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A unified view of several recently introduced reduced-rank adaptive filters is presented. As all considered methods use Krylov
subspace for rank reduction, the approach taken in this work is inspired from Krylov subspace methods for iterative solutions of
linear systems. The alternative interpretation so obtained is used to study the properties of each considered technique and to relate
one reduced-rank method to another as well as to algorithms used in computational linear algebra. Practical issues are discussed
and low-complexity versions are also included in our study. It is believed that the insight developed in this paper can be further
used to improve existing reduced-rank methods according to known results in the domain of Krylov subspace methods.
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1. INTRODUCTION

Adaptive filtering is widely used in signal processing applica-
tions such as array signal processing, equalization, and mul-
tiuser detection (see [1, 2, 3]). Least-square adaptive filters
gained considerable attention during the last three decades
and numerous algorithms were proposed [4].

The frequent problem which arises when designing an
adaptive filtering system is that large observation size, and
therefore, large filter length, means inevitably high compu-
tational cost, slow convergence, and poor tracking perfor-
mance. However, this situation corresponds to many im-
portant practical applications such as high data rate direct-
sequence code division multiple access (DS-CDMA) sys-
tems, radar or global positioning system (GPS) array pro-
cessing. Reduced-rank adaptive filters provide a way out of
this dilemma [3, 5]. The basic idea behind the rank reduction
is to project the observation onto a lower-dimensional sub-
space usually defined by a set of basis vectors. The adaptation
is then performed within this subspace with a low-order filter
resulting in substantial computational savings, better conver-
gence, and tracking characteristics.

This work deals with a family of closely related reduced-
rank adaptive filters such as the multistage Wiener filter

[6] (MSWF), the conjugate-gradient reduced-rank filter
(CGRRF) [7, 8], the powers of R (POR) receiver, [9] and
auxiliary-vector filters (AVF) [10, 11].

The MSWF takes its origin in a decomposition of an
n-dimensional minimum mean square error (MMSE) fil-
ter into a linear combination of a full rank (n-dimensional)
matched filter and a reduced-rank ((n − 1)-dimensional)
MMSE filter. The latter may be further expanded into a
(n − 1)-rank matched filter, (n − 2)-rank MMSE filter, and
so on. A k-stage MSWF, which approximates the original
MMSE filter, is obtained by taking the first k matched fil-
ters of the decomposition as basis vectors set. Like any other
reduced-rank method, the MSWF projects the observation
onto the subspace spanned by basis vectors and filters the
result with a low-rank MMSE filter. AVF schemes can be
viewed as iterative procedures. The whole process is initial-
ized by the matched filter. At each step, the current filter is
linearly combined with an “auxiliary” filter. Basis vectors set
of an AVF is composed of the original matched filter and of
the set of all auxiliary vectors. Finally, the CGRRF builds the
basis set as sequence of vectors which are orthogonal in the
metric defined by the received covariance matrix.

Interestingly enough, basis vectors of the MSWF, the
AVF, and the CGRRF span the same subspace [12, 13]. This
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subspace can be shown to be Krylov subspace which is gen-
erated by taking the powers of the covariance matrix of ob-
servations on a cross-correlation (steering) vector [5]. This
direct procedure of basis set generation is used in the POR
receiver [9] and in the Cayley-Hamilton receiver [14] (the
latter is developed in the context of centralized detection).
Therefore, in the MSWF, the AVF, the CGRRF, and the POR
receiver observations are projected on the same (Krylov) sub-
space. Our presentation, which further develops this point, is
organized as follows.

In Section 2, data model is presented. Although our nu-
merical studies use reduced-rank methods in the context of
CDMA multiuser detection, the model is sufficiently general
to encompass other applications, for example, radar [15] and
GPS [16] space-time adaptive signal processing. Section 3
briefly introduces the reader into the problems of adap-
tive Wiener filtering which motivated the development of
reduced-rank methods. In Section 4, the family of reduced-
rank methods which are based on Krylov subspace is pre-
sented and their interrelationship is discussed. Krylov sub-
space methods are widely used in computational linear al-
gebra for solving large (possibly sparse) systems of linear
equations [17, 18, 19]. For that reason, the effort is made
to relate presented algorithms to known algorithms of com-
putational linear algebra. Specifically, forward recursion of
the MSWF is shown to be an interpretation of the well-
known Lanczos algorithm and AVF are derived from the
steepest descent algorithm. In Section 5, the results of nu-
merical studies are presented and Section 6 concludes our
work.

2. DATAMODEL

Throughout the paper, the notations ∗, T , and H are used
to denote the conjugate, transpose, and conjugate transpose
operations, respectively.

Let r(k) = [r1(k) r2(k) · · · rN (k)
]T

be the N × 1 vec-
tor consisting of N data samples observed at time instant k,
which is modeled as

r(k) = Hs(k) + n(k), (1)

where s(k) denotes the M × 1 vector of source signals
s1(k), s2(k), . . . , sM(k), H is the N × M channel matrix and
n(k) stands for theN ×1 noise vector. In the sequel, s(k) and
n(k) are supposed to be zero-mean and wide-sense station-
ary with the respective covariance matrices E[s(k)sH(k)] =
diag(ε1, ε2, . . . , εM) and E[n(k)nH(k)] = Rn.

The model (1) can be used, for example, to represent
M narrowband sources impinging on an N-element an-
tenna array, or in the context of a symbol-synchronous DS-
CDMA system. In the latter case, s(k) is the vector of sig-
nals transmitted by M system users and the ith column of
channel matrix H represent the channel signature of user i,
that is, ith spreading code convolved with ith channel im-
pulse response. It can be easily seen that all methods dis-
cussed in this work apply (with minor modifications) to
more complex models, such as an asynchronous CDMA

system with strong intersymbol interference (ISI) or multi-
rate systems.

