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This paper presents a novel technique for simplifying a triangulated surface at different levels of resolution. While most existing
algorithms, based on iterative vertex decimation, employ the distance for error metric, the proposed algorithm utilizes an edge
criterion for removing a vertex. An interior angle of a vertex is defined as the maximum value of all possible angles formed
by combinations of edges connected to a vertex. Since the surface curvature examined with the interior angle provides more
information for decision of vertex removal than the conventional distance measure, the proposed algorithm can approximate
the surface with less computation. The height of a triangle, which is formed by the pair of edges, is also used for an additional
constraint. The computational complexity can thus be greatly alleviated to logarithmic scale from the exponential scale required
for the conventional algorithms, while yielding the comparable error level.
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1. INTRODUCTION

Detailed mesh data models, obtained from range scanning
systems, are too dense for practical applications. Transmis-
sion and storage requirements of such 3D graphic models are
very demanding, due to the large amounts of data [1]. While
rendering performance is continually improving, further im-
provement in performance could be possible by adapting the
complexity of a model to its contribution to the rendered im-
age. The ideal solution will efficiently determine the coarsest
model, while retaining the perceptual image qualities.

One common heuristic technique is to author several ver-
sions of a model at various level of detail (LOD); a detailed
triangle mesh is used when the object is close to the viewer,
and coarser approximations are substituted as the viewing
distance increases. The LOD assigns multiple models vary-
ing in resolution for an object. Thus, virtual reality (VR) ma-
chines can render objects in a virtual world according to their
proper resolution, without displaying all the polygons in full
detail.

The multiresolution modeling, motivated by such re-
quirements, approximates high-density models nearly indis-
tinguishably with fewer faces for rendering efficiency [2].

This is accomplished by iteratively removing vertices from
original faces that will not significantly degrade the global
shape of the model. The distance from the original surface
to the reformed one usually represents the error caused by
removing each vertex. Most existing algorithms mainly dif-
fer in their order of choosing a vertex for removal. However,
heavy computation is required for estimating the consequen-
tial errors caused by removing a vertex. These approaches
cannot provide much information about the surface, while
they can be implemented easily. Edge contraction as well as
vertex decimation, to be introduced in Section 2, falls into
this category. Edge contraction collapsing vertices, lying on
both sides of an edge, lacks diversity in the simplification of
a given region, because pulling both ends of an edge to the
middle is the only required operation.

In this paper, we focus on introducing a simple primi-
tive for vertex decimation that could be implemented with-
out heavy computational burden. By evaluating the surface
curvature with edge or face information, better results could
be obtained, since the local curvature is the most impor-
tant information for decimation. An algorithm utilizing the
angle between the faces has already been reported [3]. When
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the surface curvature of adjacent triangles are evaluated and
sorted to collapse the centering triangle’s three vertices to a
single point, all regions connected are affected, resulting in
significant variations in surface structure.

The edge, on the other hand, contains enough—if not
complete—information about the local surface surrounding
a vertex, while keeping the variation small. The surface in-
formation can be easily obtained by evaluating the interior
angles of the surrounding edges. Hence, by adopting an edge
as a primitive, a vertex to be removed can be selected quickly,
reflecting the surface information as well. While the exist-
ing algorithms consume much time in whether or not to re-
move a vertex by actually removing and evaluating the re-
sulting error, the proposed approach works deterministically
by removing vertices in the order of their height and angle
without further analysis. In addition, by filling the hole with
Delaunay triangulation, we can give more degree of freedom
than the conventional edge collapse approaches in the retri-
angulation of simplified area. Therefore, both the computa-
tional load and surface estimation errors can be reduced by
utilizing the edge information.

2. PREVIOUS APPROACHES INMESH SIMPLIFICATION

The approaches to be introduced are minimum number
vertex-based approximations. For this kind of the approx-
imation problem, we consider the given error bound ε.
Then the objective is to minimize the number of vertices
such that no point of the approximation is further away
than ε from the input model [4]. As will be discussed in
Section 2.1, most approaches rely solely on the vertex er-
ror with perhaps one or more additional constraints. This
can only give obscure information about the surface to be
approximated, yielding to a simplified object whose errors
are minimum in numeric domain only, which is not visually
optimum.

