin

)− log p
(
org|λback

) skin
≶

background
Th, (6)

where Th is the threshold chosen to separate classes, with
p(org|λskin) and p(org|λback) being used as the parametric
GMM likelihood functions for the skin and background pixel
classes in normalised chromatic space org = [r, g]. The prela-
belled M2VTS database was employed to train up GMM
models of the skin and background chromatic pixel values.
Using the prelabelled eye coordinates and the distance be-
tween both eyes (deye), two areas were defined for training.
The face area was defined as all pixels within the bounding
box whose left and right sides are 0.5deye to the left of left
eye x-coordinate and 0.5deye to the right of the right eye x-
coordinate, respectively, with the top and bottom sides being
0.5deye above the average eye y-coordinate and 1.5deye below
the average y-coordinate, respectively. The background area
was defined as all pixels outside the bounding box whose left
and right sides are deye to the left of the left eye x-coordinate
and deye to the right of the right eye x-coordinate, respec-
tively, with the top and bottom sides being deye above the
average eye y-coordinate and the bottom of the input im-
age, respectively. A graphical example of these two bounding
boxes can be seen in Figure 4.

All prelabelled images from shot 1 of the M2VTS
database were used in training p(org|λskin) and p(org|λback)
GMMs. The GMMs were then evaluated on shots 2 and 3
of the M2VTS database achieving excellent segmentation in
almost all cases. The skin GMM took on a topology of 8
diagonal mixtures with the background GMM taken on a
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background

skin

Figure 4: Example of bounding boxes used to gather skin and back-
ground training observations.

topology of 32 diagonal mixtures. The binary maps received
after segmentation were then morphologically cleaned and
closed to remove any spurious or noisy pixels. An example of
the segmentation results can be seen in Figure 5.

6. AN APPEARANCE-BASED PARADIGM

In facial detection, there are a number of paradigms avail-
able. Techniques based on pixel, or texture-based segmen-
tation, are useful for object location but do not provide
any confidence on whether the object is there or not, mak-
ing them less attractive for use in an object-detection ca-
pacity. Complicated iterative techniques such as active-shape
models [13] or active-appearance models [14], which jointly
model the intensity image variation and geometric form of
the object, do provide such confidencemeasures but are quite
computationally expensive. Appearance-based detection ig-
nores the geometric form of the object completely and tries
to model all variations in the object in terms of intensity
value fluctuations within an ROI (window). In AVSP, this
approach to FFD has an added benefit as recent research by
Potamianos et al. [15] indicates that using simple intensity
image-based representations of the mouth as input features
perform better in the task of speechreading than geometric
or joint representations of the mouth; indicating similar rep-
resentations of themouthmay be used for detection and pro-
cessing.

Appearance-based detection schemes work by sliding a
2D window W(x, y) across an input image, with the con-
tents of that window being classified as belonging to the
object ωobj or background ωbck classes. The sliding of an
n1 × n2 2D window W(x, y) across an N1 × N2 input im-
age I(x, y) can be represented as a concatenated matrix of
vectors Y = [y1, . . . , yT], where the D = n1n2 dimensional
random vector yt contains the vectorised contents ofW(x, y)
centered at pixel coordinates (x, y). A depiction of this rep-
resentation can be seen in Figure 6.

In reality, the concatenated matrix representation of
I(x, y) is highly inefficient in terms of storage and efficiency
of search, with the task of sliding a window across an image
being far more effectively done through 2D convolution op-
erations or a 2D FFT [16, 17]. However, the representation is
used throughout this paper for explanatory purposes.

pp lh fo

nv lc jd

(a)

pp lh fo

nv lc jd

(b)

Figure 5: (a) Original example faces taken from the M2VTS
database. (b) Binary potential maps generated using chromatic skin
and background models.
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Figure 6: Demonstration of how contents of window W(x, y) can
be represented as vector yt .