3. MOTIVATION FOR THE REDUCED-RANKMETHODS

Consider the problem of estimation of the source signal s1(k)
given the observation (1). General linear estimator can be
written as

ŝ1(k) = wHr(k), (2)

where w is an N ×1 vector (filter). The well-known full-rank
Wiener filter [2] is the solution of the following linear system
(normal equations):

RwN
opt = c, (3)

where c = E[r(k)s∗1 (k)] is the desired signal data cross-
correlation vector and R = E

[
r(k) rH(k)

]
is the covariance

matrix of r(k). The important property of the Wiener filter
is that it is the only filter that minimizes the mean square er-
ror (MSE) or, in other words, average error energy. In our
notations, the MSE can be written as

J(w) = E
[∥∥ŝ1(k)−s1(k)∥∥2] = ε1+wHRw−wHc−cHw. (4)

The Wiener filter owns its popularity not only to this prop-
erty but also to its relatively simple expression as a solution
of a linear system (3). However, in most practical applica-
tions such as array signal processing and CDMA multiuser
detection, exact values of the covariance matrix and of the
cross-correlation vector are not available. For example, in a
synchronous CDMA system, such characteristics as number
of CDMA users, user spreading codes, user fading, and the
signal-to-noise ratio are partially or completely unknown. In
radar signal processing applications, little information may
be available about bearings and powers of jammer signals
and so forth. Moreover, noise and signal powers as well as
the channel matrix H may exhibit slow variations.1 There-
fore, we have to deal with some estimates of R and c. By way
of example, the estimate of R can be estimated as

R(k) = γR(k − 1) + (1− γ)r(k)rH(k), (5)

where 0 < γ < 1 is the forgetting factor. As soon as exact
values of R and c are replaced by the time-varying estimates
R(k) and c(k), system (3) has to be resolved. Each time these
estimates are updated in order to take into account the most
recent samples of r(k). Taking into consideration high val-
ues of N , we usually encounter in practice, may be quite a
problem from the computational viewpoint when using di-
rect inversion of R(k). Moreover, as the system to solve has
the form

R(k)w(k) = c(k), (6)

1Sufficiently “slow” so it is possible to keep the stationarity assumption
of Section 2, at least during the observation period.
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natural questions arise such as the convergence of w(k) to
the Wiener filter wN

opt, convergence speed, and the behaviour
of the solution w(k) in a nonstationary environment (track-
ing ability or “adaptivity” of the filter). These questions can
only be answered while taking into account the particular
method of solving (6). Unfortunately, the answers provided
by conventional adaptive filtering techniques (sample matrix
inversion or the recursive least square (RLS) algorithm [2])
are often unsatisfactory for applications where the amount of
training data (that is, the number of observations) is limited
[10], such as radar space-time adaptive processing or CDMA
multiuser detection in fast fading environment.

Reduced-rank methods, as an alternative to sample ma-
trix inversion, provide fast and efficient (approximate) solu-
tions to (6).

4. REDUCED-RANK ADAPTIVE FILTERING USING
KRYLOV SUBSPACES

In this section, we develop a new insight to recently intro-
duced reduced-rank filtering techniques such as the MSWF,
which is based on Krylov subspace methods of computa-
tional linear algebra. Our main motivation is to establish a
link between these two branches of recent scientific research
and to see how this relationship can be used in the context of
adaptive filtering.

4.1. Filter rank reduction

Definition 1. Let �D be a d-dimensional subspace of �N . The
reduced-rank Wiener filter in subspace �D is defined as

wD
opt

def= arg min
w∈�D

J(w). (7)

The above definition includes the full rank Wiener filter
as a particular case when �D = �N . Let {q j}, j = 1, . . . , D be

an orthonormal basis of �D. Define Q
def=[q1 q2 · · · qD

]
.

As wD
opt = Qµ for some µ ∈ �D, (7) can be rewritten as

wD
opt = Q

(
arg min

µ∈�D
J(Qµ)

)
= QµDopt. (8)

Substituting w = Qµ into (4) yields

J(Qµ) = ε1 + µHRtµ− µHct − cHt µ, (9)

where the transformed covariance matrix Rt and the trans-
formed signal data cross-correlation vector ct are defined as

Rt
def= QHRQ,

ct
def= QHc.

(10)

It then follows that µDopt in (8) is the solution of

Rtµ
D
opt = ct . (11)

Therefore, the reduced-rankWiener filter is found by solving
(11) and substituting µDopt into (8).

Contrary to (3), (11) is a system of D linear equa-
tions. Therefore, confining the filtering operation to a low-
dimensional subspace �D leads to substantial gains in com-
plexity when D� N . Better convergence and tracking prop-
erties can also be expected [10, 20]. For example, with rank
reduction, we only need 2D observations (compared to 2N
for the full rank filter) to be within 3 dB from the maximum
filter-output signal-to-interference-plus-noise ratio (SINR)
[21].

On the other hand, confining the Wiener filter to a low-
dimensional subspace implies the loss of degrees of freedom
of the filter and, therefore, this operation should increase the
MMSE achieved by a reduced-rank method

J
(
wD
opt

)
≥ J
(
wN
opt

)
. (12)

As for the complexity, the computational overhead due to
eventual estimation of Q also has to be taken into account.
Therefore, “good” choice of �D (and of the rank-reduction
method) is always a compromise dictated by the require-
ments of a given application.

4.2. Reduced-rank filtering using Krylov subspace

Definition 2. Given a square matrix A and a nonzero vector
v, the subspace defined by

�D ≡ span
{
v,Av,A2v, . . . ,AD−1v

}
(13)

is referred to as a Dth Krylov subspace associated with the
pair (A, v) and is denoted �D(A, v) [17].