2.1. Vertex decimation

Vertex decimation is an iterative surface simplification ap-
proach [5, 6, 7]. In each step, when a vertex is selected for
removal, all faces adjacent to that vertex are removed from
the model, then the resulting hole is retriangulated. Because
the main purpose of these algorithms is to reduce the den-
sity of acquired meshes, we should be careful to preserve the
topology.

One of the first iterative mesh simplification algorithms
was proposed by Lorensen et al. [5], in which the vertices
are removed from the mesh, and the local neighborhood sur-
rounding the point is retriangulated on the local plane of the
vertex. A point is removed when the distance to the best-fit
plane of the surrounding point is small. All vertices with an
error that is less than a threshold and satisfying topology pre-
serving condition, are removed. Since primitives are not or-
dered for decimation, a vertex with greater error may be re-
moved first.

Soucy and Laurendeau [6, 7] presented a sequential op-
timization algorithm, in order to remove the vertex that
minimizes the retriangulation error after each iteration. The

Edge collapse Vertex decimation

Figure 1: Comparison of freedom of retriangulation between edge
collapse and vertex decimation.

purpose of the sequential algorithm is to remove the maxi-
mum number of vertices, while keeping the triangulation er-
ror as low as possible. The equi-angularity of surface trian-
gulation is optimized in 3D space throughout the sequential
process, by using an unconstrained Delaunay triangulation
algorithm [8]. The main disadvantage of these algorithms,
however, is that the cost of computation is very expensive.
Since it needs to evaluate all errors from previously removed
vertices, the computational complexity increases as the pro-
cess goes on. In general, the computation is proportional to
the exponential scale.

2.2. Edge contraction

An edge contraction takes two endpoints of a target edge,
moves them to the same position, links all the incident edges
to one of the vertices, deletes the other vertex, and removes
any faces that have degenerated into lines or points. These
algorithms iteratively contract the edges of the model. The
primary difference lies in how to choose the particular edge
to be collapsed [9, 10, 11].

Guéziec’s [9] mesh simplification algorithm improves
Schroeder’s algorithm in many ways. Guéziec employs edges
as the mesh primitive and edge collapse to eliminate retrian-
gulation from the mesh simplification algorithm. The edges
are ordered based on edge length, and a single pass through
the edges is performed. During edge collapse, a new vertex
is created. As in most approaches, Guéziec’s simplification
method bounds the total change in mesh shape. However,
mesh shape is bounded using a complex construction called
a tolerance volume, whose update requires a dynamic pro-
gramming approach. Furthermore, Guéziec’s algorithm can-
not explicitly control the resolution of the generated meshes
and cannot handle the vertices along the boundary of a mesh
to prevent shrinking during simplification.

Hoppe et al. [10] iteratively optimizes an energy func-
tion over a mesh to minimize both the distance of the ap-
proximating mesh from the original, as well as the number
of approximating vertices. And it is based on edge collapse,
edge swap, and edge split to iteratively refine an initial mesh
that is close to a set of 3D data points. Mesh optimization
can handle free form as well as polyhedral objects. Mesh op-
timization requires three nested loops and is subsequently
quite slow in computation, but can produce very concise and
accurate meshes. However, the edge collapse lacks versatility
in the selection of collapsing point by limiting it to lie in the
center of two end points to be collapsed. Figure 1 compares
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the degree of freedom for retriangulation between edge con-
traction and vertex decimation approaches.

2.3. Remarks

This section presents several vertex-based multiresolution
modeling techniques, each of which has its own input cri-
teria and advantages or disadvantages. The vertex-based al-
gorithm is mainly based on vertex decimation and edge con-
traction approaches. Both evaluate the resulting error (or en-
ergy functions) caused by removing each vertex, then de-
cide whether or not to allow the decimation (contraction).
This error estimation should be repeated after each iteration,
making it computationally expensive.

In addition, a face-based approach, utilizing the surface
curvature between adjacent triangles, is not adequate for pre-
serving topology, since it affects unnecessary larger area, in
order to preserve the triangular structure. In this paper, an
attempt is made to utilize both the curvature and the dis-
tance (error) information, while preserving the topology and
yielding small numerical errors.

