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We address the problem of cancelling a stationary noise component from its static mixtures with a nonstationary signal of in-
terest. Two different approaches, both based on second-order statistics, are considered. The first is the blind source separation
(BSS) approach which aims at estimating the mixing parameters via approximate joint diagonalization of estimated correlation
matrices. Proper exploitation of the nonstationary nature of the desired signal, in contrast to the stationarity of the noise, allows
the parameterization of the joint diagonalization problem in terms of a nonlinear weighted least squares (WLS) problem. The
second approach is a denoising approach, which translates into direct estimation of just one of the mixing coefficients via solu-
tion of a linear WLS problem, followed by the use of this coefficient to create a noise-only signal to be properly eliminated from
the mixture. Under certain assumptions, the BSS approach is asymptotically optimal, yet computationally more intense, since it
involves an iterative nonlinear WLS solution, whereas the second approach only requires a closed-form linear WLS solution. We
analyze and compare the performance of the two approaches and provide some simulation results which confirm our analysis.
Comparison to other methods is also provided.
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1. INTRODUCTION

In many applications in signal processing and communica-
tions, a desired signal is contaminated by some unknown,
statistically independent, noise signal. Multisensor arrays are
often used for the purpose of separating, or denoising, the
desired signal. Each sensor receives a linear combination of
the desired signal and noise so that, by properly combining
the received signals, enhancement of the desired signal is pos-
sible.

This problem can be regarded either as a denoising or
as a blind source separation (BSS) problem. The difference
between these two approaches lies within the treatment of
the noise signal: while the former regards the noise merely as
a disturbance, the latter regards it as another source signal to
be separated from the desired one.

A major practical difference between the two approaches
to this problem lies in their computational complexity: while
the BSS approach involves approximate joint diagonaliza-
tion, which amounts to the solution of a nonlinear weighted

least squares (WLS) problem, the denoising approach only
requires the solution of a linear WLS problem. It is there-
fore interesting to compare the performance of the two ap-
proaches in order to gauge the benefit of using the computa-
tionally more intense BSS approach.

In order to attain the desired noise cancellation, some
special characteristics of the signals and/or the mixing have
to be exploited. Traditionally, the BSS approach is only based
on statistical independence of the sources. However, in sev-
eral contexts (e.g., [1, 2, 3]), second-order statistics are suffi-
cient. One such context is the framework of nonstationarity.
The key property to be employed in this paper is the assump-
tion that the desired signal is nonstationary whereas the noise
signal is stationary. This assumption holds in several situa-
tions of interest, for example,

(i) in a microphones array, when the desired nonstation-
ary signal is speech, whereas some stationary noise
source (such as fan noise) is also received (as another
coherent source);
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(ii) in a multiuser array communication system, when
the signal of interest (possibly a mobile source) is re-
ceived through a fading (time-varying) channel, while
a nuisance signal (possibly a static source) is received
through a nonfading (constant) channel. In that case,
although both sources are stationary at the origin, the
source of interest appears nonstationary at the array,
while the undesired source (regarded as noise) appears
stationary.

The mixing that links the source signals to the sensors
is usually assumed to be linear and time-invariant (LTI). In
its more general form, it consists of different (unknown) LTI
systems relating each source signal to each sensor. However,
a more degenerate case of an LTI system is a static mixture, in
which each sensor receives a memoryless (static) linear com-
bination of the source signals. While the case of static mix-
tures is not as prevalent in practical situation as the dynamic
(convolutive) mixtures case, it has been treated extensively
in the context of BSS and independent components analysis
(ICA)—see, for example, [4, 5, 6], for a comprehensive re-
view. In many situations, the assumption of a static mixture
holds precisely, and in other situations, it can be justified as
a first-order approximation of a short-memory convolutive
system (e.g., in communications applications with narrow-
band sources or in nonreverberant acoustic situations with
closely-spaced directional microphones). The treatment of
the static case basically encompasses many of the principles
underlying the BSS problem in general, even in the context
of convolutive mixtures.

Our purpose in this paper is to present and compare (by
analysis and simulations) both the denoising and the sepa-
ration approaches for the problem of a static mixture of a
nonstationary (desired) signal and a stationary (noise) sig-
nal.

The problem of BSS in a static mixture of nonstation-
ary signals has recently been treated by Pham and Cardoso
in [3], where one proposed method was to apply a special
form of joint diagonalization to a set of estimated correlation
matrices taken from different segments. It is assumed that
the source signals have constant powers within segments but
these powers vary between segments—thus constituting the
nonstationarity of the sources. While directly applicable in
our problem, this approach cannot exploit the fact that one
of the source signals (the noise in our case) is stationary. In
the BSS approach we take in this paper, the joint diagonaliza-
tion problem assumes the form of a WLS problem, in which
the parameterization properly exploits the noise stationarity.
It is therefore interesting to compare the performance of our
BSS approach to the approach of [3]. We include an empiri-
cal comparison in this paper.

Static mixtures in the BSS context were also addressed
in [7] by Parra and Spence as a preliminary tool for treat-
ment of the convolutive case. Their model is more general
since it also contains uncorrelated additive noise compo-
nents in each sensor (on top of the signals’ mixing). There-
fore this model is also over-parameterized for our more
concise problem. We also provide an empirical comparison

of performance, comparing the BSS and denoising ap-
proaches to the approach taken in [7] in the context of static
mixtures.

In [8, 9], Rahbar et al. address the case of convolu-
tive mixtures of nonstationary signals, where separation
is performed in the frequency domain by applying static
source separation to the spectral components at each fre-
quency taken over different segments (and later resolving
the scale/permutation ambiguity). Again, exploitation of sta-
tionarity of one of the sources is beyond the scope of these
contributions (although the extension of the associated diag-
onalization problems accordingly is possible).

The alternative approach, which regards the separation as
a denoising problem, was first introduced by Gannot et al. in
[10] and analyzed in [11]. It was applied in the convolutive
mixture case, and relies on a system-identification method
proposed by Shalvi and Weinstein in [12]. This method es-
timates an LTI system’s transfer function by exploiting the
nonstationarity of its input signal contrasted with the sta-
tionarity of the input/output noise signal. One identification
approach in [12] was based on estimated time-domain cor-
relations, while another approach was based on spectral es-
timates. Only the frequency-domain approach was (approx-
imately) analyzed. However, the degenerate case of a static
mixture, which allows exact (small errors) analysis in the
time-domain, was not addressed.

The paper is organized as follows. In Section 2 we pro-
vide the problem formulation. In Section 3, we present the
BSS approach and in Section 4, we present the denoising ap-
proach. While the general approaches in both sections do
not make any assumptions on the actual distribution of each
source, a small-errors analysis is also provided (for both ap-
proaches) for the case of Gaussian, temporally-uncorrelated
sources. Based on these analyses, optimized versions (un-
der the same assumptions) of both approaches are derived.
In Section 5, we present some simulations results comparing
the two approaches as well as showing the agreement with
the analytically predicted performance. In addition, the al-
gorithms are empirically compared to other algorithms, and
their robustness is tested. Some conclusions are drawn in
Section 6.