This work deals with a family of reduced-rank methods
for which �D = �D(R, c). The natural question is: what kind
of reasoning leads to this particular choice for �D? To answer
this question, consider the gradient of the MSE (4)

∇J(w) = 2(Rw − c). (14)

Now take an arbitrary i-dimensional subspace �i. Letwi
opt be

the reduced-rank Wiener filter in �i, that is,

wi
opt = argmin

w∈�i
J(w). (15)

Suppose that we seek to extend the subspace �i to an (i +
1)-dimensional subspace �i+1. Since J(w) decreases most
rapidly in the direction of −∇J(w), a reasonable strategy is
to require that

∇J(wi
opt

) ∈ �i+1. (16)

It follows from (14) that, for the condition above to be satis-
fied, it is sufficient for �i+1 to contain the pair (c,Rwi

opt).
Now let {�i, i = 1, 2, . . . , D} be a chain of Krylov sub-

spaces, that is, �i = �i(R, c), i = 1, 2, . . . , D. It is then easy to
prove by induction that in this case, condition (16) is satis-
fied for each iwithin the range 1, . . . , D. Therefore, the Krylov
subspace �D(R, c) results fromD steps of a sequential proce-
dure, which (i) is initialized with the matched filter (�1 = c);
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(ii) at step i, solves the reduced-rank minimization problem
(15) and extends the minimization subspace �i with the gra-
dient of the cost function (MSE) taken at the point wi

opt.

Remark 1. In many signal processing applications, the obser-
vation noise is modeled as being white. It can be shown that
in this case the full-rank Wiener filter wN

opt lies in �M(R, c)
where M is the number of source signals. However, M can
still be high (e.g., M = N/2 or even exceeds N in heavily or
over loaded CDMA systems) and therefore, it defines only an
upper bound for D.

Remark 2. Other approaches leading to Krylov subspaces can
be found in literature. For example, consider the polynomial
decomposition of R−1:

R−1 = α0I + α1R + · · · + αN−1RN . (17)

A reduced-rank filter is obtained by truncating the right-
hand side of (17) to D terms and by multiplying the result
by c,

wN
opt = R−1c =⇒ wD

opt = α′0c + α′1Rc +· · ·α′D−1RD−1c. (18)

The coefficients {α′i} are chosen in order to minimize the
MSE (the Cayley-Hamilton Receiver of [14]) or to maximize
the signal-to-interference ratio [22].

In [6], the MSWF is developed through the decomposi-
tion of the full rankWiener filter into a linear combination of
the matched filter cN and of the reduced-rank Wiener filter
vN−1opt in the orthogonal to cN subspace

wN
opt = β1cN + β2vN−1opt . (19)

The filter vN−1opt can be further represented as a linear combi-
nation of the matched filter cN−1 (in the subspace orthogonal
to cN ) and of theWiener filter vN−2opt of rankN−2 (in the sub-
space orthogonal to span{cN , cN−1}), and so on.2 The vectors
ci so obtained again generate the Krylov subspace.

4.3. Exact algorithms

In this section, three reduced-rank methods are introduced.
The common feature of all presented techniques is that they
perform exact MSE minimization in the Krylov subspace
�D(R, c). Hence, these exact methods are mathematically
equivalent and result in the same performance. Practical is-
sues such as complexity, structural flexibility, and the robust-
ness to rounding errors become of major importance when
preferring one exact method to another (see the discussion
in Section 4.4).

4.3.1 The powers of R (POR) receiver

The POR receiver, proposed by Honig and Xiao in [9], can
be considered as the simplest Krylov subspace method of

2In this paper, basis vectors of the MSWF are derived differently
through an orthonormalization procedure applied to {c,Rc, . . . ,RD−1c} (see
Section 4.3.2).

t1 = c

ti = Rti−1, i = 2, . . . , D

T = [t1 t2 · · · tD
]

Rt = THRT

ct = THc

Solve Rtµ = ct for µ

wD
opt = Tµ

Algorithm 1: Summary of the POR algorithm.

rank reduction. Vectors ti, i = 1, 2, . . . , D, which generate the
Krylov subspace �D(R, c), are computed as3

ti = Ri−1c. (20)

The algorithm is summarized in Algorithm 1. It is notewor-
thy that for the POR receiver, [i, j]th element of Rt can be
written as

Rt[i, j] = cHRi+ j−1c, (21)

therefore, Rt is a Hankel matrix.

4.3.2 ThemultistageWiener filter (MSWF)

The MSWF [6], shown in Figure 1 for rankD = 4, consists
of two distinct iterative procedures. The first one (forward re-
cursion) builds an orthonormal basis of the Krylov subspace
�D(R, c) giving the projection matrix Q = [q1 q2 . . . qD

]
.

The second procedure (backward recursion) solves system
(11) giving the transformed Wiener filter µDopt or, equiva-
lently, the weighting of basis vectors.

Forward recursion

An orthonormal basis of �D(R, c) can be constructed, for ex-
ample, by applying the general Gram-Schmidt procedure to
the basis (20). However, for this particular basis and for the
Hermitian-symmetric R, the Gram-Schmidt orthonormal-
ization can be simplified. The Lanczos algorithm [17] (see
Algorithm 2) represents an efficient way to compute the or-
thonormal basis {qi} of the Krylov subspace �D(R, c).

Forward recursion results from the following interpreta-
tion of the Lanczos algorithm. Define

r0(k)
def= r(k),

ri(k)
def=
(
I−

i∑
j=1

q jqHj

)
r(k)

= (I− qiqHi
)
ri−1(k), i = 1, . . . , D,

di(k)
def= qHi ri−1(k), i = 1, . . . , D.

(22)

3Here and in the sequel, brackets (k), indicating time dependence of an
estimate, will be often omitted for the simplicity of notation.
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q1r0(k) = r(k)

Bi = I − qiqHi

Figure 1: MSWF (rankD = 4).