3. EDGE-BASEDMESH SIMPLIFICATION

Our main aim is confined to vertex decimation-based mul-
tiresolution modeling, on the notion that vertex decimation
guarantees zero error on remaining vertices, because it does
not move vertices’ position. Among the well-known vertex
decimation-based algorithms, Soucy’s vertex removal algo-
rithm could be one of the best approaches, since the result-
ing error by removing a vertex is re-calculated and sorted
after each iteration. Although Soucy’s method seems to be
reasonable at each step, it also cannot provide the global op-
timal solution for removing a given number of vertices for
minimum error. In addition, the computational complexity
is very expensive, since the error evaluation is required for
every iteration.

Soucy’s approach can be classified as the distance-based
vertex removal. However, the distance itself may not be a
good primitive for curvature estimation in surface simpli-
fication. The proposed approach is based on simple notion
that high curvature regions are preserved and low curvature
regions simplified. Therefore, by using both curvature and
distance as primitives, better results could be expected.

3.1. Edge-based vertex removal algorithm

The proposed edge-based vertex removal algorithm utilizes
curvature and distance information for evaluating the se-
quence of reduction. An angle between adjacent edges pro-
vides an approximate curvature of the surface lying on that
edge pair. An interior angle of a vertex is defined as the maxi-
mum value of all possible angles between edges connected to
a vertex.

In Figure 2a, a vertex in the center is connected by six
neighboring vertices to form a hexagon when seen from
above. If the interior angle between a pair of edges is close
to 180◦, it can be assumed that this pair may not distort
the global shape significantly, when substituted by a single

(a) Original edge pair. (b) Merged edge pair.

Figure 2: Removal of a vertex lying on a semi-straight edge pair.
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Figure 3: Histogram of interior angles.

edge. Hence, the vertex in the center qualifies to be in the
queue of removal. Figure 2b shows the vertex removing and
re-meshing by Delaunay triangulation. In this case, a pair of
edges whose angle is close to 180◦ is replaced by a single edge
drawn in thick line, then re-meshing procedure is performed
on both sides of the edge. In order to justify the assumption,
in our approach, the statistics of the interior angle distribu-
tion of the following 3D data are considered.

(i) The Fan, Face, and Knot data which are acquired from
the STL objects library at ftp://fantasia.eng.clemenson.edu/
SLA/STL objects.

(ii) The Cow data which was acquired from http://
almond.srv.cs.cmu.edu/afs/cs/user/garland.

Figure 3 shows the ratio of vertex number, revealing that
more than 98%, 87%, 99%, and 100% of vertices form an-
gle pairs that yield larger angles than 160◦ for Fan, Cow,
Face, and Knot, respectively. This observation justifies the as-
sumption of vertex removal based on edge angles, because
great portions of edge pairs are indeed almost a straight line.
Hence, the angle threshold which can be controlled by the
user, is an important parameter in the proposed algorithm.

ftp://fantasia.eng.clemenson.edu/SLA/STL_objects
ftp://fantasia.eng.clemenson.edu/SLA/STL_objects
http://almond.srv.cs.cmu.edu/afs/cs/user/garland
http://almond.srv.cs.cmu.edu/afs/cs/user/garland
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Figure 4: Initial triangulation of a dense range data.

However, the proposed algorithm includes a retriangu-
lation process that may not preserve the surface contour of
original model when applied inappropriately. Fortunately,
the merged edge prevents this variation by constraining the
area of retriangulation. While the previous algorithms retri-
angulates the whole area of vertex decimation, the proposed
algorithm divides the area by two with the merged edge ly-
ing across it, constraining the region of retriangulation into
smaller parts. Detailed description is presented in the follow-
ing subsection.

There would be many retriangulation solutions, depend-
ing on the number of edges linked with the vertex. In ad-
vance, it is necessary to examine the distribution of edge
numbers connected to a vertex. Normally, a dense range data,
acquired from laser scanners, usually form a regular grid
structure. The surface triangles can be easily made, by sim-
ply connecting vertices in horizontal and vertical directions
to form a quadrangle, and by adding a diagonal line to di-
vide this quadrangle into a triangle. An example is illustrated
in Figure 4. Thus, it is easy to show that a vertex on a reg-
ular grid have six adjacent vertices connected by an edge.
Experimentally obtained distribution of a connected num-
ber of edges agrees to our expectation. The number of con-
nection exhibits a Gaussian-like distribution with mean ≈ 6
as shown in Figure 5.

