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Model-Based Real-Time Head Tracking
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This paper treats real-time tracking of a human head using an analysis by synthesis approach. The work is based on the Structure
from Motion (SfM) algorithm from Azarbayejani and Pentland (1995). We will analyze the convergence properties of the StM
algorithm for planar objects, and extend it to handle new points. The extended algorithm is then used for head tracking. The
system tracks feature points in the image using a texture mapped three-dimensional model of the head. The texture is updated
adaptively so that points in the ear region can be tracked when the user’s head is rotated far, allowing out-of-plane rotation of
up to 90° without losing track. The covariance of the x- and the y-coordinates are estimated and forwarded to the Kalman filter,
making the tracker robust to occlusion. The system automatically detects tracking failure and reinitializes the algorithm using

information gathered in the original initialization process.
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1. INTRODUCTION

Automatic tracking and modeling of human faces from im-
age sequences is an important and challenging task in com-
puter vision. Applications include face recognition, model-
based coding for video conferencing, avatar control, and
computer graphics. The main goal of this paper is to present
a tracking system built on the extended Kalman filter based
StM algorithm in [1], thus extending the foundations of
Azarbayejani and Pentland and Jebara and Pentland [2] to
achieve robust performance. Since points on the face might
lie in a nearly planar constellation, the stability of the StM
algorithm is investigated for planar surfaces. The theory of
Triggs for SfM of planar objects will be used as a starting
point, and simulations on both noise free and noisy data are
carried out to investigate how often the algorithm converges.
The results are compared to general three-dimensional ob-
jects. The algorithm is also extended to handle new points,
that is, points that are not visible in the first frame. This poses
a problem since the first frame is used as a reference frame in
the error function that the Kalman filter is minimizing. Three
ways to handle these new points are investigated, and the re-
sulting solution is to keep the old reference frame for the old
points and use the new reference frame for the new ones.
The results will be applied to a face tracking system.
The core idea is to select a dense set of feature points (es-
sentially, optical flow at all the most information bearing
points). Figure 1 illustrates how the system works. Patches
around the feature points taken from the rendered three-
dimensional model (lower left corner) are matched against
the incoming video, and the two-dimensional trajectories

of these feature points are then fed through an extended
Kalman filter (EKF) to update the pose information of the
three-dimensional model. In addition, the projection of the
estimated structure serves as a starting point for the tracking
in the next frame. The three-dimensional model helps in sev-
eral ways. First, it compensates for rotation and scale, mak-
ing it possible to use fast two-dimensional block-matching
to track the feature points. Second, it helps in assessing how
reliably a certain feature point can be tracked. For instance,
a feature point depicted at a steep angle to the camera is
hard to track and a feature point on the back side of the
model cannot be tracked at all. The estimate of the relia-
bility of a point can then be forwarded to the SfM Kalman
filter as a covariance of the noise in the two-dimensional
point measurements. Third, by tracking features on the side
of the head, the system can cope with large out-of-plane
rotations.

1.1. Previous work

The literature on head tracking is rich. Black and Yacoob
[3] model the face as a plane in three-dimensional space. By
comparing the optical flow of the image and that of the pla-
nar model, the face can be tracked. Basu et al. [4] use an el-
lipsoid model instead of a planar one and report improved
results. To get a better fit to the head than what an ellipsoid
can provide, Zhang and Kambhamettu [5] use an extended
superquadric. Many authors use three-dimensional triangle
meshes to model the head. In [6], Roivainen uses the CAN-
DIDE model [7] to parameterize the optical flow. Using a
feedback system, Roivainen avoids drift and can also resolve
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FIGURE 1: Patches from the rendered image (lower left corner) are matched with the incoming video. The two-dimensional feature point
trajectories are fed through the SfM extended Kalman filter that estimates the pose information needed to render the next model view. For

clarity, only four patches out of 24 are shown.