Initialization:
p1 = c

δ1 = ‖c‖
q0 = 0

i := 1

Do While (δi 
= 0) and (i ≤ D)

qi = pi/δi
t = Rqi
i := i + 1

pi = (I− qi−1qHi−1 − qi−2qHi−2)t

δi = ‖pi‖

Algorithm 2: The Lanczos algorithm.

Initialization:
p1 = c

δ1 = ‖c‖
r0(k) = r(k)

i := 1

Do While (δi 
= 0) and (i ≤ D)

qi = pi/δi

ri(k) = (I− qiqHi )ri−1(k)

di(k) = qHi ri−1(k)

i := i + 1

pi = E[ri−1(k)d∗i−1(k)]

δi = ‖pi‖

Algorithm 3: Forward recursion of the rank D MSWF.

Then pi (see Algorithm 2) can be expressed as

pi = E
[
ri−1(k)d∗i−1(k)

]
. (23)

Therefore, the vector pi can be viewed as the matched
filter for estimating di−1(k) using the reduced-rank signal
ri−1(k) [3]. Assembling together the formula for qi from
the Lanczos algorithm (line 1 of Algorithm 2) and (22) and
(23), we obtain the forward recursion of rank D MSWF
(Algorithm 3).

Backward recursion

The orthonormal basis {qi, i = 1, 2, . . . , D} 4 has a remark-
able property: the transformed covariance matrix is tridiag-
onal [6, 18]. More precisely,

Rt = QHRQ =




α1 δ2 0

δ2 α2
. . .

. . .
. . . δD

0 δD αD


 , (24)

where

δi
def= qHi Rqi−1 =

∥∥pi∥∥,
αi

def= qHi Rqi, i = 1, 2, . . . , D.
(25)

Note also that the transformed signal data cross-correla-
tion vector becomes

ct = QHc =
[
δ1 0 · · · 0

]T
. (26)

In backward recursion of MSWF, the above-mentioned
structural properties are exploited in order to solve the sys-
tem

Rtµ
D
opt = ct . (27)

Indeed, using (24) and (26), we can write system (27) in

an expanded form (µDopt =
[
µ1 µ2 . . . µD

]T
)

α1µ1 + δ2µ2 = δ1,

δi−1µ1 + αiµi + δi+1µi+1 = 0, i = 2, 3, . . . , D − 1,

δDµD−1 + αDµD = 0.

(28)

The last equation can be rewritten as

µD = −ωDµD−1, (29)

where

ωD
def= δD

αD
. (30)

4Basis vectors qi are also called Lanczos vectors [18].
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Substituting (29) into

δD−2µD−2 + αD−1µD−1 + δDµD = 0 (31)

yields

µD−1 = −ωD−1µD−2, (32)

where

ωD−1
def= δD−1

αD−1 − δDωD
. (33)

Similarly, we may show that

µi = −ωiµi−1, i = D − 1, D − 2, . . . , 2,

µ1 = ω1,
(34)

where

ωi
def= δi

αi − δi+1ωi+1
, i = D − 1, D − 2, . . . , 1. (35)

Equations (29), (30), (34), and (35) are sufficient to solve sys-
tem (27).

Another expression for ωi can be obtained as follows. De-
fine

εi(k)
def= di(k)− ωi+1εi+1(k), i = 1, 2, . . . , D − 1, (36)

εD(k)
def= dD(k). (37)

Then

ωi = E
[
εi(k)d∗i−1(k)

]
/E
[∥∥εi(k)∥∥2]

= δi/E
[∥∥εi(k)∥∥2], i = 1, 2, . . . , D,

(38)

where

d0(k)
def= s1(k). (39)

To show (38), it is sufficient to use definition (36) and the
identities (which follow from the tridiagonality of Rt):

δi = E
[
di(k)d∗i−1(k)

]
,

αi = E
[∣∣di(k)∣∣2],

E
[
di+ j(k)d∗i (k)

] = 0, | j| > 1.

(40)

Assembling (36), (37), and (38) gives another form of
backward recursion which is shown in Algorithm 4.

4.3.3 The conjugate-gradient reduced-rank
filter (CGRRF)

The CGRRF [7] or conjugate-gradient implementation of
the MSWF [8] are inspired directly from the conjugate-
gradient algorithm (CGA) for systems of linear equations.
For that reason, we start by a brief introduction into
conjugate-gradient methods. For a more detailed presenta-

Initialization:

εD(k) = dD(k)

Decrement i = D, . . . , 1

ωi = δi/E[|εi(k)|2]
if i = 1

ŝ1(k) = ω1ε1(k)

else

εi−1(k) = di−1(k)− ωiεi(k)

Algorithm 4: Backward recursion of the rank D MSWF.

tion, the reader is referred to standard textbooks on compu-
tational linear algebra [18, 19].

Consider the following general iterative procedure:

w0 = 0, (41)

wi = wi−1 + ciui, i = 1, 2, . . . , D (42)

with the sequences of complex coefficients ci and of vectors
ui chosen according to some optimization criterion.

The criterion considered here is J(wi), so it is natural to
require that J(wi) ≤ J(wi−1). Note also from (42) that wi is
always in �i = span{u1,u2, . . . ,ui}. The question is whether
it is possible to choose ci and ui to give the reduced-rank
Wiener filter in �i or not. In other words, we require that

wi = wi
opt = arg min

w∈�i
J(w). (43)

The following lemma answers this question.

Lemma 1. For the requirement (43) to be satisfied, it is suffi-
cient that

(1) ui are mutually R-conjugate, that is,

uHi Ru j = 0, i 
= j (44)

(2) ci is given by

ci = uHi ei−1/u
H
i Rui, (45)

where

ei
def= c− Rwi. (46)

Proof. See [18].

