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We present an iterative semiblind suboptimal maximum-likelihood sequence estimation (MLSE) method for single-carrier block
transmission over stationarymultipath channels. This suboptimalML detector is based on an iterative least squares with projection
(ILSP) algorithm exploiting both the finite alphabet properties of the transmitted signal and its cyclic prefixed structure in order
to approach ML detection in a cheap way. Since the initial channel estimate is crucial for the convergence speed of the ILSP
algorithm, we propose a new low-complexity stochastic method for providing an initial channel estimate. We therefore rely on
some known symbols that are provided by a variant of cyclic prefix only (CP-Only) transmission, known as the known symbol
padding only (KSP-Only) technique. The resulting channel model is sufficiently accurate to be used as a starting point for the
iterations. The final result is a direct symbol estimation method that is characterised by its low computational complexity and its
promising results in terms of bit error rate (BER).
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1. INTRODUCTION

The constantly increasing need for high data rate transmis-
sion systems has driven the research in broadband com-
munications in the last years. Multipath effects, resulting in
frequency-selective fading, are a major impediment of these
broadband communication systems since they introduce in-
tersymbol interference (ISI), which needs to be tackled by
appropriate techniques. However, these are most often com-
putationally demanding. In this context, block transmission
techniques (multicarrier or single-carrier) based on the use
of a cyclic prefix (CP) have attracted a lot of attention in
the last years for they allow an efficient and computation-
ally cheap ISI cancellation procedure [1, 2]. ISI can be sup-
pressed by a single-tap “frequency-domain” equalization on
blocks of data symbols using FFT and IFFT operations rely-
ing on the fact that the blocks of transmitted data are made
cyclic by the use of a CP, whose length is at least equal to

the channel order. More details on these techniques are pre-
sented in Section 1.1.

In this paper, we consider the case where the transmitter
sends data over an unknown convolutive channel and where
the receiver has no a priori information on that channel. The
problem in this case consists of estimating the transmitted
data without having an explicit channel model. The different
approaches to solving this problem fall under two categories.
The first category of methods aims at computing an equalizer
that will filter the received data in order to cancel the effects
of the convolutive channel. This can be done using blind or
semiblind techniques that either directly search an equalizer
or first compute a channel model that is then used to com-
pute an equalizer. The second category, which is the one that
will be investigated here, aims at maximizing the a posteriori
probability of the transmitted sequence exploiting the finite
alphabet properties of the transmitted signals. These tech-
niques are known as maximum-likelihood (ML) techniques.
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Their main advantage is their performance; when optimal
ML decoding is done, the lowest achievable error floor for the
estimation of the transmitted sequence is obtained. However,
their major impediment is their computational complexity
since most of them use exhaustive or trellis searching tech-
niques in order to estimate the transmitted sequence. Sub-
optimal techniques aim at approaching the ML detector with
a limited computational complexity. The problem of ML es-
timation of data transmitted over an unknown channel and
some recently proposed techniques are briefly presented in
Section 1.2.

1.1. Block transmission techniques

Many different block transmission techniques have been pro-
posed in the last years, and we will briefly describe some of
them here, discussing their compared advantages and draw-
backs. Multicarrier block transmission techniques based on
a CP (i.e., discrete multitone (DMT) techniques, also known
as OFDM (orthogonal frequency division modulation)) per-
form an IFFT at the transmitter after which the CP is added;
the receiver performs an FFT followed by a one-tap fre-
quency domain equalization. These techniques can be used
in combination with carrier loading, which allows the trans-
mitter to optimize the power spectral density (PSD) of the
transmitted signal as a function of the channel (see [1, page
7] and [3]). If the channel is unknown to the transmitter,
however, this loading is not applicable and the performance
of the system becomes very sensitive to deep channel fades
in the frequency domain. A solution that is often used to
reduce the sensitivity to channel fades in the frequency do-
main consists of encoding the data across the tones with the
drawback of an increased complexity yielded by the encod-
ing and decoding operations. Another drawback of classical
DMT is the occurrence of large peaks in the transmitted sig-
nal, known as the peak to average power ratio (PAPR) prob-
lem [4]. In this paper, we consider the case where the channel
is unknown to the transmitter, making carrier loading unap-
plicable. We therefore focus on single-carrier block transmis-
sion techniques based on a CP (i.e., CP-Only techniques), see
[2, page 36] and [5, pages 103–104], where the transmitter
simply adds a CP to every block of data symbols. This solves
the PAPR problem since the transmitted data sequences now
show finite alphabet properties while keeping the advantage
of computationally cheap ISI mitigation. CP-Only can be
seen as a classical OFDM transmission schemewhere the data
are encoded across the tones by means of an FFT. The sensi-
tivity to channel fades in the frequency domain is therefore
reduced by this technique but channel-irrespective symbol
recovery is not guaranteed (if there is a zero on the FFT grid
of the channel). A variant of CP-Only, which has recently
been proposed, is known as the known symbol padding only
(KSP-Only) [6, 7, 8]. A sequence of known symbols is padded
to every block of transmitted data symbols, which makes
the data pseudocyclic and thus allows the same equalization
scheme as in the classical CP-Only context. The known sym-
bols can be further exploited as a training sequence for chan-
nel estimation while the percentage of redundant symbols re-
mains roughly the same. Zero-padding (ZP) techniques [2],