2. PROBLEM FORMULATION

We denote the nonstationary source signal by s[n] and the
stationary noise by v[n].

In the blind scenario, the scales of neither the source sig-
nal nor the noise are known. Therefore, some arbitrary con-
straints have to be imposed on the mixing coefficients in or-
der to eliminate the inherent ambiguity involved in the pos-
sible commutation of scales between the channel and the sig-
nal. We use unit scales in the direct paths, denoting by a
and b the two unknown mixing parameters. As depicted in
Figure 1, the observed signals are x1[n] and x2[n]

x1[n] = s[n] + av[n],

x2[n] = bs[n] + v[n], n = 1, 2, . . . , N.
(1)
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Figure 1: Static mixing with normalized coefficients.

The source signal s[n] is assumed to be piece-wise power-
stationary in the following sense: divide the observation in-
terval into K segments. In each segment, s[n] satisfies

E
[
s[n]

] = 0,

E
[∣∣s[n]∣∣2] = σ2k Nk−1 < n ≤ Nk k = 1, 2, . . . , K,

(2)

where

N0 = 0,

Nk = Nk−1 + Lk, k = 1, 2, . . . , K,
(3)

where Lk is the (known) length of the kth segment (and
NK = N). The variances σ21 , σ

2
2 , . . . , σ

2
K are unknown. Weak

ergodicity of s[n] in each segment is assumed.
The noise v[n] is assumed to be zero-mean weakly er-

godic wide-sense stationary (WSS), statistically independent
of s[n], with unknown variance σ2v = E[|v[n]|2].

It is desired to estimate the source signal s[n] (or a scaled
version1 thereof) from the observations x1[n] and x2[n], n =
1, 2, . . . , N .

In general, the source signals, as well as the mixing pa-
rameters, may be either real-valued or complex-valued. Un-
fortunately, the real-valued case cannot be regarded as a spe-
cial case of the complex-valued case since in the complex-
valued case, the signals are usually assumed to be circular
(see, e.g., [13]). A real-valued signal cannot be considered
a circular complex-valued signal. While both cases are of in-
terest, the presentation of the real-valued case is considerably
more concise. Therefore, in order to capture the essence of
the proposed approaches, we mainly address the real-valued
case, leaving for the appendix the further modifications re-
quired to address the complex-valued case.

3. THE BSS APPROACH

In this section, we address the noise cancellation problem as a
BSS problem, attempting to estimate the mixing parameters
explicitly in order to use their estimates for demixing.

Transforming to matrix-vector notation, we define

M(a, b) �
[
1 a
b 1

]
(4)

1Due to the scaling assumption, s[n] can only be recovered up to some
(complex) constant scale.

as the mixing matrix, and x[n] �
[
x1[n] x2[n]

]T
as the ob-

servation vector.
Since s[n] and v[n] are zero mean and statistically in-

dependent, and are both power-stationary in each segment,
the signals x1[n] and x2[n] are jointly power-stationary
in each segment. Specifically, the zero-lag correlation
matrices

E
[
x[n]xT[n]

] =M(a, b)

[
E
[
s2[n]

]
0

0 E
[
v2[n]

]
]
MT(a, b)

(5)

are independent of n within each segment, so that we may
define the kth segment’s zero-lag correlation matrix,

Rk � M(a, b)

[
σ2k 0

0 σ2v

]
MT(a, b), k = 1, 2, . . . , K. (6)

These correlation matrices can be estimated in each segment
using straightforward averaging,

R̂k = 1
Lk

Nk∑
n=Nk−1+1

x[n]xT[n], k = 1, 2, . . . , K. (7)

The estimates are unbiased and, moreover, consistent if the
source signal and noise are weakly ergodic within each seg-
ment (consistency is per segment, with respect to its length
Lk).

A set of K matrices R1,R2, . . . ,RK is said to be jointly di-
agonalized by a matrix M if there exist K diagonal matrices
Λ1,Λ2, . . . ,ΛK such that Rk =MΛkMT for all k = 1, 2, . . . , K .
Under certain conditions on the Λk’s, the diagonalizing ma-
trixM is unique up to possible scaling and permutation of its
columns.

It is evident from (6) that the true correlation matri-
ces R1,R2, . . . ,RK are jointly diagonalized by M(a, b). Thus,
an estimate of M(a, b) can be obtained by attempting to
jointly diagonalize the K estimated correlation matrices
R̂1, R̂2, . . . , R̂K , which we will denote the target matrices.
However, if K > 2, then it is (almost surely) impossible
to attain exact joint diagonalization of these target matri-
ces. We must then resort to approximate joint diagonaliza-
tion, a concept which has seen extensive use in the field of
BSS [6, 14, 15, 16, 17] with various selections of sets of tar-
get matrices. Several criteria have been proposed as a mea-
sure of the extent of attainable diagonalization, see, for ex-
ample, [15, 17, 18], and especially [3] in a context similar to
ours.

One possible measure of diagonalization is the straight-
forward least-squares (LS) criterion which, in our case, as-
sumes the following form:

min
â,b̂,σ̂2v ,σ̂

2
1 ,σ̂

2
2 ,...,σ̂

2
K

K∑
k=1



∥∥∥∥∥R̂k −

[
1 â

b̂ 1

][
σ̂2k 0
0 σ̂2v

][
1 b̂
â 1

]∥∥∥∥∥
2

F


, (8)
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where ‖·‖2F denotes the squared Frobenius norm.2 Note that
the minimization has to be attained with respect to (w.r.t.)
the nuisance parameters σ̂2v , σ̂

2
1 , σ̂

2
2 , . . . , σ̂

2
K (as well as w.r.t. the

parameters of interest â, b̂), since these are additional un-
knowns.

This formulation differs from the general formulation of
standard approximate joint diagonalization problems in two
respects: one is the structural constraint on the mixing ma-
trix, which eliminates the scaling and permutation ambiguity
by explicitly parameterizing just two degrees of freedom. The
other is the constraint on the diagonal matrices, by which the
(2, 2) element (namely σ̂2v ) must be the same for all k—a di-
rect consequence of the noise’s stationarity.

Therefore, with slight manipulations, we prefer to rep-
resent this criterion as a standard (nonlinear, possibly
weighted) LS problem. First denote, for shorthand, a vector

θ̂ �
[
σ̂21 σ̂22 · · · σ̂2K σ̂2v

]T
consisting of all nuisance param-

eters. In addition, define K vectors consisting of the entries
of the respective target matrices in vec{·} formation,

r̂k�vec
{
R̂k

}=[
R̂(1,1)k R̂(2,1)k R̂(1,2)k R̂(2,2)k

]T
, k=1, 2, . . . , K.