The task of appearance-based object detection can be
understood in a probabilistic framework as an approach
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to characterise an object and its background as a class-
conditional likelihood function p(y|ωobj) and p(y|ωbck). Un-
fortunately, a straightforward implementation of Bayesian
classification is infeasible due to the high dimensionality of
y and a lack of training images. Additionally, the paramet-
ric form of the object and background classes are gener-
ally not well understood. Hence, much of the work in an
appearance-based detection concerns empirically validated
parametric and nonparametric approximations to p(y|ωobj)
and p(y|ωbck) [2].

6.1. Appearance-based detection framework

Any appearance-based detection scheme has to address two
major problems:

(1) gaining a compact representation of y that main-
tains class distinction between object and background
subimages, but is of small enough dimensionality to
create a well-trained and computationally viable clas-
sifier;

(2) selection of a classifier to realise accurate and gen-
eralised decision boundaries between the object and
background classes.

Most appearance-based object detection schemes bor-
row heavily on principal-component analysis (PCA) [18], or
some variant, to generate a compact representation of the
subimage y. PCA is an extremely useful technique for map-
ping a D-dimensional subimage y into an M-dimensional
subspace optimally in terms of reconstruction error. A fun-
damental problem with PCA is that it seeks a subspace that
best represents a subimage in a sum-squared error sense.
Unfortunately, in detection, the criteria for defining an M-
dimensional subspace should be class separation between
the object and background classes not reconstruction error.
Techniques such as linear discriminant analysis (LDA) [18]
produce a subspace based on such a criterion for detection
[2, 18, 19, 20]. However, most of these techniques still require
PCA to be used initially to provide a subspace that is free of
any low-energy noise, that may hinder the performance of
techniques like LDA [20, 21]. For this reason, most success-
ful appearance-based detection schemes [2, 17] still use PCA
or variant to some extent [22, 23, 24] to represent the subim-
age y succinctly.

The choice of what classifier to use in FFD is predomi-
nantly problem specific. The use of discriminant classifiers
such as artificial neural networks (ANNs) [2] and support-
vector machines (SVMs) [2, 25] has become prolific in re-
cent times. ANNs and SVMs are very useful for classifica-
tion tasks where the number of classes are static as they
try to find the decision boundary directly for distinguish-
ing between classes. This approach often has superior perfor-
mance over parametric classifiers, such as GMMs, as para-
metric classifiers form their decision boundaries indirectly
from their conditional class likelihood estimates. However,
parametric classifiers, such as GMMs, lend themselves to
more rigorous mathematical development and allow for the
compact representation and classifier problems, associated

with appearance-based detection, to be handled within the
one framework. In this paper, GMMs are used to gain para-
metric likelihood functions p(y|λobj) and p(y|λbck) for FFD
experiments.

6.2. Single-class detection

PCA, although attractive as a technique for gaining a
tractable likelihood estimate of p(y) in a low-dimensional
space, it does suffer from a critical flaw [22]. It does not de-
fine a proper probability model in the space of inputs. This
is because the density is not normalised within the principal
subspace. For example, if we were to perform PCA on some
observations and then ask how well some new observations
fit the model, the only criterion used is the squared distance
of the new data from their projections into the principal sub-
space. An observation far away from the training observa-
tions, but nonetheless near the principal subspace, will be as-
signed a high “pseudo-likelihood” or low error. For detection
purposes, this can have dire consequences if we need to detect
an object using a single hypothesis test [18]. This is a com-
mon problem where the object class is well defined but the
background class is not. This scenario can best be expressed
as

l1(y)
ωbck

≶
ωobj

Th, l1(y) = log
[
p
(
y
∣∣λobj

)]
, (7)