which were also proposed recently, can be seen as a special
case of the KSP-Only techniques where the known symbols
are all set to zero. The advantage of these KSP-Only tech-
niques is twofold: they allow new channel estimation tech-
niques exploiting the knowledge of the padded symbols (see,
e.g., [7]) and they also allow channel-irrespective symbol re-
covery.

1.2. Blindmaximum-likelihood sequence
estimation techniques

The problem of blindly estimating a sequence that was trans-
mitted over a convolutive channel h of order L is given as fol-
lows. Let x be the transmitted sequence and y the received se-
quence. The goal is to find among all possible combinations
of x and h, the pair x̂ and ĥ that yields the highest probability
of observing the received sequence y,

max
x̂,ĥ

p(y|x̂, ĥ). (1)

This maximization problem has to be solved under the con-
straint that the elements of the transmitted sequence belong
to a finite alphabet while the channel coefficients are uncon-
strained. When the noise at the receiver is AWGN (additive
white Gaussian noise), which is a common assumption, this
is equivalent to a joint least squares (LS) minimization prob-
lem

min
x̂,ĥ
‖y − x̂∗ ĥ‖2, (2)

where ∗ denotes the linear convolution operator.
Since this problem is separable in its two variables x̂ and

ĥ, it can be solved in two steps. In a first step, we compute the
LS channel estimate for every possible transmitted sequence
x. In a second step, the value of the cost function (2) is com-
puted for all possible candidates. The joint ML sequence and
channel estimator chooses the pair x, hwith the smallest cost
function.

This exhaustive search procedure is optimal but compu-
tationally prohibitive, its cost being exponential in the length
of the transmitted sequence. Cheaper optimal decoding tech-
niques have been proposed. A first family of solutions pro-
poses iterative algorithms that rely upon an initial channel
estimate. They find the ML transmitted sequence under the
hypothesis that the real channel is equal to the available chan-
nel estimate. The channel is then re-estimated based on the
decoded sequence. These algorithms proceed iteratively until
convergence. The different proposed solutions differ in the
way they estimate the ML sequence. The K-means algorithm
[9] uses the Viterbi algorithm to decode the sequence, while
the EM algorithm [10] computes the likelihoods of all possi-
ble data sequences conditioned on the available channel esti-
mate.

In [11], noniterative blind methods are proposed. A
first proposed optimal technique performs decoding using
Viterbi-related trellis search techniques on several hypothe-
sized trellises. The computational cost of this optimal tech-
nique remains prohibitive enough to discount its use in
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practical systems. A suboptimal blind trellis searched tech-
nique whose complexity is comparable to adaptive Viterbi
decoding with exact channel knowledge was proposed in [11]
as well. Here, instead of retaining a single survivor into each
state as is done in classical Viterbi, the M best paths into a
state are retained. The channel model is then updated for
each of the retained paths as in adaptive Viterbi. Each sur-
vivor path is thus coupled to a channel estimate. The channel
model associated with the path with the lowest metric con-
verges to the real channel model whatever the initial channel
estimate. Here again the computational cost, which is expo-
nential in the channel order, remains problematic especially
in broadband communications where the channels have long
impulse responses.

When ISI is not present in the transmission system, the
problem of blindly estimating the transmitted sequence be-
comes much less complex, thanks to the absence of mem-
ory in the channel. In [12], iterative methods exploiting fi-
nite alphabet properties of the transmitted signals have been
proposed in a MIMO context for such systems. One of these
proposedmethods, known as iterative least squares with pro-
jection (ILSP), approaches ML detection of the transmitted
sequence whilst maintaining the complexity at an acceptably
low level.

1.3. Proposedmethod

In this paper, we aim at performing blind MLSE (maximum-
likelihood sequence estimation) or suboptimal blind se-
quence estimation in the context of multipath channels
whilst maintaining the computational complexity at afford-
able levels. When block transmission techniques using a CP
are used, the ISI is totally cancelled, creating flat-fading chan-
nels in the frequency domain. This property allows us to
use simpler MLSE methods that are designed for flat-fading
channels, but these methods have to be applied in the fre-
quency domain instead of the time domain as it is usually
done.