local motion. Li et al. [8] extend the system of Roivainen to
work directly on image gradients, without the need to calcu-
late the optical flow. In a later paper, Li and Forchheimer [9]
modify their algorithm to include M-estimation, which is a
robust version of the least squares algorithm. DeCarlo and
Metaxas [10] use a very detailed parameterized head model
constructed using anthropological data. The parameters are
changed using a deformable model framework, where edges
in the image give rise to forces on the parameters. Cootes
et al. [11] use Active Appearance Models (AAMs), where a
face is modeled using a combined eigenspace for texture and
shape. By learning a function from the residual error to the
eigenspace parameters, the algorithm can be iterated on a
face image until convergence. Cootes et al. have used their
algorithm on image sequences, where the shape from the pre-
vious frame is used as a starting value in the next one. Cas-
cia et al. [12] use a three-dimensional version of the Active
Appearance Model method. Instead of modeling the shape
using a two-dimensional PCA, a cylinder model of the head
is used, and an illumination eigenspace is added to the er-
ror function to gain robustness. Cascia et al. reports real-
time performance (15Hz) on an SGI O2 machine. Ahlberg
[13] uses the three-dimensional CANDIDE model [7] for
face tracking using AAMs in real time.

The method presented in this paper is a continuation
of the work by Azarbayejani and Pentland [1], Jebara and
Pentland [2], and Strom et al. [14]. In their SfM paper [1],
Azarbayejani and Pentland show a head tracking application.
The feature points are obtained by normalized correlation,
and the tracker resolves rotation and translation of the head
as well as point depths and focal length. Jebara and Pentland
[2] extend the work to a real-time system, and use the es-
timated three-dimensional structure as a starting point for
the normalized correlation in the next frame. This greatly
enhances the robustness since an incorrectly tracked feature
point can be corrected by the other points, so that its start-
ing position in the next frame will be reasonable. Jebara and

Pentland also estimate the covariance of the noise in the mea-
sured point positions from the residual error, which gives
robustness to partial occlusion. Furthermore, each point is
tracked for rotation and scale, doubling the degrees of free-
dom in the measurements. The work by Strom et al. [14]
adds a three-dimensional head model, which is useful for (a)
projectively transforming all templates that are used in the
normalized correlation at once, reducing the cost of adding
another point, and (b) predicting when points on the face
are turning away from the camera or are self occluded. This
paper further extends the work in [14] by incrementally up-
dating the texture to track points on the side of the head.
In this manner, the head can rotate farther before losing
track.

Azarbayejani and Pentland [1] evaluate the stability of
the SfM algorithm for general three-dimensional objects for
different types of motion at various noise levels. No at-
tempt is made to evaluate the algorithm with planar ob-
jects. Indeed, this is an important special case, since points
on the surface of a face can be close to planar. Furthermore,
many SfM algorithms have shown to fail for planar objects
[15, 16, 17]. Triggs provides a theory for how many frames
are needed to solve the SfM problem in the planar case, and
also proposes an algorithm for autocalibration [18]. Tenta-
tive results on the stability of the algorithm of Azarbayejani
and Pentland have been presented in [19], but only for the
noise-free case. The reinitialization algorithm was first pro-
posed in [20].

The method for adding new feature points to the algo-
rithm of Azarbayejani and Pentland was presented in a tech-
nical report in [21]. Independently, Dell’Acqua et al. [22]
presented a solution where multiple Kalman filters are run-
ning simultaneously, filtering different subsets of the points.
The Kalman filters are then merged together to one Kalman
filter. While interesting, the solution by Dell’Acqua et al. is of
batch type and is thereby not directly applicable to real-time
tracking.
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1.2. Overview

Section 2 will recapitulate the StM algorithm, investigate its
stability for planar surfaces and extend it to allow new points.
Section 3 will go through the tracking; initialization, indi-
vidual point tracking, estimation of the measurement noise
covariance and texture update. Section 4 will treat how the
system is reinitialized once it loses track. This is followed by
a system evaluation in Section 5. The paper is concluded in
Section 6.