where l1(y) is a score that discriminates between the object
and background class with Th being the threshold for the de-
cision. In this scenario, an object, which is drastically differ-
ent in the true observation space, may be considered similar
in the principal subspace or, as it will be referred to in this
section, the object space (OS). This problem can be some-
what resolved by developing a likelihood function that de-
scribes both OS and its complementary residual space (RS).
RS is referred to as the complementary subspace that is not
spanned by the OS. Usually, this subspace cannot be com-
puted directly, but a simplistic measure of its influence can
be computed indirectly in terms of the reconstruction error
realised from mapping y into OS. RS representations have
proven exceptionally useful in single-hypothesis face detec-
tion. The success of RS representations in a single hypothesis
can be realised in terms of energy. PCA naturally preserves
the major modes of variance for an object in OS. Due to
the background class not being defined, any residual variance
can be assumed to stem fromnonobject variations. Using this
logic, objects with low-reconstruction errors can be thought
more likely to stem from an object class rather than back-
ground class. Initial work by Turk and Pentland [16] used
just the RS, as opposed to OS representation for face detec-
tion, as it gave superior results.

A number of approaches have been devised to gain a
model to incorporate object and RS representations [16, 17,
19, 22, 23, 26] into p(y|λ). Moghaddam and Pentland [17]
provided a framework for generating an improved repre-
sentation of p(y|λ). In their work, they expressed the like-
lihood function p(y|λ) in terms of two independent Gaus-
sian densities describing the object and residual spaces,
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respectively,

p
(
y|λ{OS+RS}) = p

(
y|λ{OS}

)
p
(
y|λ{RS}

)
, (8)

where

p
(
y|λ{OS}) = �

(
0(M×1),Λ(M×M)

)∣∣
x, x = Φ′y, (9)

p
(
y|λ{RS}) = �

(
0([R−M]×1), σ2I([R−M]×[R−M])

)∣∣
x, x = Φ

′
y

(10)

such thatΦ = {φi}Mi=1 are the eigenvectors spanning the sub-
space corresponding to the M largest eigenvalues λi, with
Φ = {φi}Ri=M+1 being the eigenvectors spanning the residual
subspace. The evaluation of (9) is rudimentary as it simply
requires a mapping of y into the object subspaceΦ. However,
the evaluation of (10) is a little more difficult as we usually do
not have access to the residual subspaceΦ to calculate x. For-
tunately, we can take advantage of the complementary nature
of OS and the full observation space such that

tr(Y′Y) = tr(Λ) + σ2 tr(I) (11)

so that

σ2 =
[
tr(Y′Y)− tr(Λ)

]

R−M
, (12)

allowing us to rewrite (10) as

p
(
y|λ{RS}) = exp

(− ε2(y)/2σ2)
(
2πσ2

)(R−M)/2 , ε(y) = y′y − y′ΦΦ′y,

(13)

where ε(y) can be considered as the error in reconstructing y
from x. This equivalence is possible due to the assumption of
p(y|λ{RS}) being described by a Gaussian homoscedastic dis-
tribution (i.e., covariance matrix is described by an isotropic
covariance σ2I). This simplistic isotropic representation of
RS is effective, as the lack of training observations makes any
other type of representation error prone. In a similar fashion
to Cootes et al. [27], the ad hoc estimation of σ2 = (1/2)λN+1

was found to perform best.
Many previous papers [17, 23, 24] have shown that ob-

jects with complex variations such as the mouth or eyes do
not obey a unimodal distribution in their principal subspace.
To model OS more effectively, a GMM conditional class like-
lihood estimate p(y|λ{OS}) was used to account for these
complex variations. The same ensemble subimages that were
used to create the eigenvectors spanning OS were used to cre-
ate the GMM density estimate. An example of this complex
clustering can be seen in Figure 7 where multiple mixtures
have been fitted to the OS representation of an ensemble of
mouth subimages.

Similar approaches have been proposed for introducing
this residual in a variety of ways such as factor analysis (FA)
[19], sensible principal-component analysis (SPCA) [22],
or probabilistic principal-component analysis (PPCA) [23].
For the purposes of comparing different detection metrics,
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Figure 7: Example of multimodal clustering of mouth subimages
within principal subspace.

the experimental work presented in this paper concern-
ing the combining of OS and RS subimage representations
will be constrained to the complementary approach used by
Moghaddam and Pentland [17].