We use CP-Only transmission techniques rather than
classical DMT in order to reduce the sensitivity of the sys-
tem to the frequency-domain fades of the unknown channel.
To approach MLSE, we propose a novel ILSP algorithm that
exploits both the cyclic prefixed structure of the transmit-
ted signals and their finite alphabet properties. The idea of
combining block transmission techniques with MLSE tech-
niques, designed for flat-fading channels, is not new. It has al-
ready been used in [13], where amodified ILSP procedure for
OFDM systems is proposed. This method reconstructs the
frequency-domain channel matrix from a time-domain esti-
mate of the channel with a limited number of taps. In the al-
gorithm proposed here, this tap constraint on the frequency-
domain channel matrix is relaxed. Experimental results show
that this difference is crucial for the performance of the algo-
rithm, allowing our method to performmuch better in terms
of bit error rates (BER) than the existing one. The reasons for
these improved performances are discussed inmore details in
Section 6.1.

Experimental results show that the starting point of the
iterations is critical for the convergence speed of the ILSP

algorithm. In order to reduce the number of iterations before
convergence, we need a sufficiently accurate initial channel
estimate. We rely therefore on KSP-Only modulation which
is a special case of CP-Only. The knowledge of the padded
symbols allows us to find an initial channel estimate in a
cheap way using a new stochastic method that is described
in this paper. This initial channel estimate is the only reason
for using KSP-Only instead of CP-Only; the ILSP procedure
can be used in a classical CP-Only framework provided that a
sufficiently accurate initial channel estimate is made available
by other means.

We end up with a semiblind iterative suboptimal MLSE
method in the context of CP-Only block transmission over
unknown stationary multipath channels, which is charac-
terised by both a low computational complexity and a high
BER performance.

The rest of the paper is structured as follows. In Section 2,
we present the data model that will be used in this paper.
For the sake of simplicity, we directly present the model for
KSP-Only; the extension to CP-Only is straightforward. In
Section 3, we present the ML detector in the CP-Only con-
text. In Section 4, we propose an ILSP algorithm suited for
this context whose performance approaches the ML detec-
tor. In Section 5, we propose a stochastic method that ex-
ploits the known symbols and provides a sufficiently accu-
rate channel estimate for initialising the ILSP algorithm. In
Section 6, we compare the proposed method with the exist-
ing ones, namely [11, 13]. In Section 7, we present more de-
tailed simulation results, and we finally draw some conclu-
sions in Section 8.

2. DATAMODEL

Scalars are represented with small letters, vectors with bold-
face small letters, and matrices with boldface capital let-
ters. We are working in a block transmission context where
successive blocks of data are transmitted after one another,
forming a long sequence referred to as a burst. A superscript
indicates the block index within the burst; a subscript indi-
cates the time index. Hence, xi is the sequence constituting
the ith transmitted block of the burst whereas xij is the jth
element of the ith data block.

The data model we present describes a known symbol
padding system with ISI. We first define a transmission chan-
nel of order L

h = [h0 · · ·hL]T , (3)

where (·)T denotes transpose and define a training sequence
t of length T ,

t = [t1 · · · tT], T � L. (4)

Let P be the transmitted block size. The sequence of
transmitted data symbols is organised in blocks of length
B = P − T . The nth transmitted data block is defined as

sn = [snB+1 · · · s(n+1)B], (5)

where si is the ith transmitted data symbol.
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The transmitter transmits a burst of � blocks where ev-
ery block is padded with the sequence t. The total transmit-
ted sequence is thus x = [t s1 t · · · t s� t

]
. We consider

the channel to be constant across the transmission of an en-
tire burst. Define the matrix of transmitted data omitting the
first transmitted training sequence as

X =
[
s1T · · · s�T

tT · · · tT

]
. (6)

The received sequence is the convolution of the transmitted
sequence with the channel

yi = h0xi + h1xi−1 + · · · + hLxi−L + ni, (7)

where xi is the ith element of x and ni is the AWGN at the
receiver. The received symbols are organized in � blocks of
length P: yn = [

yT+(n−1)P+1 · · · yT+nP
]
defined as the nth

received block. These blocks are organized in a (P×�)matrix

Y =
[
y1T · · · y�T

]
. (8)

Define the (P × P) circulant channel matrix

Hcirc =




h0 0 · · · 0 hL · · · h2 h1
h1 h0 0 · · · 0 hL · · · h2

. . .
. . .

. . .
. . .

. . .
hL · · · h0 0 · · · 0 0
0 hL · · · h0 0 · · · 0

0 0
. . .

. . .
. . .

...
. . .

. . .
. . .