2. KALMAN FILTER BASED SfM

Azarbayejani and Pentland reformulate the SfM problem
into a stable recursive estimation problem that has been
shown to converge reliably [1, 23]. A three-dimensional
point is parameterized with its image coordinates in the first
frame, (1°,v°), and its depth a, using

X (1+ap)u®
Y|=|(+ap)], (1)
z o

where 8 is 1/focal length. This is shown in the dashed line in
Figure 2. The unknown parameters constitute the state vec-
tor x; the rotation and translation from the first frame to the
current, the inverse focal length 8 and the point depths a.
To predict the image plane projection of the points in the
kth frame, the function (11, 71, 2, V2, ..., N, 'N) = hi(X) is
used. As shown in Figure 2, the effect of hi(x) is to calcu-
late (X, Y, Z) using (1) and then rotate, translate, and finally
project the points using the parameters from the state vec-
tor xi. If zx is the measured image coordinates of the feature
points, the movement, the focal length, and the depths can
be updated using

X = Xe—1 + Kie(z — he(X¢)), (2)
where K is the Kalman gain [24].

2.1. Planar objects

Planar objects are important for two reasons. First, man-
made structures contain many planar objects such as walls,
floors, desks, and so forth. Second, some objects might be
close to planar. In the case of face tracking for instance, a
small number of randomly picked points on the surface of
the face might be close to coplanar. If the SfM algorithm fails
for planar objects, it is likely to do poor on such nearly pla-
nar objects. Furthermore, it is a well-known fact that planar
objects constitute a singular case that many SfM algorithms
have problems with. For instance, it is not possible to cal-
culate the coefficients of either the bifocal [17] or the trifo-
cal tensor [15] for planar objects in the uncalibrated case.
Stein and Shashua [16] show that problems also occur for
objects made up of several planes that intersect in a sin-
gle line, and also point to several real world objects that fit
this description. Triggs shows that when # intrinsic camera
parameters are unknown (but constant), m = [(n + 4)/2]
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FiGURE 2: Using the original frame coordinates (1, v°), the depth
and the focal length 1/8, (X, Y, Z) is obtained. This vector is further
moved to (X, Y, Z;) and finally projected to the image coordinate
prediction (&, 7).

images are needed for uniqueness. In the uncalibrated case
when n = 5, m = [(5+4)/2] = 5 images are thus needed
for uniqueness. If fewer intrinsic camera parameters are es-
timated, it should still be possible to use multilinear con-
straints. If, for instance, only the (constant) focal length is
unknown, m = [(1 +4)/2] = 3 images are sufficient, and
the trifocal tensor could be used. However, the constraints
on the remaining four intrinsic camera parameters turn into
polynomial constraints on the tensor coefficients that are not
easily solved.

2.2, Several views of a planar object

The EKF approach to the SfM problem does not rely on only
two or three images, but instead it takes an entire sequence
of images into account. Whether the filter will converge for a
planar object is not obvious. On the one hand, the previous
section indicates that three images are enough for unique-
ness. On the other hand, the constraints of all the images are
not applied simultaneously; at each time step k, the problem
will be under-determined and a manifold of false structures
will be possible. To resolve this a Monte Carlo experiment is
conducted. Random points are selected from a plane, which
is randomly oriented. The object undergoes random motion
and the point measurements are forwarded to the Kalman
filter. The filter runs for 1000 frames and if the summed
squared error of the estimated depth values is smaller than
0.1, convergence is declared. The experiment is repeated 1000
times using two types of motion: rotation around a random
vector in the z = 0 plane (to avoid the degenerate rotation
around the z-axis) and Brownian motion, that is, small incre-
mental random steps in translation and rotation. The filter is
initialized with f = 2.0 (the true value is § = 1.3). Three
types of initialization procedures are tried for the depths
a1,.,N—1: in the first type, called prior 1, the a-values are set
to random values in the interval +0.5 around the depth
which is fixed to 1.0. In the second type, called prior 2, the
filter is initialized with the true a-values plus random noise
in the interval +£0.5. The last one, prior 3 is equivalent to prior
2 but with noise in the interval +0.25. The entire experiment
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TaBLE 1: Depth convergence frequency for noise free measure-
ments.

prior 1 prior 2 prior 3
2D rotational 0.673 0.953 1.000
3D rotational 0.796 1.000 1.000
2D brownian 0.751 0.972 1.000
3D brownian 0.762 1.000 1.000