6.3. Two-class detection

As discussed in the previous section, the use of RS, or more
specifically reconstruction error, can be extremely useful
when trying to detect an object when the background class is
undefined. A superior approach to detection is to have well
defined likelihood functions for the object and background
classes. The two-class detection approach can be posed as

l2(y) =
ωbck

≶
ωobj

Th,

l2(y) = log
[
p
(
y|λobj

)]− log
[
p
(
y|λbck

)]
.

(14)

A problem presents itself in how to gain observations from
the background class to train λbck. Fortunately, for FFD,
the face area is assumed to be approximately known (i.e.,
from the skin map), making the construction of a back-
ground model plausible as the type of nonobject subimages
is limited to those on the face and surrounding areas. Esti-
mates of the likelihood functions p(y|λobj) and p(y|λbck) can
be calculated using GMMs, but we require a subspace that
can adequately discriminate between the object and back-
ground classes. To approximate the object and background
likelihood functions, we could use the original OS repre-
sentation of y. Using OS for building parametric models,
we may run the risk of throwing away vital discriminatory
information, as OS was constructed under the criterion of
optimally reconstructing the object not the background. A
more sensible approach is to construct a common space (CS)
that adequately reconstructs both object and background
subimages.

A very simple approach is to create a CS using roughly the
same number of training subimages from both the object and
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(a)

(b)

Figure 8: Example of (a) mouth subimages, (b) mouth background
subimages.

background classes. A problem occurs in this approach as
there are far more background subimages than object subim-
ages per training image. To remedy this situation, back-
ground subimages were selected randomly during training
from around the object in question. An example of ran-
domly selected mouth, mouth background, eye, and eye
background subimages can be seen in Figures 8 and 9, respec-
tively. Note for the eye background subimages in Figure 9b
that the scale varies as well. This was done to make the eye
detector robust to a multiscale search of the image.

As previously mentioned, PCA is suboptimal from a dis-
criminatory standpoint as the criterion for gaining a sub-
space is reconstruction error not class separability. LDA can
be used to construct a discriminant space (DS) based on such
a criterion. Since there are only two classes (L = 2) being dis-
criminated between (i.e., object and background), LDA dic-
tates that DS have a dimensionality of one, due to the rank
being restricted to L − 1. This approach would work well if
both the object and background classes were described ad-
equately by a single Gaussian, each with the same covari-
ance matrix. In reality, we know that this is rarely the case
with eye, mouth, and background distributions being mod-
elled far more accurately using multimodal distributions.

(a)

(b)

Figure 9: Example of (a) eye subimages, (b) eye background subim-
ages.

Using this knowledge, an intraclass clustering approach can
be employed to build a DS by describing both the object
and background distributions with several unimodal distri-
butions of approximately the same covariance.

The technique can be described by defining Yobj and Ybck

as the training subimages for the object and background
classes. Principal subspaces Φobj of size Mobj and Φbck of
size Mbck are first found using normal PCA. The object sub-
space Φobj and background subspace Φbck are found sepa-
rately to ensure that most discriminative information is pre-
served while ensuring any low-energy noise that may cor-
rupt LDA in defining a suitable DS is removed. A joint or-
thonormal base Φjnt is then found by combining object and
background subspaces via the Gram-Schmidt process. The
final size of Φjnt is constrained by Mobj and Mbck and the
overlap that exists between object and background princi-
pal subspaces. The final size of the joint space is important
as it needs to be as low as possible for successful intraclass
clustering whilst preserving discriminative information. For
experiments conducted in this paper, successful results were
attained by settingMobj andMbck to 30.