...
0 · · · 0 hL · · · h0 0
0 · · · 0 hL · · · h0




. (9)

Exploiting the cyclic structure of the transmitted symbols, we
obtain

Y = HcircX +N, (10)

where N is the AWGN matrix. Define the frequency-domain
equivalent of the channel

h f = �P



h
0
...
0


 , (11)

where �P is the P-point FFT matrix. The circulant channel
matrixHcirc is diagonalized by means of an FFT and an IFFT.
This allows us to describe the transmission scheme in a sim-
plified way using FFT and IFFT operations [2]

Y = �PH f �PX +N, (12)

where �P is the P-point IFFT matrix and H f = diag(h f ) is
a diagonal matrix with the frequency-domain description of
the channel on the main diagonal.

Note that the ratio of training symbols over the total
number of transmitted symbols for this KSP-Only context is
equal to L/P when T = L. In a classical CP-Only context, the
percentage of redundant symbols is (L/P)(1 + L/P)−1 which
tends to be L/P as the number of subcarriers increases. This
shows that for a sufficiently large number of subcarriers P,
CP-Only and KSP-Only are equivalent as far as the percent-
age of redundant symbols is concerned. Hence, we do not
waste extra bandwidth using KSP-Only instead of CP-Only
[8].

3. MAXIMUM-LIKELIHOOD SEQUENCE ESTIMATION

The data model shows that the received signals can be mod-
eled as deterministic sequences corrupted by AWGN. The log
likelihood function of the transmitted data is

� = −α− β ln
(
σ2
)− 1

σ2

�∑
n=1

∥∥ynT −�PH f �PxnT
∥∥2, (13)

where α and β are constants, σ2 is the noise variance, and xn

is the nth column of X. The ML detector maximizes � with
respect to the unknown parametersH f and xn, n = 1, . . . ,�,
under the following constraint set.

Constraint set 1 (CS1).

(i) x belongs to a finite alphabet,
(ii) H f = �PHcirc�P whereHcirc is a circulant matrix built

from any unconstrained Lth order channel h in accor-
dance with (9).

This is equivalent to the following minimization prob-
lem.

Cost function 1 (CF1).

min
H f ,X

∥∥Y−�PH f �PX
∥∥2, (14)

under the same constraints. Multiplying both terms by �P

and using the notations X f = �PX and Y f = �PY yields the
following alternative formulation of the ML problem.

Cost function 2 (CF2).

min
H f ,X f

∥∥Y f −H fX f

∥∥2, (15)

with the same constraint on H f , and X f being constrained
by the finite alphabet structure of X. This problem can be
solved using exhaustive search procedures as described in
Section 1.2, the cost of this method being totally prohibitive.

We know that the constraint on H f gives it the structure
of a diagonal matrix with L+1 degrees of freedom.We inves-
tigate what happens if we give H f P degrees of freedom, that
is, if we allow the elements of its diagonal to vary freely.1 The
constraint set becomes as follows.

1This choice of allowing full freedom to the elements of the diagonal of
H f is further discussed in Section 6.1.
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Constraint set 2 (CS2).

(i) x belongs to a finite alphabet,
(ii) H f is a diagonal matrix with unconstrained elements

on the diagonal.

The MLSE problem in our context is thus equivalent to
the following:

(i) solving a minimization problem equivalently ex-
pressed by CF1 or CF2;

(ii) this minimization is either performed under the CS1
or the CS2.

In the latter, we focus on the solution of this problem un-
der the CS2. Since the problem is separable in its two vari-
ables, the optimization can be carried out in two steps [12],
using the two equivalent formulations (14) and (15). We first
solve (15) with respect to H f using (15). Exploiting the new
condition on H f (CS2), we force it to have the desired diag-
onal structure by splitting the problem into P independent
subproblems

min
H f ( j, j)

∥∥Y f ( j, :)−H f ( j, j)X f ( j, :)
∥∥2, j = 1, . . . , P, (16)

where A( j, :) is a shorthand notation for the row vector made
of the jth row of a matrix A. The solution of these subprob-
lems can be expressed as

Ĥ f ( j, j) = Y f ( j, :)X f ( j, :)H
(
X f ( j, :)X f ( j, :)H

)−1
, (17)

where (·)H denotes complex conjugate transpose. Note that
this solution would not be achievable under the initial con-
straint on H f (CS1), all the subproblems being then linked
to one another. We thus see that using CS2 allows us to re-
duce the complexity of the problem. Inserting these results
that only depend on X f and Y f into (14) enables us to find
the optimum sequence by enumerating over all the possible
values for thematrixX, computing the value of the cost func-
tion and choosing the matrix that minimizes this cost func-
tion. This includes the computation of Ĥ f (and thus X f ) for
every possible combination of the inputs. The computational
cost of this method, which is exponential in P, �, and the al-
phabet size, again severely limits its practical interest.