(9)

The equivalent vec{·} formation of the kth diagonal form
would be

vec

{[
1 â

b̂ 1

][
σ̂2k 0

0 σ̂2v

][
1 b̂
â 1

]}
=



1 â2

b̂ â

b̂ â

b̂2 1



[
σ̂2k
σ̂2v

]
. (10)

Consequently, if we concatenate all r̂k’s into a 4K×1 vec-

tor r̂ �
[
r̂1 r̂2 · · · r̂K

]T
, then the LS criterion (8) can be

expressed as

min
â,b̂,θ̂

[
r̂− G̃

(
â, b̂

)
θ̂
]T[

r̂− G̃
(
â, b̂

)
θ̂
]
, (11)

where the 4K × (K + 1) matrix G̃(â, b̂) is given by

G̃
(
â, b̂

)
�




b̃ 0 · · · 0 ã
0 b̃ 0 ã
...

...
...

...
...

0 · · · 0 b̃ ã


 =

[
I⊗ b̃ 1⊗ ã

]
(12)

with b̃ = [
1 b̂ b̂ b̂2

]T
, ã = [

â2 â â 1
]T

and I, 1, and 0
as the K × K identity matrix, a K × 1 all-ones vector and
a 4 × 1 all-zeros vector, respectively. The symbol ⊗ denotes
Kronecker product.

The concatenation of the K vectors r̂k would normally
comprise the entire “measurements vector” for the LS for-
mulation. However, since R̂k is symmetric, the second and
the third elements of each r̂k are identical, and hence, one of

2The Frobenius norm of a matrix A is given by ‖A‖2F =
∑

i
∑

j A
2
i, j =

Trace{ATA}.

them is redundant. To mitigate this redundancy, we define
reduced “measurement vectors” yk,

yk �


1 0 0 0
0 1 0 0
0 0 0 1


 r̂k � Dr̂k, k = 1, 2, . . . , K, (13)

which we concatenate to form y = [
y1 y2 · · · yK

]T
.

Adding an arbitrary weight matrix W, the weighted LS cri-
terion becomes

min
â,b̂,θ̂

[
y −G

(
â, b̂

)
θ̂
]T
W
[
y −G

(
â, b̂

)
θ̂
]
, (14)

where G(â, b̂) is structured like G̃(â, b̂),

G
(
â, b̂

) = [
I⊗ b 1⊗ a

]
, (15)

where now

b =
[
1 b b2

]T
, a =

[
a2 a 1

]T
. (16)

Note that this criterion coincides with the criterion in
(8) whenW = diag

{
1 2 1 1 2 1 · · · 1 2 1

}
. However,

any symmetrical positive definite matrix can be used, and we
will pursue the optimal weight matrix in the sequel.

3.1. Nonlinear LS solution

While linear in θ̂, this WLS criterion is nonlinear in â and
b̂. As a minimization approach, we propose to use alternat-
ing coordinates minimization (ACM) in the following form.
Assuming â and b̂ are fixed, minimization w.r.t. θ̂ is readily
attained by the linear WLS solution,

θ̂ = [
GT

(
â, b̂

)
WG

(
â, b̂

)]−1
GT

(
â, b̂

)
Wy. (17)

Assuming that θ̂ is fixed, we may take Gauss’ method (see,
e.g., [19]) to solve the nonlinear problem in terms of â and
b̂. DefineH(â, b̂, θ̂) to be the following derivative matrix:

H
(
â, b̂, θ̂

)
�

[
∂

∂â

{
G
(
â, b̂

)
θ̂
} ∂

∂b̂

{
G
(
â, b̂

)
θ̂
}]

=

σ̂2v 1⊗


2â1
0


 ¯̂

θ ⊗


0
1
2b̂




 ,

(18)

where ¯̂
θ = [

σ̂21 σ̂22 · · · σ̂2K
]T

is comprised of the first K el-

ements of θ̂. Gauss’ method iteratively updates the estimates
â and b̂ via


â[l+1]
b̂[l+1]


 =


â[l]
b̂[l]


 +

[
HT

(
â[l], b̂[l], θ̂

)
WH

(
â[l], b̂[l], θ̂

)]−1

×HT
(
â[l], b̂[l], θ̂

)
W
[
y −G

(
â[l], b̂[l]

)
θ̂
]
,

(19)
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where â[l] and b̂[l] are the lth iteration values of â and b̂, re-
spectively.

A “true” ACM algorithm would alternate between min-
imization of the LS criterion w.r.t. θ̂ assuming â and b̂ are
fixed, and full minimization w.r.t. â and b̂ assuming θ̂ is fixed.
However, these full minimizations may require a large num-
ber of inner (Gauss) iterations per each outer (ACM) itera-
tion. In an attempt to speed up the iterative process, it may be
desirable to interlace minimizations w.r.t. θ̂ between Gauss
iterations. Thus, each Gauss iteration (19) would be preceded
with re-estimation of θ̂ using (17).

In a “true” ACM algorithm, the WLS criterion is guar-
anteed not to increase (usually to decrease) in each iteration.
Being bounded below, this property guarantees convergence
of the WLS criterion which, under some reasonable assump-
tions (see, e.g., [17]), implies convergence of the parameters.
Since the criterion is fully minimized w.r.t. either θ̂ or â, b̂ in
each iteration, the point of convergence must be a minimum
both w.r.t. θ̂ and w.r.t. â, b̂. However, it may happen that this
point would not be a minimum with respect to â, b̂, and θ̂
simultaneously.

In the “interlaced” ACM algorithm, the WLS criterion
is guaranteed not to increase in each application of (17).
It is not guaranteed (in general) not to increase in each
application of a Gauss iteration (19). Nevertheless, un-
der a small-error assumption, each Gauss iteration solves
a linearized WLS problem in the vicinity of a true min-
imum, thus the nonlinear WLS criterion is decreased as
well.

In order to justify such a small-error assumption, a rea-
sonable initial guess for the parameters has to be used. A
possible choice for â[0] and b̂[0] can be computed from the
(exact) joint diagonalization of any two matrices of the set
R̂1, R̂2, . . . , R̂K , say R̂1 and R̂2. Since these estimated correla-
tion matrices are symmetric and positive definite, there exist
some M̂, Λ̂1, and Λ̂2 that satisfy

R̂1 = M̂Λ̂1M̂T , R̂2 = M̂Λ̂2M̂T (20)

so that

R̂1R̂−12 = M̂
(
Λ̂1Λ̂

−1
2

)
M̂−1 (21)

meaning that M̂ is the eigenvectors matrix of R̂1R̂−12 (with

eigenvalues given by the diagonal values of Λ̂1Λ̂
−1
2 ). Thus,

initial guesses for â and b̂ can be obtained from this eigen-
vectors matrix using proper normalization. The permutation
ambiguity can be resolved by ordering the eigenvalues such
that the (2, 2) element of the eigenvalues matrix be the near-

est to 1 (reflecting the nominal requirement Λ̂
(2,2)
1 = Λ̂

(2,2)
2 =

σ2v ).
The minimization algorithm therefore assumes the form

shown in Algorithm 1.
A reasonable convergence criterion would be to monitor

the norm of all the parameters’ update in each iteration and
compare to a small threshold.