It is easy to show that the value of the coefficient ci as
given by (45) minimizes the MSE in the direction of the line
� = {wi−1 + cui}. Therefore, condition (44) guarantees that
the reduced-rank Wiener filter wi

opt lies on �.
Different versions of the CGA result from different ways

to compute the sequence of R-conjugate vectors ui [18]. The
version shown in Algorithm 5 requires only one matrix-by-
vector multiplication per iteration. After D iterations of the
algorithm, the sequence {wi

opt} of D reduced-rank Wiener
filters in �i is generated.
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Initialization:

w0
opt = 0

β1 = 0

u1 = e0 = c/‖c‖
For i = 1, 2, . . . , D

if i > 1

βi = ‖ei−1‖2/‖ei−2‖2
ui = ei−1 + βiui−1

End

zi = Rui

ci = uH
i ei−1/u

H
i zi

ei = ei−1 − cizi
wi

opt = wi−1
opt + ciui

Algorithm 5: Summary of the CGRRF.

ŝ11(k)

ŝ21(k)

ŝ31(k)

ŝ41(k)
+

+

+

×

×

×

×

c4

c3

c2

c1

u1

u2

u3

u4

r(k)

Figure 2: CGRRF (rankD = 4).

The following lemma establishes the equivalence between
the CGA and other exact methods (MSWF, POR).

Lemma 2. For all 1 ≤ i ≤ D, �i = �i−1(R, c).

Proof. See [18].

Therefore, the reduced-rank Wiener filter in �i gener-
ated at the ith CGA iteration is also the reduced-rankWiener
filter in the Krylov subspace �i−1(R, c).

Basically, the CGRRF of rank D performs D CGA it-
erations. The CGRRF has a multistage structure, as shown
in Figure 2, with the stage i computing the reduced-rank
Wiener filter of the rank i and filtering the received signal
to give the estimate ŝi1(k).

4.4. Discussion

The complexity of block implementations of the each exact
reduced-rank method (in multiplications per block) is given
in Table 1. In this table, T denotes the block size and it is
assumed that the covariance matrix R is estimated as

R = 1
T

T∑
k=1

r(k)rH(k). (47)

Table 1: Complexity of exact algorithms.

Algorithm Number of multiplications per block

SMI N3/6 + TN2

RLS TN2 + 3NT + 2T

POR 2TND + 3ND −N + 2D2

MSWF 3TN(D − 1) + (N + T)(2D − 1) +D

CGRRF 2TND + 7ND − 3N +D

For the reduced-rankmethods, the complexity comprises the
computation of basis vectors of the Krylov subspace and of
the Wiener filter in the Krylov subspace. The Hankel struc-
ture of Rt has been accounted for in the complexity esti-
mate for the POR receiver. The complexity of the block sam-
ple matrix inversion (SMI) method, which solves system (3)
through the Cholesky decomposition of R̂, and the complex-
ity of RLS algorithm [2] are also given for reference.

It follows from Table 1 that exact methods offer signifi-
cant complexity reduction over the SMI and RLS algorithms
as D � N . The analysis presented in [5, 23] shows that in
practice D = 8 is sufficient to attain the full rank (RLS) per-
formance for wide range of system loads (M/N) and signal-
to-noise ratios (SNRs) (εi).

When some sample estimate R(k) is used, exact algo-
rithms (POR, MSWF, CGRRF) provide the exact minimum
of the “sample” MSE cost function

J(w, k) = ε1 +wHR(k)w −wHc− cHw (48)

in the “sample” Krylov subspace

�D
(
R(k), c

) = span
{
c,R(k)c, . . . ,RD−1(k)c

}
. (49)

As the minimization subspace and the cost function are com-
mon to these algorithms, they are mathematically equivalent
and they ideally result in the same reduced-rank solution.
However, the ways of obtaining this solution are different
which may have an impact when implementing exact algo-
rithms using finite precision arithmetic. For example, POR
basis vectors ti, i = 1, 2, . . . , D are not orthonormal. For small
sample sizes, these basis vectors are nearly dependent [9] and
the matrix Rt often becomes ill-conditioned. In [9], an adap-
tive rank selection technique was proposed to overcome this
difficulty. Another obstacle to practical use of the POR algo-
rithm is significant disparity in norms of ti. Indeed, accord-
ing to (20), ‖ti‖ grows exponentially with i thus, complicat-
ing the fixed point implementation of the algorithm. Clearly,
dependence of basis vectors and norm disparity can be elim-
inated by some kind of orthonormalisation with additional
computational cost.

Compared to the MSWF and the POR receiver, the
CGRRF has the advantage of computing Wiener filters of
all ranks ranging from 1 to D, therefore, in the CGRRF fil-
ter, outputs (symbol estimates) of different ranks ŝi1(k), i =
1, . . . , D are simultaneously available, as shown in Figure 2.
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This property simplifies real-time filter rank selection by
measuring the SINR at the output of each stage and adapting
the filter rank D to achieve the given target SINR. Moreover,
the CGRRF of any rank i < D is always at hand while for
the MSWF and POR system (11) has to be resolved for each
value of i (for the MSWF, weighting coefficients ωi resulting
from backward recursion have to be recomputed).