In the noiseless case, the solution to this modified prob-
lem (CS2) and the initial ML problem (CS1) are the same.
When the received sequence is noisy, we cannot guarantee
that the derived solution will be equal to theML solution un-
der CS1. However, we still find the solution of an ML prob-
lem, but with a modified CS2. We therefore propose to clas-
sify this method as a modified MLSE method.

4. ITERATIVE LEAST SQUARESWITH PROJECTION

In the previous section, we derived an expression for a mod-
ified ML detector. The associated minimization problem is
separable in its continuous and discrete variables. In this
section, we apply an ILSP algorithm inspired by [12], that
uses this separation property to approach the solution of
the modified ML problem by iteratively minimizing the cost

functions (14) and (15) for one variable and then for the
other.

Assume that we have an initial channel estimate Ĥ f . We
first minimize the cost function (14) with respect to X with a
fixed Ĥ f ,

min
X

∥∥Y−�PĤ f �PX
∥∥2. (18)

This is equivalent to computing a soft estimate of the trans-
mitted symbols, implicitly performing a classical frequency-
domain equalization on the received symbols

X̂ = �PĤ−1
f �PY. (19)

Note that Ĥ−1
f is a diagonal matrix with Ĥ−1

f ( j, j) =
Ĥ f ( j, j)−1. This step is followed by a finite alphabet projec-
tion of the soft estimates X̂ = FAP(X̂) where FAP denotes the
finite alphabet projection operation.

Note that in the special case of KSP-Only, the last T sym-
bols of every column of X are known in advance and do not
need to be re-estimated at each step. The problem of esti-
mating the transmitted sequence then becomes a true least-
squares problem rather than P equations in P unknowns

Ŝ = �BPĤ−1
f �PY, (20)

where S is the B ×� matrix of unknown symbols and �BP is
the B × P partial IFFT matrix made of the first B rows of �P .

We then use this estimate to minimize the cost function
(15) with respect to H f , where X̂ f = ��X̂ is derived from
the previous step

min
H f

∥∥Y f −H f X̂ f

∥∥2. (21)

Again, we split this into P parallel independent problems to
forceH f to have a diagonal structure

min
H f ( j, j)

∥∥Y f ( j, :)−H f ( j, j)X̂ f ( j, :)
∥∥2, j = 1, . . . , P, (22)

the solution of which is

Ĥ f ( j, j) = Y f ( j, :)X̂ f ( j, :)H
(
X̂ f ( j, :)X̂ f ( j, :)H

)−1
. (23)

Since H−1
f is used in the iterations to estimate X, we can al-

ternatively estimate it directly by solving the following mini-
mization problem:

min
H−1

f ( j, j)

∥∥H−1
f ( j, j)Y f ( j, :)− X̂ f ( j, :)

∥∥2, j = 1, . . . , P, (24)

this is a simple least squares problem whose solution is

Ĥ−1
f ( j, j) = X f ( j, :)Ŷ f ( j, :)H

(
Ŷ f ( j, :)Ŷ f ( j, :)H

)−1
. (25)

Note that this modification implies that we perform an im-
plicit MMSE equalizer estimate rather than a direct channel
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estimate, which also has the benefit of avoiding noise en-
hancement when the next X estimate is performed. ThisH−1

f
is used to compute a new X̂ and we proceed iteratively. The
iterations are stopped when two consecutive finite alphabet
estimates of the transmitted sequences are identical. The con-
vergence point is a minimum of the cost function associated
with the modified ML problem. Note that a fairly good ini-
tial channel estimate is needed to avoid a too large number
of iterations and/or the convergence of the algorithm to lo-
cal minima. In the following section, we therefore provide
a cheap channel estimation technique for initializing the al-
gorithm which allows this iterative procedure to converge to
minima that are close or equal to the global minimum con-
taining the ML sequence.

An important advantage of this ILSP method is its low
computational complexity. At every iteration, one symbol
estimation step and one channel estimation step are per-
formed. The complexity of the symbol estimation step is
�(�P log(P)). The complexity of the channel estimation
step is �(�P log(P)) including the computation of Y f from
Y. The total complexity of the proposed method is thus
�(log(P)) per symbol as well. Unlike existing methods, the
complexity of the proposed one is independent from the
channel order and grows only linearly with the length of the
transmitted sequence.

The use of an iterative least squares with enumerations
algorithm [12] is an alternative solution to ILSP that always
converges. However, in our context, this ILSE procedure has a
complexity�(2P) whichmakes it unaffordable formost prac-
tical systems where the number of subcarriers is large. For
a practical system with 64 carriers using BPSK modulation,
there are in total 1.84×1019 different combinations that have
to be enumerated. This approach will therefore not be devel-
oped here.