3.2. Edge-constrained retriangulation process

In large, the retriangulation process consists of two steps, de-
pending on the adjacency of edge pair. The first is when the
pair is not adjacent, and the other is when the edges are right
next to each other. We begin with the adjacent pair, provid-
ing Figure 6 for visual demonstration of the following de-
scriptions. The adjacent pair drawn in thick lines in Figures
6b, 6d, and 6e shall be merged into an outer boundary edge,
which is referred to as a boundary condition, denoted by “b.”
The boundary condition occurs quite often, due to the recur-
sive nature of the proposed approach. The problem of how
the holes in Figures 6b, 6d, and 6e should be re-meshed by
triangles is intensively studied by [7]. The main approach is
filling the hole with Delaunay triangles which contains the
most equi-angular set of triangles [12]. This criterion avoids
long narrow triangles that are numerically unstable. A sim-
ple algorithm introduced by Sibson [8] iteratively searches
for adjacent triangles and swaps the diagonal (common edge)
eventually converging to a Delaunay triangulation of the data
points. Here, we use the interior angles of the triangles in 3D
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Figure 5: Histogram of edges linked to a vertex.

space as a metric for equi-angularity test, which is referred to
as 2 1

2D triangulation [6].
The nonboundary conditions are the dominating events

in the retriangulation process. Figure 6f of “Case 6” is a good
example of the nonboundary condition. When the centroid
is removed and the thick edge pair is substituted by a sin-
gle edge, two areas remain to be retriangulated, which is sent
recursively back to “Case 4b,” respectively. Then, “Case 4b”
retriangulates each region with iterative edge swapping oper-
ation of Sibson’s. In Figure 6a, “Case 3” is actually a special
case where the elimination of the centroid does not depend
upon the angle, because there is no angle to compare with.
Since we have focused the proposed algorithm with an addi-
tional distance criterion described in Section 3.3, no further
manipulation of data is necessary, except for the deletion of
the centroid from data list.

3.3. Enhancement with additional constraint

The approach discussed in Section 3.2 might not provide the
satisfying results, because the proposed approach solely fo-
cuses on fast algorithm for vertex removal. However, it is
worthy to note that there are long edges still abundant in the
reduced model. Thus, a criterion to reduce the long edges
should be considered to enhance the overall performance.We
consider a height parameter δ for the angle criterion when
the interior angles are pre-calculated. As depicted in Figure 7,
the height parameter is the height of a triangle made of two
points at the end of each edge and the vertex in the center.
As mentioned previously, “Case 3” is merged if the distance
from the vertex to the surrounding triangle is less than the
threshold δ.

The proposed algorithm works unsupervised with the
maximum threshold height δ as the criterion for termina-
tion. It works as a double nested loop where the outer loop
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(a) Case 3. (b) Case 3b.

3b 3b

(c) Case 4. (d) Case 4b.
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4b 4b
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Figure 6: Classification of the retriangulation process.
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Figure 7: Additional height constraint δ.

increases the height λ from 0 to δ, while the inner loop de-
creases the angle θ from 180◦ to θmin. Thus, an edge pair
with larger interior angle, has a priority when two or more
edge pairs exist having the same height. When the minimum
value (θmin) of the inner loop is set to zero, small eruptions
on the surface may be deleted. This is absolutely normal in
global curvature sense, since small eruptions on a surface will
not be seen from a distance. However, to preserve these fea-
tures, we only need to increase θmin in the inner loop from
zero to higher value. The experiments show empirically that
θmin = 150◦ is sufficient for this purpose.

Swapping the outer and inner loops in the proposed al-
gorithm may seem interesting. This can be reduced to the
fundamental question of whether an edge pair with large in-
terior angle has priority over the other edge pair which has
the same height λ, but has smaller interior angle. It is con-
cluded that the problem should be examined over the area
affected by removal. Removal of pair with larger interior an-
gle will have greater effect on neighboring regions which is
undesirable in mesh simplification. Therefore, the swapping
of loops is excluded from consideration.