4.5. Auxiliary-vector filters (AVF)

Consider the system of normal equations (3). Note that the
Wiener filter, which minimizes the MSE given by (4), also
minimizes the function

J0(w) = 0.5
(
wHRw −wHc

)
. (50)

Starting from an arbitrary filterw0, theNewton-Raphson [19]
iteration gives the exact solution to (3)

wN
opt = w0 − (∇2J0

(
w0))−1∇J0(w0). (51)

Substituting R = ∇2J0(w0) into the above expression yields

wN
opt = w0 − v1, (52)

where v1 is the solution of

Rv1 = ∇J0(w0). (53)

It is clear that to solve the original MMSE minimization
problem, we have to provide the solution to (53). Suppose
that the following approximation is used instead:

v1 = R−1∇J0(w0) ≈ c1g1, (54)

where the unit norm auxiliary vector g1 and constant c1 are
defined as

g1 = ∇J0
(
w0)/∥∥∇J0(w0)∥∥, (55)

c1 = −gH1 e0/gH1 Rg1, (56)

e0 = c− Rw0. (57)

Substituting (54) into (51) gives

wN
opt ≈ w1 = w0 − c1g1. (58)

It can be shown that c1 as given by (56) minimizes J0(w)
along the line � = {w0 + cg1}. The “approximate” Newton-
Raphson iteration is therefore an iteration of the method of
steepest descent [18, 19]. Clearly, we may continue to iterate
as

wi = wi−1 − cigi, (59)

where

gi = ∇J0
(
wi−1)/∥∥∇J0(wi−1)∥∥, (60)

ci = −gHi ei−1/gHi Rgi, (61)

ei = c− Rwi. (62)

Initialization:
w0 = c/‖c‖
For i = 1, 2, . . . , D − 1

t = Rwi−1 − c

δ = ‖t‖
gi = t/δ

ci = δ/gHi Rgi
wi = wi−1 − cigi

Algorithm 6: The AVF (steepest descent) algorithm.

Substituting∇J0(w) = Rw−c in (60) and settingw0 = c/‖c‖
leads to the algorithm given in Algorithm 6, denoted here as
AVF.

It should be noted that our derivation is based on an
unconstrained minimization of the MSE. In [11], the filter
output energy (wi)HRwi is minimized under the constraint
(wi)Hc = 1. The resulting algorithm, denoted here as the
minimum variance AVF (MVAVF), computes auxiliary vec-
tors as

gi =
(
I− ccH

)∇J ′(wi−1)/∥∥∇J ′(wi−1)∥∥, (63)

where J ′(w) = wHRw. Clearly, the term (I − ccH) in (63)
guarantees the orthogonality between gi and c and leads to
the constant response in the direction of c,

(
wi
)H

c = (w0)Hc = const. (64)

Also, we may impose the orthogonality between gi,

gi ⊥ g j , j = 1, 2, . . . , i− 1. (65)

These constraints lead to

gi =

I− i−1∑

j=1
g j
(
g j
)H∇J0(wi−1)/∥∥∇J0(wi−1)∥∥. (66)

The algorithmwhich employs gi, as defined above, is denoted
here as the constrained AVF (CAVF), and its minimum vari-
ance counterpart, originally derived in [10], will be referred
to as the CMVAVF (see Algorithm 7).

It is easy to see that, for all variants of the AVF,
wi ∈ span{c, g1, g2, . . . , gi} = �i(R, c). Moreover, for the
CMVAVF, gi = qi, i = 1, 2, . . . , D, where qi (Lanczos vectors)
are generated by the algorithm of Algorithm 2.Therefore, ba-
sis vectors of the CMVAVF and of the MSWF coincide. The
latter fact, however, does not imply the equivalence of an
AVF with D auxiliary vectors to an exact method of rank
D+1. Themain difference resides in themanner the reduced-
rank filter solution is obtained. Indeed, exact methods per-
form the MSE minimization over the whole Krylov sub-
space span{c, g1, g2, . . . , gD} thus, giving the exact reduced-
rank Wiener filter, while an AVF algorithm with D auxiliary
vectors performs D successive line-search optimizations in
span{wi−1, gi}.
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Initialization:
w0 = c/‖c‖
For i = 1, 2, . . . , D − 1

MVAVF ([11]): t = (I− ccH)Rwi−1
Constrained MVAVF ([10]): t = (I− ccH −∑i−1

j=1 g jgHj )Rwi−1
gi = t/‖t‖
ci = gHi Rwi−1/gHi Rgi
wi = wi−1 − cigi

Algorithm 7: Minimum variance AVF algorithms.

Table 2: Complexity of auxiliary vector algorithms.

AVF algorithm Number of multiplications per block

AVF (steepest descent) 4TN(D − 1) + 4N(D − 1) +D − 1

MVAVF 4TN(D − 1) + 6N(D − 1) + 2(D − 1)

CAVF 4TN(D − 1) +N(D − 1)2 + 4N(D − 1) + 2(D − 1)

CMVAVF 4TN(D − 1) +N(D − 1)2 + 6N(D − 1) + 2(D − 1)

The complexity of the four auxiliary vector algorithms
(in block implementation) is given in Table 2 in multiplica-
tions per block of size T . For the algorithms compared in this
table, the number of auxiliary vectors nAV = D − 1.

4.6. Recursive algorithms

Various recursive implementations can be derived from the
algorithms introduced in the previous section. Note that
each algorithm considered previously is initialized with the
matched filter (w0 = c). After D iterations, we obtain the
reduced-rank Wiener filter wD

1 in �D(R, c). We may initial-
ize the algorithm withwD

1 and run anotherD iterations, thus
giving the reduced-rankWiener filterwD

2 in �D(R,wD
1 ). Next

D iterations will minimize the MSE in �D(R,wD
2 ) and so on.

Another kind of recursion can be used in adaptive sample-
by-sample processing when the reduced-rank method at
time instant n is initialized with the filter obtained at time
(n− 1). An example of this technique is the “CG1” variant of
the CGA described in [24].

4.7. Approximate sample-by-sample implementations

Sample-by-sample implementation of the MSWF (adaptive
residual correlation or the adaptive ResCor algorithm [25])
can be derived as follows. Recall the expressions for the
matched filters pi (Section 4.3.2),

pi =
(
I− qi−1qHi−1 − qi−2qHi−2

)
Rqi−1

= E
[
ri−1(k)d∗i−1(k)

]
, i = 1, 2, . . . , D.