Initialization

Find the eigenvalues λ1 and λ2 and corresponding
eigenvectorsm1 andm2 (resp.) of R̂1R̂−12 , arranged such that
λ2 is the nearest to 1.

Let â[0] = m1,2/m2,2 and b̂[0] = m2,1/m1,1 wheremi, j denotes
the ith element ofm j , i, j = 1, 2.

Iterations

For l = 0, 1, . . ., repeat until convergence
(I) minimize w.r.t. θ̂,

θ̂
[l] =

[
GT

(
â[l], b̂[l]

)
WG

(
â[l], b̂[l]

)]−1
GT

(
â[l], b̂[l]

)
Wy;

(II) apply one Gauss iteration


â[l+1]
b̂[l+1]


 =


â[l]
b̂[l]




+
[
HT

(
â[l], b̂[l], θ̂

[l])
WH

(
â[l], b̂[l], θ̂

[l])]−1
×HT

(
â[l], b̂[l], θ̂

[l])
W
[
y −G

(
â[l], b̂[l]

)
θ̂
[l]]

(where the matrices G(â, b̂) andH(â, b̂, θ̂) are given by (15)
and (18), resp.).

Algorithm 1

Once a and b are estimated, the demixing matrix can
be constructed, and the source (and noise) process(es) es-
timated

ŝ[n] = x1[n]− âx2[n]

1− âb̂
, v̂[n] = x2[n]− b̂x1[n]

1− âb̂
. (22)

3.2. Performance analysis and optimal weighting

When some statistical knowledge regarding the source and
the noise processes is available, a small-error performance
analysis can be derived and, moreover, an optimal (or an
asymptotically optimal) weight matrix W can be found. A
key step in the analysis would be to obtain the covariance
matrix of the “measurements” y.

To this end, we now use a statistical model consisting of
the following additional assumptions (in addition to the as-
sumptions stated in Section 2):

(i) both the source and the noise are Gaussian processes;
(ii) all nonzero-lag correlations of both processes are zero,

E
[
s[n]s[n− l]

] = E
[
v[n]v[n− l]

] = 0 ∀n, ∀l �= 0. (23)

These additional assumptions imply statistical indepen-
dence between observation signals x[n] belonging to differ-
ent segments. This statistical independence implies, in turn,
zero covariance between the estimates of correlationmatrices
from two different segments. We therefore need only the co-
variance between the elements of the estimated R̂k for each k
(segment). By exploiting the Gaussianity and the insegment
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whiteness of both signals, we obtain

E
[
R̂
(i, j)
k R̂

(p,q)
k

]

= 1
L2k

∑
n

∑
m

E
[
xi[n]xj[n]xp[m]xq[m]

]

= 1
L2k

∑
n

∑
m

{
E
[
xi[n]xj[n]

]
E
[
xp[m]xq[m]

]

+ E
[
xi[n]xp[m]

]
E
[
xj[n]xq[m]

]
+ E

[
xi[n]xq[m]

]
E
[
xj[n]xp[m]

]}

= R
(i, j)
k R

(p,q)
k +

1
Lk

{
R
(i,p)
k R

( j,q)
k + R

(i,q)
k R

( j,p)
k

}
,

(24)

where i, j, p, q = 1, 2. Since the first term on the last row

equals E[R̂
(i, j)
k ]E[R̂

(p,q)
k ], the remaining term equals the de-

sired covariance. Consequently, the entire covariance matrix
(per segment k) can be written in matrix form as follows:

Cr,k � cov
(
r̂k
) = 1

Lk

(
Rk ⊗ Rk

) ·


2 0 0 0
0 1 1 0
0 1 1 0
0 0 0 2


 . (25)

The covariance matrix of the measurements yk is then given
by

Cy,k = DCr,kDT , (26)

where D was defined via (13). Finally, the covariance matrix
of the entire measurements vector is given by

Cy = diag
{
Cy,1,Cy,2, . . . ,Cy,K

}
, (27)

where diag{·} is in the matrices-to-matrix block-diagonal
sense.

With Cy in hand, we can now proceed to analyze the er-
ror in estimating a and b and the consequent denoising per-
formance. It is well known that under the small errors as-
sumption, the nonlinear-WLS estimates are unbiased, and
their covariance can be calculated as follows. Define φ �[
a b θ̂

T]T
as the complete vector of unknown parameters,

and

F(φ) � ∂

∂φ

{
G(a, b)θ̂

} = [
H
(
a, b, θ̂

)
G(a, b)

]
(28)

as the complete derivative matrix. Then

Cφ̂ � cov
{
φ̂
} = [

FT(φ)WF(φ)
]−1[

FT(φ)WCyWF(φ)
]

× [
FT(φ)WF(φ)

]−1
.

(29)

The covariance matrix of â and b̂ is then given by the
upper-left 2 × 2 matrix of Cφ̂. Specifically, define σ

2
a as the

(1, 1) element of this matrix.
When the estimated demixing matrix is applied to the

observed signals, the entire (residual) mixing is given by

1

1− âb̂

[
1 −â
−b̂ 1

][
1 a
b 1

]
= 1

1− âb̂

[
1− âb a− â

b − b̂ 1− ab̂

]
(30)

such that the denoised signal is given by

ŝ[n] = 1− âb

1− âb̂
s[n] +

a− â

1− âb̂
v[n] � αs[n] + εv[n]. (31)

The residual interference-to-signal ratio (ISR) is usually
defined as the expected value of the power of the residual
noise coefficient ε, normalized by the power of the signal co-
efficient α. Under the small error assumption, and assuming
further that the true mixing matrix is well conditioned (the
product ab is far from unity), it can be deduced that α ≈ 1
and

E[ε] ≈ 0, E
[
ε2
] ≈ σ2a

(1− ab)2
, (32)

so that ISR = E[ε2/α2] ≈ σ2a /(1− ab)2.
When such a statistical model is in effect, it becomes

relatively straightforward to use the optimal weight matrix,
which is well known [19] to be given by Wopt = C−1y .
However, since the true correlation matrices are unknown,
the estimated matrices can be used in (25), yielding a sub-
optimal weight matrix. Nevertheless, due to the ergodicity of
the source and the noise processes, the estimated weight is
asymptotically optimal (‘asymptotically’ means here that the
number of segments is fixed and their lengths all tend to in-
finity). The optimality here is in the sense of the resulting
mean square error in estimating a and b which translates di-
rectly into the ISR.