TaBLE 2: Depth convergence frequency for noisy measurements.

prior 1 prior 2 prior 3
2D rotational 0.656 0.898 0.987
3D rotational 0.802 0.995 1.000
2D brownian 0.508 0.851 0.924
3D brownian 0.478 0.943 0.981

is then repeated for a random three-dimensional object. This
time, prior 1 will mean that all the a-values are initialized to
the same value 1.0, whereas the prior 2 and prior 3 will mean
that the a-values are initialized to the correct value plus ran-
dom noise in the intervals £0.5 and +0.25, respectively. The
result is shown in Table 1 for the case of noise-free measure-
ments.

As can be seen, there are differences between the pla-
nar (2D) and the general (3D) objects, but as the quality
of the depth prior improves, the convergence frequency goes
to unity for both types of objects. In the case of noisy mea-
surements, the difference is larger. In Table 2, uniformly dis-
tributed noise of +1 pixel is added to the measurements.
Still, the difference is quantitative, not qualitative. One ex-
ample is when tracking a planar object undergoing Brown-
ian motion, with depth prior 3 (third row, third column).
In this case, one has as much to gain by changing the mo-
tion to rotational as changing the planar object to a general
three-dimensional one (convergence frequency rises to 0.987
compared to 0.981). Hence, a planar object is not a catas-
trophic situation that means that the SfM algorithm will un-
conditionally fail. Rather, planar objects can be seen as some-
thing that should be avoided if possible, just like measure-
ment noise, poor depth priors, or low excitation in the mo-
tion. A way to understand why the filter converges for planar
views is the following. The SfM problem at image k can be
formulated as finding the state vector x which minimizes the
(scalar) error function

Je(x) = (2% — he(x)) " (z — he(x)), (3)

where hi(x) consists of the Kalman filter’s estimate of the
projected points (i, V1, iz, 72, . . ., N, Vn). Each new image
k gives a new constraint Ji(x) = 0. Since the object is pla-
nar and since the focal length is constant (not varying over
time) but its value unknown. m = [(1 + 4)/2] = 3 im-
ages are needed for uniqueness, but only two images are
part of Ji(x). Therefore, an entire curve x(¢) of false so-
lutions will satisty Jx(x). If this curve is projected down

FIGURE 3: Structure convergence for planar objects.

—
— N

Frequency

N
o Nk o>

1 W 1 1 1 1 1
0 100 200 300 400 500 600 700 800 900 1000
Number of iterations before convergence

(a)

Frequency
o

.-op'. X X X \ 200 G0 0,000 HOEmOA0
0 100 200 300 400 500 600 700 800 900 1000
Number of iterations before convergence

(b)

FIGURE 4: (a) Histogram over convergence time for rotational mo-
tion with a general object (solid) and a planar object (dotted). (b)
Ditto for Brownian motion.

to only the structure components of x, a new curve s ()
is obtained, where s = (f, a1, a2, ..., an). Since the solu-
tion is unique for three views, sx(t) and sk+1(#) cannot be
the same curve, and must meet in the point s* that rep-
resents the correct structure. This is illustrated in Figure 3.
The estimate § will move towards the curves, but for each
new image the curve has moved and § will continue mov-
ing until it has found the optimum. This should result in a
slower convergence than in the over-determined case, and
this has also been verified experimentally: the top diagram
in Figure 4 shows a histogram over how many frames are
needed to have a sum squared depth error of 0.05 for rota-
tional motion. In the bottom diagram, a similar histogram
is drawn for Brownian motion. It is clear that the general
three-dimensional objects (solid curve with crosses) con-
verges faster than the planar ones (dotted curve with circles),
but in this case the type of motion seems to have a bigger
impact on the convergence time than has the shape of the
object.
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2.3. Appearing points

In a tracking scenario, it is advantageous to be able to track
points that were not visible in the first image. In the exam-
ple of head tracking, for example, it is desirable to be able to
track points on the ear when the head turns sideways. It is
thus essential that the algorithm is able to include some of
the new points that have appeared. The last part of this sec-
tion will treat how points can be added to the Kalman filter
based SfM algorithm. The work described here was presented
in [21]. Independently, Dell’Acqua et al. [22] later published
similar work. However, their solution differs from the one
presented here and will be treated at the end of this section.