(67)

We may use a stochastic approximation to compute the ex-
pectation in (67), for example, as

pi(k) = γpi(k − 1) + (1− γ)ri−1(k)d∗i−1(k), (68)

where 0<γ < 1 is the forgetting factor. Note that this update

Forward recursion

Initialization:

p1(k) = c(k)

δ1(k) = ‖c(k)‖
r0(k) = r(k)

i := 1

Do While (δi 
= 0) and (i ≤ D)

qi(k) = pi(k)/δi(k)

ri(k) = (I− qi(k)qHi (k))ri−1(k)
di(k) = qHi (k)ri−1(k)
i := i + 1

pi(k) = γpi(k − 1) + (1− γ)ri−1(k)d∗i−1(k)
δi(k) = ‖pi(k)‖

Backward recursion

Initialization:

εD(k) = dD(k)

Decrement i = D, . . . , 1

ξi(k) = γξi(k − 1) + (1− γ)‖εi(k)‖2
ωi(k) = δi(k)/ξi(k)

if i = 1

ŝ1(k) = ω1(k)ε1(k)

else

εi−1(k) = di−1(k)− ωi(k)εi(k)

Algorithm 8: Summary of the adaptive ResCor algorithm.

does not require costly matrix vector multiplications. The
same trick can be applied to the expectation which appears
in backward recursion of the MSWF

ωi(k) = δi(k)/E
[∥∥εi(k)∥∥2] ≈ δi(k)/ξ(k), i = D, . . . , 1,

(69)
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Initialization:

w0
opt(k) = 0

β1(k) = 0

u1(k) = e0(k) = c(k)/‖c(k)‖
For i = 1, 2, . . . , D

if i > 1

βi(k) =
∥∥ei−1(k)∥∥2/∥∥ei−2(k)∥∥2

ui(k) = ei−1(k) + βi(k)ui−1(k)
End

zi(k) = γzi(k − 1) + (1− γ)r(k)rH(k)ui(k)

αi(k) = γαi(k − 1) + (1− γ)
∣∣uH

i (k)r(k)
∣∣2

ci(k) = uH
i (k)ei−1(k)/αi(k)

ei(k) = ei−1(k)− ci(k)zi(k)
wi

opt(k) = wi−1
opt (k) + ci(k)ui(k)

Algorithm 9: Summary of adaptive CGRRF.

Table 3: Complexity of some sample-by-sample algorithms.

Algorithm Number of multiplications per sample

LMS 2N

Adaptive CMVAVF 8ND

Adaptive MVAVF 7ND

Adaptive ResCor 7ND

Adaptive CGRRF 9ND − 3N

Table 4: Simulation parameters.

Parameter Notation Value

Spreading factor S f 16

Chip period Tc 0.25× 10−6 s

Carrier frequency fc 2× 109 Hz

where ξi(k) is updated as

ξi(k) = γξi(k − 1) + (1− γ)
∥∥εi(k)∥∥2. (70)

The resulting algorithm (A-ResCor) is summarized in
Algorithm 8. Low-complexity version of the CGRRF is given
in Algorithm 9. Similarly, approximate adaptive implemen-
tations of the AVF can be obtained [12, 26].

In Table 3, the complexity of sample-by-sample algo-
rithms is given in multiplications per sample (the complexity
of the LMS algorithm is given for comparison).

5. COMPUTER SIMULATIONS

The considered techniques were tested in a scenario which
models joint (multiuser) detection in time division CDMA
(TD-CDMA), universal mobile telecommunications system
(UMTS), terrestrial radio access (UTRA), time division du-
plex (TDD) mode [27]. The parameters of a simulated DS-
CDMA system are summarized in Table 4.

Table 5: Tap delays and relative average powers of the vehicular A
channel model.

Tap Delay (ns) Power (dB)

1 0 0

2 310 −1
3 710 −9
4 1090 −10
5 1730 −15
6 2510 −20

Each of M = 4 system users transmits an i.i.d. sequence
of QPSK-modulated symbols. The vehicular environment
(Type A) with a mobile speed of 120 km/h was modeled
[28, 29]. At this speed, the coherence time of the channel is
about 500 symbols. The channel is modeled as a tapped delay
line with a fixed delay. Each tap coefficient is generated using
Jakes fading model [30]. The delays and relative powers of
the taps are given in Table 5. The channel noise is modeled as
being white.

The receiver employs two diversity antennas, that is, the
signals impinging on the antennas are assumed to be uncor-
related. This is reflected in the simulation setup by modelling
the path from the transmitter to each receiver antenna by
an independently fading, point-to-point channel model. Let
r1(t) and r2(t) denote the respective antenna element out-
puts. After the matched filtering and chip-rate sampling, the

combined received signal vector r(k) = [
rT1 (k) rT2 (k)

]T
is

described by (1) with the observation size N = 2S f = 32.
Note that due to the users’ motion, the channel matrix H is
time-varying. The channel signature h1 of the desired user
(first column of H in (1)) is supposed to be known at the
receiver.

Exact and SMI algorithms, compared here, use (5) to es-
timate the covariance matrix of the received signal with the
forgetting factor γ = 0.995. This value of γ is also used in
approximate adaptive implementations. Initially, R(0) = δI
where the diagonal loading parameter δ ensures that R(k) is
inversible for small k.

In Figures 3 and 4, the convergence and tracking perfor-
mance of the exact reduced-rankmethods (ERRM, which in-
clude the POR, MSWF, and CGRRF) and of the conventional
SMI technique is explored. In these figures, the bit error rate
(BER) of the first user, averaged over the independent realiza-
tions of noise, transmitted symbols, fading waveforms, and
random binary spreading codes is plotted versus the num-
ber of the received observations (k). The BER attained by
the RAKE receiver is given for comparison. For Figure 4, the
first user has the SNR of 9 dB, while the interfering users
have the SNR of 21 dB, and for Figure 3, everybody is at
16 dB.