3.4. Synthesis

The whole process is summarized in Figure 8. As the data is
loaded, where the height threshold δ, interior angle θ and
height parameter λ are set to 180◦ and 0, respectively. The
outer loop increases λ from zero to δ, while the inner loop
decreases θ from 180◦ to θmin, which is chosen to be 150◦ in
the experiments. After the inner loop has completed search-
ing and removing vertices by decreasing θ, it is reset to 180◦

and λ is increased by adding previously defined ∆λ = δ/k
to λ. We employ this method to limit the iteration of outer
loop to k times. Sparse interval for λ will prevent the inner
loop from idly iterating when larger δ is used. The iteration
number k is set to 100 for the experiments.
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Figure 8: Block diagram for the proposed algorithm.

3.5. Computation of error

An error of decimated vertex is defined as its minimum dis-
tance to the newly created surface. Since the proposed algo-
rithm does not move vertices’ position, we only need to eval-
uate the errors caused by removing the vertices. Two error
metrics, that is, L∞ and L2 are widely used to evaluate the per-
formance. The L2 error norm is the root mean square (RMS)
error, while the L∞ norm yields the maximum error bound.
Both errors, defined by (1), are obtained for further analy-
sis, where N and n are the original and removed numbers of
vertices, respectively. Usually, the percentage of error to the
diagonal length of original model’s bounding box is used as
a metric for comparison.

εL2 =
√
ε21 + ε22 + · · · + ε2n

N
, εL∞ = n

max
k=1

εk. (1)

3.6. Time complexity of the proposed algorithm

Computational complexity mainly depends on the size of the
data, because one of the bottle neck of the algorithm is the
memory copying operations. When a vertex to be removed is
found, all associated edges and triangles should be removed
from its linked list. We simply generate a small temporary list
for each, by copying the remaining edges and triangles, then
swap the temporary list with the original one. Almost equal
time is required when the hole is retriangulated to add edges
and triangles to the linked list. The computational complex-
ity could be alleviated, if this deletion process is optimized by
dynamically allocating (deleting) spaces for the data. There-
fore, the computational complexity is mainly dependent on
(a) searching and (b) retriangulation process.

We search for the vertex list until appropriate vertex satis-
fying both height and angle condition is found. Statistically,



1108 EURASIP Journal on Applied Signal Processing

when a linked-list of length k has only one data that suites
one’s need, the average searching time, sk to find the suitable
vertex is proportional to (k + 1)/2, given by

sk ∝ 1 + 2 + · · · + k

k
= k + 1

2
. (2)

Retriangulation process requires for deletion and addi-
tion of triangles and edges. In average, when a vertex with six
edges are deleted, which is the most popular case as shown in
Figure 3, the required operations are (a) deletion of six trian-
gles and six edges, and (b) addition of four new triangles and
three new edges. Since removing or adding a triangle from a
list of length l requires 2(l − 1) address copying operations,
and the number of triangles and edges are proportional to
the number of vertices by Euler’s formula, the time required
for deletion and addition of triangle is proportional to the
vertex list of length k, given by

rk ∝
6∑

i=1
4(k − i) +

6∑

i=3
4(k − i) = 40k − 156. (3)

The first term is time for deletion of edges and triangles,
respectively, while the second term is time for addition. The
total time required for removing n vertices from an original
model with N vertices is given by

Tn
N =

N−n+1∑

k=N

(
c1sk + c2rk

)

= c1
n(2N − n + 3)

4
+ c2n(40N − 20n− 136),

(4)

where c1 and c2 are scaling constants. Note that the constants
would depend on the computing performance and program-
ming efficiency. To show the validity of the time complexity
analysis, we compare the experimental and theoretical com-
putation time for the Face model in Figure 9. The scaling
constants are found to be c1 = −0.05302 and c2 = 0.00069,
respectively, by the least mean square curve fitting method.

4. EXPERIMENTS ANDDISCUSSIONS

We implement the proposed algorithm on Windows NT
Server 4.0 with Pentium II 400MHz processor and 192MB
memory. The results are flat shaded, in order to exaggerate
the distinction of triangles. The Fan model in Figure 10 is
a typical model produced by a CAD tool. The vertices and
edges are almost optimally placed, which is almost impossi-
ble by actual modeling via range scanners. The original wire-
frame model is back-face culled in order to emphasize the
placements of primitives. The simplification process faith-
fully preserves the unique characteristics of Fan’s hole and
wings. The result consists of only 19% of the original data,
with tolerable errors provided in Table 1.

Figure 11 shows the hierarchy of Cow models from high
to low resolution. The histogram indicates that vertices with
high interior angles are mostly removed during the iteration.
High curvature regions such as horn, ear, and nipples are well
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Figure 9: Time consumed for Face model of 16374 vertices.