5. INITIAL CHANNEL ESTIMATE

Define ynT as the (T +L)-long vector of received samples cap-
turing all the energy of the nth transmitted training sequence

ynT =
[
y(n−1)P+1 · · · y(n−1)P+T+L

]
, (26)

where n = 1, . . . ,� + 1. Note that there are � + 1 such vec-
tors. Define Tn as the (T + L)× (L+ 1) matrix of transmitted
symbols that contribute to ynT . In the case where L = T , we
have

Tn =




t1 sn−1B · · · · · · sn−1B−L+1

t2
. . .

. . .
...

...
. . .

. . .
...

tT · · · · · · t1 sn−1B

sn1 tT · · · · · · t1
... sn1 tT · · · t2
...

...
. . .

. . .
...

snL snL−1 · · · sn1 tT




. (27)

Using (7), we can express ynT as

ynTT = Tnh + nnT , (28)

where nn is the AWGN vector.
This expression contains both deterministic and random

variables. If we look at the expected value of ynTT assuming
that E{sij} = E{ni} = 0 for all i, j, which is the case if the
noise is zero-mean and if the data symbols are equiprobable,
(28) reads

E
{
ynTT
} = �h, (29)

where

� = E
{
Tn
} =




t1 0 · · · 0 0

t2 t1
. . .

...
...

...
. . .

. . .
...

tT · · · · · · t1 0
0 tT · · · · · · t1
...

. . .
. . . t2

...
. . . tT

...
0 0 · · · 0 tT




. (30)

Define the average value of ynT as

yT = 1
� + 1

�+1∑
i=1

yiT . (31)

It is clear that lim�→∞ yT = E{ynT}, and we therefore use it as
an approximation of E{ynT} even with a finite �. We can thus
write

yTT � �h, (32)

fromwhich we derive a channel estimate based on the knowl-
edge of the training symbols

ĥ = (�H�
)−1

�HyTT . (33)

This channel estimate is presented here as a method for
initializing H f in the ILSP procedure. Experimental results
show that this initial estimate yields good performance of
the algorithm, dramatically reducing the number of itera-
tions needed to reach convergence. While any other initial
channel estimate can be used as a starting point for the itera-
tions, the advantage of this one is its very low computational
complexity.

6. COMPARISONWITH EXISTINGMETHODS

6.1. ILSP for OFDM systems

In [13], an ILSP procedure for joint blind estimation of chan-
nel and data symbols in OFDM systems is proposed. Like in
our method, the data are organised in blocks of B symbols
padded with T known symbols with the condition T � L.
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The known symbols are set to zero in this case. An IFFT is
then computed on the data blocks before transmission and
no CP is added. This transmission scheme makes it possible
to avoid inter block interference by removing T samples at
the receiver. The system can be described with a matrix for-
mulation similar to (10) where Hcirc is replaced by some ap-
propriate matrix A. This channel matrix A is directly derived
from the time-domainmodel of the channel h. The proposed
detection algorithm starts with an arbitrary estimate of the
channel matrix A. Based on this channel estimate, a soft esti-
mate of the transmitted sequence is computed, followed by a
hard decision. Based on this sequence estimate, the channel
matrix A is re-estimated. We could decide to start the next
iteration with this new channel matrix estimate. However,
the fact that the channel matrix is derived from an Lth order
channel model can be seen as a constraint on the structure of
A. To fulfill this constraint, [13] seeks the Lth order channel
model that is the best LS fit to the estimated channel ma-
trix. A new channel matrix is then computed based on this
estimate of h. The iterations proceed with this last channel
matrix estimate.

Now, we compare this method with the one we propose.
First, we slightly modify our transmission scheme by set-
ting the padded sequence to zeros: t = [

0 · · · 0
]
. This

modification makes our transmission scheme the exact CP-
Only counterpart of the proposed OFDM scheme. This mod-
ification makes the initial channel estimate procedure de-
scribed in Section 5 unapplicable. As a consequence, our it-
erations are started with random channel estimates. If the
random channel estimate is too far from the real chan-
nel, the method may converge to irrelevant local minima.
When a bad local minimum is reached, we thus restart
the iterations with another random channel estimate un-
til a good convergence is achieved. As a consequence, the
total number of iterations needed to converge is largely
increased.

As mentioned earlier, the most important difference be-
tween this OFDM method and the one we propose resides
in the constraints that are put on the channel matrix. In the
OFDMmethod, the A channel matrix is forced to be derived
from an Lth order channel model, allowing only L+1 degrees
of freedom to the channel matrix. If this constraint is relaxed,
A has B2 degrees of freedom and the convergence properties
of the iterative algorithm become erratic because the prob-
lem is under-constrained. In the proposed method, we could
have decided to put an equivalent constraint on H f by forc-
ing it to be the frequency-domain description of a general
Lth order channel, allowing L + 1 degrees of freedom to the
channel matrix. However, in order to reduce the computa-
tional complexity of the algorithm, we decided to relax this
constraint on H f , replacing it by the constraint of having a
diagonal structure. This increases the number of degrees of
freedom on H f to P instead of the L + 1 offered by the pre-
vious constraint. Note that this is still much less than the P2

degrees of freedom we would have had ifH f had been totally
unconstrained.