Soft clustering was employed to describe each class with
several approximately equal covariance matrices. K-means
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clustering [9] was first employed to gain initial estimates
of the clusters with the EM algorithm, then refining the
estimates. For the experiments conducted in this paper, best
performance was attained when 8 clusters were created from
the compactly represented object subimages YobjΦjnt and 16
clusters created from the compactly represented background
subimages YobjΦjnt. This resulted in a virtual L = 24 class
problem resulting in a 23 (L− 1)-dimensional DS after LDA.
Once DS was found, estimates of p(y|λ{DS}obj ) and p(y|λ{DS}bck )
were calculated normally using a GMM.

6.4. Evaluation of appearancemodels

In order to have an estimate of detection performance be-
tween object and nonobject subimages y, the prelabelled
M2VTS database was employed to evaluate performance for
eye and mouth detection. In training and testing, illumina-
tion invariance was obtained by normalising the subimage y
to a zero-mean unit-norm vector [17].

A very useful way to evaluate detection performance of
different appearance models is through the use of detection-
error trade-off (DET) curves [28]. DET curves are used
as opposed to traditional receiver-operating characteristic
(ROC) due to their superior ability to easily observe perfor-
mance contrasts. DET curves are used for the detection task,
as they provide amechanism to analyse the trade-off between
missed detection and false alarm errors.

Results are presented here for the following detection
metrics.

OS-L1: object space representation of y for the single hy-
pothesis score l1(y) where p(y|λ{OS}obj ) is approximated by an
8-mixture diagonal GMM. OS is a 30-dimensional space.

OS-L2: object space representation of y for the two-class
hypothesis score l2(y) where p(y|λ{OS}obj ) is an 8-mixture diag-

onal GMM and p(y|λ{OS}bck ) is a 16-mixture diagonal GMM.
OS is a 30-dimensional space.

RS-L1: residual space representation of y for the single
hypothesis score l1(y) where p(y|λ{RS}obj ) is parametrically by
single mixture isotropic Gaussian. The OS used to gain the
RS metric was a 5-dimensional space.

OS+RS-L1: complementary object and RS represen-
tation of y for the single hypothesis score l1(y) where
p(y|λ{OS+RS}

obj ) = p(y|λ{OS}obj )p(y|λ{RS}obj ). The likelihood func-

tion p(y|λ{OS}obj ) is parametrically described by a 8-mixture di-

agonal GMM, with p(y|λ{RS}obj ) being described by single mix-
ture isotropic Gaussian. OS is a 5-dimensional space.

CS-L2: common space representation of y for the two-
class hypothesis score l2(y) where p(y|λ{CS}obj ) is an 8-mixture

diagonal GMM and p(y|λ{CS}bck ) is a 16-mixture diagonal
GMM. CS is a 30-dimensional space.

DS-L2: discriminant space representation of y for the
two-class hypothesis score l2(y) where p(y|λ{DS}obj ) is an 8-

mixture diagonal GMM and p(y|λ{DS}bck ) is a 16-mixture di-
agonal GMM. DS is a 23-dimensional space.

The same GMM topologies were found to be effective for
both mouth and eye detection. In all cases, classifiers were

trained using images from shot 1 of the M2VTS database
with testing being performed on shots 2 and 3. To generate
DET curves for eye and mouth detection, 30 random back-
ground subimages were extracted for every object subimage.
In testing, this resulted in over 5000 subimages being used to
generate DET curves, indicating the class separation between
object and background classes. As previously mentioned, the
eye background subimages included those taken from vary-
ing scales to gauge performance in a multiscale search. Both
the left and right eyes were modeled using a single model.
Figure 10 contain DET curves for the eye and mouth detec-
tion tasks, respectively.