Table 1: Summary of results on Fan model.

δ No. of triangles L2 error (%) L∞ error (%) Data ratio (%)

0 2750 0 0 100

2.0 1978 0.013 2.082 71.93

2.3 1354 0.023 3.237 49.24

3.0 1108 0.027 2.636 40.29

5.0 530 0.043 6.369 19.27

Table 2: Summary of results on Cow model.

δ No. of triangles L2 error (%) L∞ error (%) Data ratio (%)

0 5804 0 0 100

0.5 5652 0.001 0.745 97.38

0.8 5096 0.003 1.047 87.80

1.0 4620 0.004 1.320 79.60

1.2 4216 0.005 1.320 72.64

1.5 3454 0.007 1.523 59.51

2.0 2668 0.009 1.820 45.97

2.5 1978 0.013 2.676 34.08

3.0 1538 0.015 2.526 26.50

4.0 1136 0.019 3.480 19.57

5.0 842 0.024 4.070 14.51

preserved, while maintaining good equi-angularity as well.
The results are summarized in Table 2.

Unlike the previous models, the Face model was acquired
by laser range scanner, yielding a large amount of data. Due
to its dense characteristics, most adjacent triangles are co-
planar as can be seen from the initial histogram in Figure 12.
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Figure 10: Hierarchy of Fan models.
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Figure 11: Hierarchy of Cow models.



Mesh Simplification Using the Edge Attributes 1111

180175170165160155150145
Degree

0

1000

2000

3000

4000

5000

D
is
tr
ib
u
ti
on

Delta = 0%

180175170165160155150145
Degree

0

1000

2000

3000

4000

5000

D
is
tr
ib
u
ti
on

Delta = 0.4%

180175170165160155150145
Degree

0

1000

2000

3000

4000

5000
D
is
tr
ib
u
ti
on

Delta = 0.6%

180175170165160155150145
Degree

0

1000

2000

3000

4000

5000

D
is
tr
ib
u
ti
on

Delta = 1.0 %

180175170165160155150145
Degree

0

1000

2000

3000

4000

5000

D
is
tr
ib
u
ti
on

Delta = 2.0%

Figure 12: Hierarchy of Face models.
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Table 3: Summary of results on Face model.

δ No. of Triangles L2 error (%) L∞ error (%) Data ratio (%)

0 32744 0 0 100

0.36 26890 0.001 0.747 82.122

0.37 24126 0.001 0.797 73.681

0.4 21142 0.001 0.822 64.568

0.5 18590 0.001 1.065 56.774

0.6 15708 0.002 1.356 47.972

1.0 7002 0.003 1.361 21.384

1.5 3936 0.004 1.674 12.021

2.5 1800 0.007 2.349 5.497

Table 4: Summary of results on Knot model.

δ No. of Triangles L2 error (%) L∞ error (%) Data ratio (%)

0 76412 0.000 0.000 100

0.1 73572 0.000 0.259 96.283

0.2 64432 0.000 0.400 84.322

0.3 45420 0.000 0.582 59.441

0.35 35142 0.000 0.853 45.990

0.4 24864 0.001 0.882 32.539

0.45 17586 0.001 0.935 23.015

0.7 10038 0.001 0.934 13.137

0.8 7434 0.001 1.032 9.729

Hence, a significant number of reduction takes place, even
with small δ values. The low detailed parts of the surface are
saved throughout the whole process.

The final model produced by interpolating a CADmodel
with high sampling rates contains 76 412 triangles initially. A
vertex with larger interior angle has been primarily removed,
keeping vertices with small interior angles to preserve the
global topology. The maximum error for final model is only
1.0% as shown in Figure 13 and Table 4, respectively.

To examine quantitative performance, we perform an ex-
periment for Heckbert and Garland’s algorithm [2]. The re-
sults are presented in Table 6. We can find that the error per-
formance is similar to or less than that of Tables 1, 2, and 3.

Optimal mesh simplification can be performed by fully
sorting the order of removal after each iteration. Similar re-
sults may also be obtained by choosing very small value for
∆λ. The interval of λ significantly influences the output. If we
set the ∆λ to greater magnitude, it is expected that the final
result does not yield on uniform distribution in edge lengths,
because the deterministic property of decimation could not
be preserved. As a result, many less qualified vertices may be
removed, prior to the more qualified ones.