Note, in addition, that whenWopt is used, the expression
in (29) reduces to [FT(φ)WoptF(φ)]−1.

4. DENOISING APPROACH

The BSS approach presented so far is approximately opti-
mal (under several assumptions), but involves an iterative
solution of a nonlinear LS problem. Now we derive a dif-
ferent approach which only involves a linear LS solution. A
comparison between the two methods would be presented
in Section 5. This solution addresses the noise cancellation
problem as a denoising problem, attempting to cancel out
noise terms in the first signal, x1[n]. Again the nonstationar-
ity of the desired signal s[n] is exploited in concert with the
stationarity of the noise v[n].

4.1. Algorithm derivation

To get an estimate of the desired signal, we first define a
noise-only reference signal, u[n],

u[n] � x2[n]− bx1[n]

= bs[n] + v[n]− b
(
s[n] + av[n]

)
= (1− ab)v[n].

(33)

Obviously, u[n] is unavailable since b is unknown. We
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therefore replace b with its estimate b̂. The procedure for es-
timating b will be discussed in the sequel. However, assum-
ing for now that u[n] is available, an estimate of the desired
signal s[n] can be obtained by fixing the coefficient h in the
following expression:

ŝ[n] = x1[n]− hu[n] (34)

such that the power of ŝ[n] is minimized. This dwells on the
fact that s[n] is uncorrelated with v[n] (and hence with u[n]).
Let the output power be defined by

E
[
ŝ2[n]

] = E
[(
x1[n]− hu[n]

)2]
= E

[
x21[n]− 2hx1[n]u[n] + h2u2[n]

]
.

(35)

So,

∂

∂h
E
[
ŝ2[n]

] = 0 =⇒ h = E
[
x1[n]u[n]

]
E
[
u2[n]

] � rx1u
ruu

. (36)

Since rx1u and ruu are not directly available, we will express
them using the input signals’ correlations.

ruu = E
[
u2[n]

] = rx2x2 − 2brx1x2 + b2rx1x1 ,

rx1u = E
[
x1[n]u[n]

] = rx1x2 − brx1x1 .
(37)

Using (33), we note that, indeed, if rx1x1 , rx1x2 , and rx2x2 are
known, then

ruu = (1− ab)2σ2v , rx1u = a(1− ab)σ2v (38)

yielding, h = a/(1− ab), resulting in

ŝ[n] = x1[n]−
(

a

1− ab

)
u[n] = s[n]. (39)

However, since, in practice, the cross and auto correlations
are not known, we should use their estimated values instead,

ĥ = r̂x1u
r̂uu

= r̂x1x2 − b̂r̂x1x1
r̂x2x2 − 2b̂r̂x1x2 + b̂2r̂x1x1

, (40)

where r̂x1x1 = (1/N)
∑

n x
2
1[n], r̂x1x2 = (1/N)

∑
n x1[n]x2[n],

and r̂x2x2 = (1/N)
∑

n x
2
2[n] are the correlation estimates (at

lag zero) taken over the entire observation interval. Zero-lag
correlations are sufficient due to the static mixture frame-
work.

When estimates ĥ and b̂ are used (for h and b, resp.), the
estimated signal is given by

ŝ[n] = x1[n]− ĥû[n]

= x1[n]− ĥ
(
x2[n]− b̂x1[n]

)
= s[n] + av[n]− ĥ

(
bs[n] + v[n]− b̂s[n]− b̂av[n]

)
= (

1− ĥ
(
b− b̂

))
s[n] +

(
a− ĥ

(
1− ab̂

))
v[n]

� α̃s[n] + ε̃v[n].
(41)

The first additive term is (a scaled version of) the desired sig-
nal, and the second term is a residual noise term. This expres-
sion is similar in structure to (31). However, in (31), direct
estimates â, b̂, of both mixing parameters (a, b, resp.), were
used, whereas in (41), a is not estimated directly. Instead, an
external parameter h is introduced and estimated.

Now we turn to the estimation of b. To this end, we
exploit the nonstationarity of s[n] and stationarity of v[n].
Rewrite (33) describing x2[n] as a scaled noisy version of
x1[n]

x2[n] = bx1[n] + u[n] (42)

with u[n] a noise-only term. Given x1[n] and x2[n], it is de-
sired to estimate b. If the noise reference signals u[n] were
uncorrelated with x1[n], then a standard system identifica-
tion estimate b̂ = r̂x2x1 /r̂x1x1 could be used to obtain a con-
sistent estimate of b. Unfortunately, by (33), u[n] and x1[n]
are in general correlated, which would cause this estimate to
be biased and inconsistent. The bias effect can be mitigated
by introducing an extra unknown parameter. To do so, we
divide the observations x1[n] and x2[n] into the segments
introduced in (3). Thus, for the kth segment, we obtain

r̂(k)x2x1 � 1
Lk

Nk∑
n=Nk−1+1

x2[n]x1[n]

= 1
Lk

Nk∑
n=Nk−1+1

(
bx1[n] + u[n]

)
x1[n]

=
(
1
Lk

Nk∑
n=Nk−1+1

x21[n]

)
b +

1
Lk

Nk∑
n=Nk−1+1

u[n]x1[n]

� r̂(k)x1x1b + r̂(k)ux1

= r̂(k)x1x1b + rux1 + ε
(k)
ux1 , k = 1, . . . , K,

(43)

where, r̂(k)x2x1 , r̂
(k)
ux1 , and r̂(k)x1x1 are (the kth segment’s) consistent

correlation estimates (at lag zero) and ε(k)ux1 � r̂(k)ux1 − rux1 is the
zero-mean error in estimating rux1 = E[u[n]x1[n]].

Concatenating (43) for k = 1, 2, . . . , K , we obtain, in ma-
trix form,




r̂(1)x2x1

r̂(2)x2x1
...

r̂(K)x2x1



=




r̂(1)x1x1 1

r̂(2)x1x1 1
...

...

r̂(K)x1x1 1



(

b
rux1

)
+




ε(1)ux1

ε(2)ux1
...

ε(K)ux1




(44)

or, in short form,

z = Qη + e. (45)

Treating (45) as an LS problem in the parameter η, with e a
zero-mean “noise” vector, the WLS estimate of η is given by

η̂ = (
QTWQ

)−1
QTWz, (46)
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where W is a possible weight matrix. The desired esti-
mate of b is given by the first term of η, the second term
could be regarded as a nuisance parameter. Choosing an
asymptotically optimal weight matrix Wopt is discussed in
Section 4.2.

We summarize in Algorithm 2.

(I) Estimate the correlations r̂(k)x1x2 and r̂(k)x1x1 for all segments
k = 1, . . . , K .