Experimental results, that are presented, further show
that relaxing this Lth order time-domain equivalent channel

constraint on the channel matrix yields spectacular improve-
ments in terms of BER. Next we give an intuitive explanation
for these improved performances.

When blindMLSE is performed by exhaustive search (see
Section 1.2), the cost function (2), (14), or (15) is minimized
for every possible input sequence. Iterative methods avoid
this computationally prohibitive exhaustive search by only
considering a few selected candidates among all the possi-
ble sequences. The general procedure is as follows: we start
with an initial sequence candidate; the LS channel model as-
sociated with this sequence candidate is then computed (this
LS channel model is also the ML channel model). The next
step consists in selecting a new sequence candidate under the
hypothesis that the provided channel model is exact. Finally,
the best proposed sequence is selected (the one with the low-
est cost function). The technique that is used to select new
candidate sequences is crucial for the performance of the it-
erative methods. Only the candidates selected by this tech-
nique will be considered for estimating the transmitted se-
quence. For instance, the K-means algorithm [9] performs
ML detection using the Viterbi algorithm under the hypoth-
esis that the provided channel model is exact in order to se-
lect new candidates. The selection procedure used in the ex-
isting ILSP method for OFDM systems implicitly performs
a zero-forcing (ZF) equalization of the estimated channel.
The best possible candidate is obtained performing such a
ZF equalization with the real channel model. However, ZF
equalization procedures are known to have a poor perfor-
mance for ill-conditioned channels and low SNRs. This poor
selection method severely limits the performance that could
possibly be achieved by suchmethods. The proposedmethod
behaves a bit differently. As we let the iterations run, H f

converges to the frequency-domain diagonal matrix that will
best project the received sequence onto the known finite al-
phabet of the transmitted sequence. TheH f that is computed
at each step is thus a sort of frequency-domain best fit be-
tween the hypothesised input and the received noisy channel
output, instead of theML channel model for the correspond-
ing input sequence that is usually computed. The noise ef-
fects are implicitly included in the computed H f since its es-
timate is based on noisy data observations. We end up with
a frequency-domain MMSE estimator that generates much
better candidate sequences than the existing ZF sequence es-
timator. Note that it would be impossible to find this MMSE
estimator if H f was constrained according to CS1. Thus, us-
ing CS2 rather than CS1 not only allows to reduce the com-
plexity of the method, but also finds better candidate se-
quences, and thereby increases the performance of the algo-
rithm.

In order to illustrate this discussion, we performed sim-
ulations comparing the proposed method with the existing
OFDM one. As mentioned earlier, the padded symbols were
set to zero and the iterations were started with random ini-
tial channel estimates for our method, the initial channel es-
timate for the OFDMmethod being set to the identity matrix
as recommended by the authors.

In a first experiment, we compare the OFDM method
with a modified version of our algorithm that uses the initial
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Figure 1: BER versus SNR for the OFDM ILSP method (upper
line), our method under the traditional constraint set (CS1, mid-
dle line), and our method with the modified constraint set (CS2,
lower line).

CS1 rather than the modified one. We thus perform an LS
estimation of the time-domain channel model h at each it-
eration. We then perform an implicit ZF equalization on the
received symbols in order to find the next candidate input
sequence. This CS1 method slightly performs better in terms
of BER than the existing ILSP method for OFDM. The only
reason for this is that the proposed method is a CP-Only
method, it is thus less sensitive to the frequency-selectivity of
the transmission channel than the existing OFDM method
(see discussion in Section 1.1).

In a second experiment, we relax the constraint on
H f , only forcing it to have a diagonal structure and ap-
plying the second set of constraint CS2 as we did in the
rest of the paper. This results in much better BER perfor-
mance than in the previous experiment. Since the prob-
lem is now under-constrained, the convergence properties
of the algorithm get much worse than the previous case, re-
quiring many more iterations and initial channel guesses to
reach the optimum. Note that if known symbols were to
be used like we initially proposed, the convergence would
not be problematic anymore since the initial starting point
would then be accurate enough to achieve fast and cheap
convergence.