However, the experiments for larger ∆λ yields interesting

Table 5: Summary of results on Cow model with ∆λ = δ/2.

δ No. of Triangles L2 error (%) L∞ error (%) Data ratio (%)

0 5804 0 0 100

0.5 5650 0.001 0.727 97.35

1.0 4598 0.004 1.320 79.22

1.5 3532 0.007 1.479 60.85

2.0 2862 0.009 1.890 49.31

2.5 2214 0.011 2.177 38.15

3.0 1846 0.013 2.960 31.81

3.5 1496 0.016 3.125 25.78

4.0 1406 0.017 3.739 24.22

5.0 1164 0.020 3.876 20.06

Table 6: Comparison of Heckbert and Garland algorithm.

Model No. of Triangles L2 error (%) L∞ error (%) Data ratio (%)

Fan 1978 0.077 2.791 71.93

Fan 1354 0.101 3.214 49.24

Fan 1108 0.112 3.657 40.29

Fan 530 0.211 6.477 19.27

Cow 4620 0.718 8.12 79.60

Cow 3454 0.755 8.19 59.51

Cow 1978 0.733 8.00 34.08

Cow 842 0.795 8.11 14.51

Face 7002 0.042 7.42 21.38

Face 1800 0.058 7.28 5.497

results. By choosing large value for ∆λ, the total number of
iterations of inner loop decreases, since the outer loop iter-
ates according to the size of ∆λ. Therefore, total execution
time greatly reduces, since the number of iterations is also
one of the bottle neck of the proposed algorithm. It is argued
that larger ∆λ has little influence on the quantitative prop-
erties, resulting in nonuniform distribution in edge lengths.
To show the effect of larger ∆λ, we present the results ob-
tained by setting ∆λ = δ/2 in Table 5. By comparing the sev-
enth row of Table 2 and the fifth row of Table 5, we can find
that two results show the comparable errors with almost the
same number of triangles. However, the execution time is re-
duced to 40%, due to fewer iterations. This is because the
initial triangular mesh does not contain vertices with long
edges. However, the visual deterioration is observed as the to-
tal number of face reduced to around 1000 triangles, in which
the edge lengths’ distribution is nonuniform. Figure 14 com-
pares both results obtained by different ∆λ.

Finally, it is interesting to note a related work in discrete
contour evolution [13], which are developed for 2D shape
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Figure 13: The simplification results of Knot model.
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(a) ∆λ = δ/100. (b) ∆λ = δ/2.

Figure 14: Visual comparison of results.

decomposition. They proposed a relevance measure based on
an interior angle and edge length.We believe that our scheme
is very similar to [13], although each of these has different
aims. Thus, our further research topics include multiresolu-
tion modeling using the relevance measure.

5. CONCLUSION

We have presented an edge-based vertex removal algorithm
to simplify triangulated objects. The removal of a vertex is
determined by the edges, connected to other vertices. If the
interior angle of edge pair is larger than the pre-specified
threshold, the edge pair will be considered as a semi-linear
line, and the vertex is removed. An additional height con-
straint was introduced to prevent the decimation of long
edge pairs, which yield relatively large error and degrade the
topology. This criterionmakes the proposed algorithmmuch
faster than the conventional algorithms, which remove a ver-
tex by estimating the post error caused by removing.

The execution interval of the proposed algorithm de-
creases linearly as the vertices are removed, while that of the
conventional approaches increase exponentially. The perfor-
mance was comparable, in spite of using such a simple mea-
sure for simplification. The computational complexity re-
lied heavily on the number of iterations of two nested loops.
However, the computational complexity could be alleviated
by reducing the interval of height parameter (∆λ) and an-
gle parameter (∆θ). Observations showed that the quantita-
tive performance is not significantly affected by the choice
∆λ.

However, further research should be necessary on the op-
timal selection for ∆λ. This value could be adaptively up-
dated according to the angle histogram of original data, or
the height parameter itself should be increased from linear
to exponentially decreasing manner. This is of special inter-
est for simplification of highly detailed meshes, since large
∆λ does not affect the output of the earlier stages. The min-
imum angle parameter θmin and the interval ∆θ also should
be carefully selected for better results.
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