(II) Solve the (possibly weighted) LS problem




r̂(1)x2x1

r̂(2)x2x1

...

r̂(K)x2x1



=




r̂(1)x1x1 1

r̂(2)x1x1 1
...

...

r̂(K)x1x1 1



(

b
rux1

)
+




ε(1)ux1

ε(2)ux1

...

ε(K)ux1



.

(III) Define the reference noise signal
û[n] = x2[n]− b̂x1[n].

(IV) Estimate the correlations r̂x1x1 , r̂x1x2 , and r̂x2x2 .

(V) Calculate coefficient

ĥ = r̂x1x2 − b̂r̂x1x1
r̂x2x2 − 2b̂r̂x1x2 + b̂2 r̂x1x1

.

(VI) Reconstruct the signal ŝ[n] = x1[n]− ĥû[n].

Algorithm 2

4.2. Performance analysis and optimal weighting

In this section, we analyze the expected performance of the
suggested denoising algorithm. Using a small-error analysis,
we can write

b̂ = b + εb, ĥ = h + εh, (47)

where εb and εh are zero-mean “small” random variables
such that |εb| � |b| and |εh| � |h|. Using (41), the residual
error is given by ε̃v[n] where

ε̃ = a− ĥ
(
1− ab̂

)
= a− (

h + εh
)(
1− a

(
b + εb

))
= a− h− εh + abh + ahεb + abεh + aεhεb.

(48)

Neglecting the second-order error term εhεb and using h =
a/(1− ab), we obtain

ε̃ = a2

1− ab
εb − (1− ab)εh. (49)

The scaling error in (41) is given by

1− α̃ = ĥ
(
b − b̂

) = −(h + εh)εb ≈ a

1− ab
εb, (50)

where in the last transition, we neglected again the second-
order error term εhεb.

Thus, in order to calculate the residual error energy
and the scaling distortion, we need to calculate the second-
order statistics of εb and εh. Since all the error terms
in the analysis are due to errors in estimating the input
signals’ correlations, we now define the relations between
these segment-wise errors and the error terms of inter-
est.

Now we reemploy the additional assumptions of
Section 3.2, namely, both the signal s[n] and the noise v[n]
are Gaussian, temporally uncorrelated. Consequently, the co-
variance of the kth segment’s estimation error vector

ε(k) �
[
ε(k)x1x1 ε

(k)
x1x2 ε

(k)
x2x2

]T
, k = 1, 2, . . . , K (51)

(which equals the covariance of yk of (13)) is given by Cy,k of
(26), and the covariance of the augmented vector

ε �
[
ε(1)T ε(2)T · · · ε(K)T

]T
(52)

is given by Cy of (27).

The error in estimating η = [
b rux1

]T
using the LS solu-

tion (46) is given by

η̂ − η = (
QTWQ

)−1
QTWe �

[
qT

Q̃

]
e. (53)

Thus, the error term in estimating b is given by this vector’s
first element, namely,

εb = b̂− b = qTe =
K∑
k=1

qkε(k)ux1 =
K∑
k=1

qk
(
ε(k)x1x2 − bε(k)x1x1

)
, (54)

where q1, . . . , qK are the elements of q.
Further, define

A =




L1
N

0 0
L2
N

0 0 · · · LK
N

0 0

0
L1
N

0 0
L2
N

0 · · · 0
LK
N

0

0 0
L1
N

0 0
L2
N

· · · 0 0
LK
N

−bq1 q1 0 −bq2 q2 0 · · · −bqK qK 0




(55)

and let εx1x1 , εx1x2 , and εx2x2 denote the errors in estimating
the complete (over the entire observation interval) signals’
correlations. Then the covariance error of the vector

ε �
[
εx1x1 εx1x2 εx2x2 εb

]T = Aε (56)

is given by Cε = ACyAT . Now the error term εh can be cal-
culated by the following derivation where, for brevity, we
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replaced r̂xmxn and rxmxn ; n,m = 1, 2 with r̂mn and rmn (resp.),

ĥ = r̂12 − b̂r̂11

r̂22 − 2b̂r̂12 + b̂2r̂11

= r12 + ε12 −
(
b + εb

)(
r11 + ε11

)
r22 + ε22 − 2

(
b + εb

)(
r12 + ε12

)
+
(
b + εb

)2(
r11 + ε11

)

≈ r12 − br11 + βT1 ε

r22 − 2br12 + b2r11 + βT2 ε

≈ r12 − br11 + βT1 ε

r22 − 2br12 + b2r11

(
1− βT2 ε

r22 − 2br12 + b2r11

)

=
(
h +

βT1 ε
r22 − 2br12 + b2r11

)(
1− βT2 ε

r22 − 2br12 + b2r11

)

≈ h +

(
β1 − hβ2

)Tε
r22 − 2br12 + b2r11

,

(57)

where

βT1 =
[
−b 1 0 −r11

]
,

βT2 =
[
b2 −2b 1 2

(− r12 + br11
)]

,
(58)

neglecting second- and higher-order terms in all approxima-
tions. Consequently, we identify

εh ≈ βTε (59)

with

β =
(
β1 − hβ2

)T
r22 − 2br12 + b2r11

. (60)

Using (49),

ε̃=ahεb−(1−ab)εh=
[
0 0 0 (ah)

]
ε−(1−ab)βTε�γTε.

(61)
Then the ISR is defined by

ISR = E
{
ε̃2
} = γTCεγ. (62)

As we did in the BSS context, we may, under the same
statistical assumption, employ an asymptotically optimal
weight matrix in the WLS problem (45). Using the identity

ε(k)ux1 = ε(k)x1x2 − bε(k)x1x1 , we can obtain the optimal weight ma-
trix

W =
(
diag

{
Var

(
ε(1)ux1

)
,Var

(
ε(2)ux1

)
, . . . ,Var

(
ε(K)ux1

)})−1
,

(63)
where

Var
(
ε(k)ux1

)
= δTCy,kδ (64)

with δT = [−b 1 0
]
. Since the true correlation terms are

unknown, the estimated terms can be used instead. Note that

this also requires an estimate b̂ of b. Thus, in order to use the
optimal weighting matrix, we may first estimate b using (46)
withW = I (the identity matrix) and then use (63) to obtain
the (asymptotically) optimalW. Note that, as in the BSS ap-
proach, this procedure requires reasonably “good” estimates
in order, for the estimated W to be close to the true optimal
weight. Recall, further, that this weight matrix is only opti-
mal under the assumption that the source and noise signals
are Gaussian, temporally uncorrelated. When this is not the
case, the algorithm can still be applied using eitherW = I or
any other properly calculated weight matrix.