The results are presented in Figure 1 where the achieved
BERs are shown for different SNRs. The experiments were
performed on a set of 200 different realizations of a first or-
der Rayleigh fading channel using BPSK signaling. We ran
the three proposed methods on the same data sequences and
noise realizations. The experiments were performed with a
block length � = 100 and 64 subcarriers. The upper line is
the BER obtained with the existing OFDMmethod. The sec-
ond curve is obtained with our modified method. The lower
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Figure 2: BER versus SNR for the trellis searched method (full line)
and our iterative method (dashed line).

curve is obtained with our method when H f is only con-
strained to have a diagonal matrix structure.

6.2. Trellis searched blind equalization

In Section 5, we have seen how relaxing the constraint on
H f allows our method to reach high performance. In this
section, we investigate how the resulting iterative method
compares with existing suboptimal blindMLSEmethods.We
chose to compare our method with a trellis searched blind
equalization method that was first proposed in [11], which
approaches blind ML decoding whilst keeping the compu-
tational complexity at a reasonable level. This method was
already presented in Section 1.2. The KSP context we are
working in allows us to make a few changes, lowering both
its computational complexity and implementation cost. In
[11], the M best paths into a state are retained instead of
one as done in the classical Viterbi algorithm. The main rea-
son for this is the absence of a reliable initial channel esti-
mate. In the context of this paper, a quite accurate initial
channel estimate is available exploiting the known symbols
of the transmitted sequence (see Section 5). This allows us
to retain only one surviving path into each state. Another
feature of interest which is offered by the known padded se-
quence is that it forces the trellis initialization and termina-
tion. At the beginning and the end of a transmitted block,
the channel memory is filled with the training sequence that
is padded to the blocks of data symbol. This allows us to
perform a block per block detection without having to re-
tain the trellis metrics and surviving path between different
blocks.

The results are presented in Figure 2 where the BERs
achieved for different SNRs are shown. The experiments were
performed on a set of 200 different realizations of a third-
order Rayleigh fading channel using BPSK signaling. We ran
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Figure 3: BER versus SNR for different burst lengths (BLs).

the different methods on the same data sequences and noise
realizations. The experiments were performed with a block-
length � = 100 and 64 subcarriers. The two methods show
similar performance in terms of BERs. However, simulations
showed that the proposed method requires much less com-
puting power than the trellis searched one. As the channel
order increases, the complexity of our method remains the
same whilst the complexity of the trellis method grows expo-
nentially.

7. SIMULATION RESULTS

In this last section, we investigate the performance of the pro-
posed method for higher-order channels. We also study the
impact of the burst length � both in terms of performance
and complexity. We present simulation results for Rayleigh
fading channels with L = 5, T = 5, and P = 64. The simu-
lations were performed using BPSK modulation. We used a
large number of randomly generated Rayleigh fading chan-
nels and approximately estimated 107 data symbols for each
point of the graph.

Figure 3 shows the BER for the proposed method as a
function of the SNR. The different curves show the results
for different values of the burst length �. The lower curve
shows the theoretical BER floor for ML decoding of BPSK
signals that are transmitted over an Lth order Rayleigh fad-
ing SISO channels [14, page 955]. The upper curve shows the
BER obtained with classical ZF equalization in the frequency
domain assuming perfect channel knowledge.

The achieved BER approaches the MLSE limit as �
increases. This is probably because the curve of the cost
function gets smoother as the number of data symbols in-
creases, which keeps the algorithm from getting stuck in local
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Figure 4: Number of iterations versus SNR for different burst
lengths (BLs).
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Figure 5: BER versus SNR for increasing numbers of iterations.

minima or because the initial estimate becomes more accu-
rate.

Figure 4 shows the average number of iterations that were
required for the algorithm to converge. This number is main-
tained at a quite low level thanks to the good initial channel
estimator. This is especially true for high SNRs. It should be
noted that large �’s, which yield better BER performance,
require more iterations, especially for low SNRs.

Figure 5 shows the evolution of the BER performance as
the number of iterations increase. The upper curve shows the
performance after one iteration, the second curve shows the
BER obtained after two iterations, and so on. The experi-
ments are performed on third order channels with a block
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length � set to 100. We see from these experiments that most
of the gain is achieved after four iterations. Further itera-
tions still improve the BER but only in a marginal way. Thus,
this shows that a very small number of iterations is re-
quired in order to approach closely the optimal BER for this
method.

8. CONCLUSIONS

The contribution of this paper is twofold. First, a new semi-
blind iterative modified MLSE method for CP-Only trans-
mission over stationary multipath channels has been pro-
posed. This method achieves a very low BER, approaching
the ML sequence estimate while maintaining the computa-
tional complexity at very low levels.

Second, a new stochastic channel estimation method was
proposed which can be used in a KSP-Only context. This
method provides a sufficiently good channel estimate to ini-
tialize the iterative algorithm. Its main advantage is its low
computational complexity.
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