The curves of Figure 3 illustrate two distinct zones: the
zone of initial convergence (first 150 symbols periods), fol-
lowed by the zone of tracking. The first zone is characterized
by minor accumulated changes in the propagation channel
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Figure 3: Convergence of ERRM and conventional methods.
SNR1 = SNR2 = SNR3 = SNR4 = 16dB.

so that the performance depends mainly on the algorithm’s
convergence rate. It can be seen that the reduced-rank filters
converge at least as rapidly as the full rank SMI filter.

In the second zone, the channel has been significantly
driven off its initial value and tracking ability becomes dom-
inant. We see that for moderate multiple-access interference
(MAI) levels (Figure 3), tracking ability is dramatically im-
proved by the rank reduction with lower filter ranks perform-
ing the best. For strong MAI (Figure 4), accurate modelling
of the interference (which is better obtained with higher
ranks) prevails over the tracking performance, and the full
rank solution gives the lowest BER. The latter observation
also applies to the next simulation example.

In Figures 5 and 6, we compare the steady-state perfor-
mance of ERRM and SMI. As a performance measure, we
used the BER of the desired user over 106 symbol periods and
averaged over random binary spreading codes. In Figure 5,
this BER is plotted versus the SNR (common to all system
users), while in Figure 6, only SNR of the interfering users
(Interference-to-Noise Ratio, or INR) changes with the SNR
of the desired user fixed at 9 dB.

It can be concluded that for low SNR (INR), ERRM
of low ranks (and, in particular, the RAKE which corre-
sponds to D = 1) perform better. In this case, white noise
dominates the MAI and the gain achieved through mul-
tiuser detection is small compared to the loss resulting from
the misadjustment noise. The situation changes for high
SNR (INR) when more filter degrees of freedom are re-
quired in order to cope with the strong MAI. It follows
from the presented figures that although reduced-rank filters
are not near-far resistant, they can provide significant gains
over the SMI and RAKE receivers over wide ranges of MAI
levels.
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Figure 5: BER versus SNR for ERRM and conventional methods.

Our next experiment (Figure 7) compares the perfor-
mance of sample-by-sample reduced-rank implementations:
the adaptive ResCor (A-ResCor), the adaptive CMVAVF
(A-CMVAVF), the adaptive MVAVF (A-MVAVF), and the
adaptive CGRRF (A-CGRRF) of rankD = 4. The per-
formance measure used in this experiment was the filter
output SINR averaged over the independent realizations
of noise, transmitted symbols, fading waveforms, and ran-
dom binary spreading codes. The SINR at time instant k is



1398 EURASIP Journal on Applied Signal Processing

201816141210864
INR (dB)

10−1

100

B
E
R
(S
N
R
=
9
dB

)

RAKE
SMI
Exact methods, D = 2

Exact methods, D = 3
Exact methods, D = 4

Figure 6: BER versus interference-to-noise ratio for ERRM and
conventional methods. SNR1 = 9dB.
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rithms.

computed as

SINR(k) = ε1
∣∣wH(k)h1(k)

∣∣2
wH(k)RI+Nw(k)

, (71)

where w(k) is the filter estimate and RI+N is the interference
plus noise covariance matrix. In this experiment, the desired
user is at 9 dB SNR, while the interferers are at 21 dB. The
performance attained by the full rank and RAKE filters is
also given for reference. Interestingly enough, for the given
simulation setup algorithms which use nonorthogonal sets
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Figure 8: Averaged SINR versus time for the CGRRF with adaptive
rank selection.

of basis (auxiliary) vectors (A-CGRRF, A-MVAVF) result in
better performance.

Figures 5 and 6 suggest that adaptive rank selection (as
a function of MAI level) can be used in order to improve
the near-far resistance of reduced-rank filters. This solution
is demonstrated in our next experiment, where the rank of
CGRRF is adapted in order to maintain constant filter out-
put SINR.

Specifically, each 250 symbol periods the instantaneous
SINR at the output of the Dth stage of CGRRF is esti-
mated according to (71) with RI+N replaced by its estimate
RI+N (k) = R(k) − ε1h1(k)hH1 (k).5 The instantaneous SINR
so obtained is time-averaged using the forgetting factor of
0.95. The value of rank (D) is then either increased or de-
creased by 1 in order to keep time-averaged SINR within the
range 3± 1dB.

In Figures 8 and 9, one realization of the time-averaged
SINR and of the rank D versus time is shown. The propaga-
tion channel was fixed in this experiment in order to simplify
the analysis. Initially, there are 16 users in the system with the
desired user having the SNR of 8 dB and interferers at 14 dB.
Starting rank value is 2. Over the first 1000 samples, the rank
can be seen to converge and then stabilize at D = 5. At time
k = 4000, six interfering users quit the system and D de-
creases to 3. Finally, at k = 6000, three of interferers reenter
the communication and the filter rank again grows to 4.

Figure 8 shows that the reception quality is kept reason-
ably well within the required limits. Another advantage of
this (or similar) adaptive rank selection techniques is the ef-
ficient utilization of the available processing power.

5The estimate of the desired user energy (ε1) is supposed to be available
at the receiver.
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Figure 9: Rank D versus time for the CGRRF with adaptive rank
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6. CONCLUSIONS

A family of recently introduced least-square adaptive filter-
ing techniques has been studied. All of these algorithms are
shown to project and filter the received observation in the
same low-dimensional subspace. This (Krylov) subspace is
generated by taking the powers of the received covariance
matrix on the cross-correlation (steering) vector. Conse-
quently, considered techniques are related to Krylov subspace
methods for linear systems and can be divided in four dis-
tinct groups: exact, auxiliary-vector, recursive, and approx-
imate sample-by-sample methods. Numerical studies and
complexity figures compare favorably the presented methods
to conventional SMI and matched filtering techniques.
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