5. PERFORMANCE EVALUATION AND COMPARISON

In this section, we compare the performance of the two
approaches, both analytically and empirically. In addition,
we compare their performance to that obtained by several
other algorithms applied to the same problem. We also pro-
vide empirical results that address the performance degra-
dation in the presence of additional (additive, noncoherent)
noise. Finally, we address the sensitivity of performance to
the Gaussianity assumption by presenting empirical results
for signals/noise with nonGaussian distribution.

The nominal setup used is as follows. All signals involved
are temporally uncorrelated zero-mean Gaussian. We use six
equal-length segments (L1 = L2 = · · · = L6 � L) with signal
powers σ21 , σ

2
2 , . . . , σ

2
7 = 0.1, 0.2, 0.5, 1, 2, 5 (resp.), and with

unity noise power σ2v = 1. The true mixing matrix is

M =
[
1 0.6
1.4 1

]
. (65)

In Figure 2, we present analytical and empirical re-
sults for three algorithms: the optimally weighted BSS al-
gorithm, the unweighted denoising algorithm, and the opti-
mally weighted denoising algorithm. All results are displayed
in terms of ISR versus the entire observation length N = 6L.
The empirical (simulations) results represent averages over
250 trials each. All algorithms were applied to the same data.

The empirical results for our algorithms are seen to co-
incide (asymptotically) with the theoretically predicted val-
ues. As expected, the computationally more intensive BSS
approach outperforms the denoising approach in both its
weighted and unweighted versions. However, this advantage
is more pronounced at the longer observation lengths. At the
shorter lengths, the BSS weighting departs from its optimal
value, and hence, the advantage in performance decreases. As
for the denoising approach, its weighted version attains some
slight improvement over the unweighted version.

We proceed to compare (empirically) the performance of
these algorithms to that of three other algorithms, namely,

(i) a BSS algorithm for nonstationary signals by Pham
and Cardoso [3]: the algorithm is based on a special
form of joint diagonalization of the empirical corre-
lation matrices, and attains the maximum likelihood
(ML) estimate for all unknown parameters. However,
it cannot directly exploit the fact that one of the signals
(the noise) is stationary;
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Figure 2: Empirical and theoretical results for the BSS, denoising
and weighted denoising approaches in terms of ISR [dB] versus the
entire observation length N .

(ii) a least-squares gradient-descent algorithm proposed
by Parra and Spence [7]: this algorithm minimizes
an unweighted least-square criterion using a gradient-
descent approach and, in general, includes parameter-
ization for additive (noncoherent) noise as well. How-
ever, the additive noise parameters can only be esti-
mated when the number of observed signals is at least
four. Since, in our setup, the number of observed sig-
nals is two, we applied a noiseless version of the algo-
rithm, in which the noncoherent additive noises’ vari-
ances are assumed zero. Like Pham’s algorithm, this al-
gorithm does not exploit the stationarity of the (coher-
ent) noise;

(iii) the joint approximate diagonalization of eigenmatrices
(JADE) algorithm (Cardoso and Souloumiac [20]),
which is based on empirical fourth-order cumulant
matrices (estimated over the entire observation inter-
val) and does not take advantage of the nonstationar-
ity. Nevertheless, it can be applied to any BSS prob-
lem as long as no more than one of the sources has a
zero fourth-order cumulant (e.g., is Gaussian). Note
that although both the source and the noise signals
are Gaussian in our case, the source signal appears to
the JADE algorithm as nonGaussian due to its non-
stationarity: the overall empirical fourth-order cumu-
lant would depart from zero, behaving like the fourth-
order cumulant of a Gaussian-mixture distribution.

In Table 1, we present the empirical ISR for all algo-
rithms, averaged over 250 trials and applied to the same
data, generated using the same setup described above, with
N = 996.

The results of the BSS and the denoising approaches are

Table 1: ISR results [dB] attained by different algorithms, all using
the same data with N = 996.

BSS Denoising Wghtd. den. Pham Parra JADE

−34 −27 −28 −34 −23 −23

in accordance with those already depicted (for the sameN) in
Figure 2. As for the other algorithms, it is interesting to ob-
serve that Pham’s maximum likelihood estimate attains the
same performance as the optimal BSS algorithm although it
does not explicitly use the knowledge that the noise is sta-
tionary.3 However, Parra’s ordinary least-squares gradient-
descent algorithm, as well as the JADE algorithm, have at-
tained inferior performance relative to the proposed algo-
rithms. The main reasons for the degraded performance of
the LS algorithm are the suboptimal (uniform) weighting,
combined with the fact that the noise stationarity is unac-
counted for. The degraded performance of JADE could be
easily anticipated from the fact that the nonstationarity is not
exploited.

To further evaluate the behavior of the algorithms under
various off-nominal conditions, we will now present empiri-
cal results for the two following cases:

(1) presence of additive (noncoherent) uncorrelated white
noise, in addition to the coherent noise signal v[n];

(2) nonGaussian source/noise distributions.

In Figure 3, we demonstrate the performance in presence
of noncoherent additive noise for JADE, weighted denoising,
denoising, BSS, and Pham’s algorithm, all for a fixed obser-
vation length N = 996. The measurement model is given by

x1[n] = s[n] + av[n] +w1[n],

x2[n] = bs[n] + v[n] +w2[n], n = 1, 2, . . . , N,
(66)

where w1[n] and w2[n] are white, uncorrelated, Gaussian
noise processes with equal variances σ2w. Results are displayed
in terms of the ISR versus the additive noise variance σ2w. To
generate the signals s[n] and v[n], the same model specified
above was used. Note that the ISR reflects only the separa-
tion performance and not the suppression of the incoherent
noise, which would still be present at the separated outputs,
even if the mixing matrix were perfectly known.

All algorithms are seen to exhibit degraded performance
as σ2w increases. The differences in performance vanish as all
curves converge into one, with the exception of the BSS al-
gorithm which, at high σ2w levels, departs towards further

3This somewhat counter-intuitive property has spurred further study of
performance, which is currently under way. Specifically, it can be shown that
the Cramér-Rao lower bound (CRLB) for this problem is indeed insensitive
to the knowledge that the coherent noise is stationary, provided that no non-
coherent additive noise is present. However, in the presence of noncoherent
additive noise, even with known variance, the CRLB for the case of known
stationarity is lower than the CRLB for the case of unknown stationarity.
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Table 2: ISR results [dB] for denoising.

s[n] Gaussian s[n] Binary s[n] Uniform s[n] Laplace

v[n] Gaussian −27 −27 −27 −26
v[n] Binary −29 −29 −30 −26
v[n] Uniform −28 −28 −28 −26
v[n] Laplace −27 −27 −28 −26

Table 3: ISR results [dB] for weighted denoising.

s[n] Gaussian s[n] Binary s[n] Uniform s[n] Laplace

v[n] Gaussian −28 −28 −28 −27
v[n] Binary −32 −32 −33 −30
v[n] Uniform −30 −31 −30 −29
v[n] Laplace −26 −26 −27 −26

10−4 10−3 10−2 10−1

Additive (incoherent) noise variance σ2w

−35

−30

−25

−20
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0
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B
]

JADE
Denoising
Weighted denoising

BSS
Pham

Figure 3: Empirical results for the BSS, denoising, weighted denois-
ing, and JADE algorithms, in terms of ISR [dB] versus the incoher-
ent additive noise variance σ2

w .

degradation. It is interesting to observe, once again, that the
performance of Pham’s algorithm usually follows that of BSS
rather closely. It is to be noted, however, that unlike Pham’s
algorithm, the BSS algorithm can be easily adjusted to ac-
commodate the additional noise terms by proper parame-
terization thereof. In such a case, it can be expected that its
performance under noisy conditions would improve signifi-
cantly. However, the pursuit of such a modification is beyond
the scope of this paper.