Inspecting Figure 10, we can see the OS-L1 metric per-
formed worst overall. This can be attributed to the lack of a
well-defined background class and the OS representation of
subimage y not giving sufficient discrimination between ob-
ject and background subimages. Performance improvements
can be seen from using the reconstruction error for the RS-
L1 metric, with further improvement being seen in the com-
plementary representation of subimage y in the OS+RS-L1
metric. Note that a much smaller OS was used (i.e., M = 5)
for the OS+RS-L1 and RS-L1 metrics to ensure that the ma-
jority of object energy is contained in OS and the majority
of background energy is in RS. It can be seen that all the sin-
gle hypothesis L1 metrics have poorer performance than any
of the L2 metrics, signifying the large performance improve-
ment gained from defining an object and background like-
lihood function. There is some benefit in using the CS-L2
metric over the OS-L2 metric for both eye and mouth detec-
tion. The use of the DS-L2 metric gives the best performance
over all metrics in terms of equal error rate.

Figure 10 are only empirical measures of separability be-
tween the object and background classes for various detec-
tion metrics. The true measure of object detection perfor-
mance can be found in the actual act of detecting an object
in a given input image. For the task of eye detection, each
top-left half and top-right half of the skin map is scanned
with a rectangular window to determine whether there is a
left and right eye present. A depiction of how the skin map is
divided for FFD can be seen in Figure 11.

A location error metric first presented by Jesorky et al.
[3] and elaborated upon in Section 3.1 for eye detection was
used in our experiments; this metric states that the eyes are
deemed to be detected if both the estimated left and right
eye locations are within 0.25 deye of the true eye positions.
To detect the eyes at different scales, the input image and its
skin map was repeatedly subsampled by a factor of 1.1 and
scanned for 10 iterations with the original scale chosen so
that the face could take up 55% of the image width. Again,
tests were carried out on shots 2 and 3 of the prelabelled
M2VTS database. The eyes were successfully located at a rate
of 98.2% using the DS-L2 metric. A threshold was employed
from DET analysis to allow for a false alarm probability of
1.5%, which in term resulted in only 13 false alarms over the
700 faces tested. The use of this threshold was very important
as it gave an indication of whether the eyes, and subsequently
an accurate measure of scale, had been found for locating the
mouth.
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Figure 10: DET curve of different detection metrics for separation
of (a) eyes and (b) mouth between background subimages.

Given that the scale of the face is known (i.e., distance
between the eyes deye), the mouth location performance was
tested on shots 2 and 3 of the prelabelled M2VTS database.

Left
eye
search
area

Right

eye
search
area

Mouth

search

area

Figure 11: Depiction of how skin map is divided to search for facial
features.

The lower half of the skin map is scanned for the mouth,
with a mouth being deemed to be located if the estimated
mouth center is within 0.25deye of the true mouth position.
The mouth was successfully detected at a rate of 92.3% us-
ing the DS-L2 metric. When applied to the task of tracking
in a continuous video sequence, this location rate starts ap-
proaching 100% due to the smoothing of the mouth coordi-
nates through time via a median filter.

7. DISCUSSION

Appearance-based detection of the eyes and mouth is of
real benefit in AVSP applications. The appearance-based
paradigm allows for detection, not just location, which is es-
sential for effective AVSP applications. A number of tech-
niques have been evaluated for the task of appearance-
based eye and mouth detection. All techniques differ pri-
marily in their representation of the subimage y being eval-
uated and how an appropriate likelihood score is gener-
ated. Techniques based on single-class detection (similar-
ity measure based solely on the object) have been shown
to be inferior to those generated from two-class detection
(similarity measure based on both the object and back-
ground classes). Similarly, the need for gaining a com-
pact representation of the subimage y that is discrimina-
tory between the mouth and background is beneficial, as
opposed to approaches that generate a compact represen-
tation of the object or both classes based on reconstruction
error.

A technique for creating a compact discriminant space
has been outlined using knowledge of LDA’s criterion for
class separation. In this approach, an intraclass cluster-
ing approach is employed to handle the typical case of
when both the object and background class distributions are
multimodal. Using this approach, good results, suitable for
use in AVSP, were achieved in practice for the tasks of eye
detection and mouth detection.
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