To conclude the simulation section, we explore the ro-
bustness of the algorithms with respect to the source signals’

distributions. Empirical performance (in terms of ISR) is
presented for all 16 combinations of the following four
source/noise distributions (all zero-mean with the prescribed
variances; source distributions are per segment):

(1) Gaussian;
(2) Binary (BPSK-like);
(3) Uniform;
(4) Laplace (double-sided exponential).

No additive (incoherent) noise was added in this experi-
ment. All algorithms used the same data with overall obser-
vation length N = 996. The results for our three approaches
(for all 16 combinations) are summarized in Tables 2, 3, and
4.

Results are seen to be roughly insensitive to the actual
source distribution, with the most notable degradation oc-
curring when the source is Laplace distributed, in which
case the estimation of its correlations becomes more erratic.
Although the optimal weighting we used assumes a Gaus-
sian distribution, departure of the actual distributions from
Gaussianity does not have a severe effect on performance, at
least in these tested cases. Moreover, in some cases, the mis-
matched weighting is compensated for by the improved ac-
curacy in the correlation estimates, yielding improved per-
formance.

6. CONCLUSION

We presented and compared two approaches for the noise
cancellation problem in static mixtures of a nonstationary
desired signal and stationary noise. Both approaches are
based on second-order statistics. However, the BSS approach
requires the solution of a nonlinear WLS problem, whereas
the denoising approach only requires the solution of a linear
WLS problem. Consequently, the performance obtained by
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Table 4: ISR results [dB] for BSS.

s[n] Gaussian s[n] Binary s[n] Uniform s[n] Laplace

v[n] Gaussian −34 −34 −34 −31
v[n] Binary −34 −34 −34 −31
v[n] Uniform −34 −35 −34 −31
v[n] Laplace −36 −36 −36 −34

the BSS approach is superior to that obtained by the denois-
ing approach.

To capture the essence of the different approaches, and to
simplify the exposition, as well as to enable a tractable anal-
ysis of performance, we concentrated on the simple 2 × 2
static-mixture model. While justified in a limited number of
applications, such a model has been the subject of extensive
research in the literature since it serves as a basis for evolving
methods for the more prevalent model of dynamic mixtures.
Indeed, both of the approaches presented in this paper can
be extended and applied in the convolutive case, possibly ex-
pressing similar tradeoffs between computational complexity
and performance.

APPENDIX

MODIFICATIONS FOR THE COMPLEX-VALUED CASE

For the complex-valued case, we assume that both the
source signal and the noise are complex-valued circular ran-
dom processes. The circularity property [13], often assumed
in the context of complex random processes, implies that
E[s[n]s[m]] = 0 and E[v[n]v[m]] = 0 for all n and m. In
other words, we have

E
[
vR[n]vR[m]

] = E
[
vI[n]vI[m]

]
,

E
[
vR[n]vI[m]

] = −E[vI[n]vR[m]
] ∀n,m,

(A.1)

where vR[n] and vI[n] denote the real and imaginary parts
(resp.) of v[n]. A similar property holds for s[n] in each seg-
ment. Note that this implies that the real and imaginary parts
at each time instant n are uncorrelated.

In addition, we assume a properly normalized complex
mixing matrix M(a, b) as in (4), with a = aR + j · aI and
b = bR + j · bI , so these are now four real-valued parameters
of interest, aR, aI , bR, and bI . The other K + 1 nuisance pa-
rameters remain unchanged (since they represent real-valued
positive variances).

The modifications to the BSS approach are as follows: the
segmental correlation matrices are now estimated using

R̂k = 1
Lk

Nk∑
n=Nk−1+1

x[n]xH[n], k = 1, 2, . . . , K, (A.2)

where the superscript H denotes the conjugate-transpose.
With r̂k = vec{R̂k} and y = Dr̂k defined as in (9) and

(13) (resp.), the matrix G(â, b̂) is still defined as in (15), but

now b = [
1 b∗ |b|2

]T
and a = [

|a|2 a 1
]T
. The matrix

H(â, b̂, θ̂) of (18) is now defined as

H
(
â, b̂, θ̂

)

�


σ̂2v 1⊗



2âR
1

0


 σ̂2v 1⊗



2âI
j

0


 ¯̂

θ⊗




0

1

2b̂R


 ¯̂

θ⊗




0

− j

2b̂I




 .

(A.3)

Therefore, the minimization w.r.t. θ̂ still takes the form
of (17), with the T superscript replaced by H . However, the
Gaussian iterations take the augmented form,




â[l+1]R

â[l+1]I

b̂[l+1]R

b̂[l+1]I



=




â[l]R

â[l]I

b̂[l]R

b̂[l]I




+ Re
{
HH

(
â[l], b̂[l], θ̂

)
WH

(
â[l], b̂[l], θ̂

)}−1
× Re

{
HH

(
â[l], b̂[l], θ̂

)
W
[
y −G

(
â[l], b̂[l]

)
θ̂
]}
,

(A.4)

where Re{·} denotes the real part of the enclosed expression.
This is the special form of a linear WLS solution obtained
when using complex-valued measurements and model ma-
trix, while constraining the estimated parameters to be real-
valued.

As for calculating the optimal weight matrix Wopt, the
only modification is to Cr,k, which is now given (still un-
der the assumption of complex circular Gaussian, temporally
uncorrelated source signal and noise) by

Cr,k = 1
Lk

R∗k ⊗ Rk. (A.5)

The matrices Cy,k, Cy , andWopt = C−1y are automatically up-
dated accordingly.

The modifications to the denoising approach are more
simple; naturally, all correlations should be estimated using
conjugation, as indicated in (A.2). The linear LS problem
(45) still holds, so the estimation of the complex value of b
is still given by (46), but with the [·]T (transpose) operation
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replaced by [·]H (conjugate transpose). All other procedures,
including calculation of the optimal weight in (63) and (64),
remain unchanged, provided that (A.5) is used for Cr,k in
(64).
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