As described in the beginning of Section 2, the function
hy(+) uses the image coordinates in the first frame, (1, 9), to
calculate (X, Y, Z), (Xc, Yc, Zc), and then the estimate (4, 7).
The fact that (1%, v°) must be known in order to calculate the
filter estimates poses a problem when adding feature points
at a later stage. If a new feature point becomes visible first at
frame k, its image plane projection in the original reference
frame (10 ) is not known.

0
new> Vnew

2.3.1 Old reference frame

One way to solve the problem is to rotate and translate back
the measurements from the kth frame to the Oth frame. As
can be seen in Figure 5, however, the lack of knowledge of
the depth « will result in a large bias in the estimation of
(u(r)lew’ VI(')IGW)'

2.3.2 Newreference frame

Another solution would be to change the reference frame
and restart the Kalman filter at the kth frame. As can be
seen in Figure 6 a similar problem to that of Figure 5 oc-
curs: for each old point, the image coordinates from the first
frame ()4, v9y) (solid circle) are replaced with estimates
(uk)y, v,y in the kth frame (middle dashed circle). The depth
a is not known exactly, and this creates a bias in the position
of (uk,4, v54) (other dashed circles). Since the filter has had
some time to converge, there is an estimate of «, and the bias
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FIGURE 6: The bias in the position (1, vk,) in the new reference
frame when the depth of an old point is not known exactly (lower
black interval).
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FiGure 7: The proposed method—the old points will keep the old
reference frame, whereas the new points will use the new reference
frame. No bias due to depth will occur.
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of (uky, vE,4) is thus smaller than with the old reference frame
method of Figure 5. On the other hand, bias is added to all
the old points, compared to only the new points, which are
assumed to be fewer.

2.3.3 Bias estimation

Both the old reference frame and the new reference frame
methods will thus suffer from bias. One solution to this is to
include this bias in the state vector and estimate it using the
Kalman filter. Bias estimation was proposed in the original
paper by Azarbayejani and Pentland [1], but not specifically
as a solution to the problem of adding points. Equation (1)
is then modified to

X (u’+0b,) B +by)
Y[{=|(0+b) |+a| B0’ +b) |, (4)
Z 0 1

and b, and b, are added to the state vector x. However, in-
troducing these extra degrees of freedom will make the filter
less over-determined.

2.3.4 Two reference frames

The method proposed in this paper is to maintain two refer-
ence frames, one for the old points and one for the new ones.
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As illustrated in Figure 7, the old points will continue to be
restricted to the line from the center of projection (COP) to
(14> v)4), whereas the new points will lie on the line from
the COP to (uf.,, vk.,). The prediction (%, #) for the old
points will continue to be calculated using (the projection
of) (5), whereas the new points will be calculated according
to the projection of

X (1+ ap)uk te
Y | =BR@QR{ | | Q+af)v* |- Tx |+ |ty |, (5
ﬁZ [0 ﬂtz

where B = diag[(1, 1, 8)] and Ry, Tk represent the rotation
and translation between frame 0 and frame k.

This approach is still not bias free—estimation errors in
the rotation quaternion and in the translation vector will
give rise to a shift in the texture map and hence a bias
in (¢, v..). However, this problem also occurs with the
other methods. Moreover, in the proposed scheme the ro-
tation and translation bias only applies to the new points,
as opposed to all the old points in the new reference frame
method. As mentioned above, these biases in © and v can be
estimated. Alternatively, the motion parameters R,{ and Ty
can be estimated. This amounts to only 6 extra degrees of
freedom for the filter, which is advantageous to estimating b,
and b, if more than 3 points are added at once. The imple-
mentation of the real system (described in Section 3), did not
seem to suffer from these biases, and the two reference frames
method could be used without extending the feature vector
for bias estimation.

2.3.5 Related work

Recently, the problem of adding points to the EKF based StM
algorithm has been investigated by Dell’Acqua et al. [22].
Their solution is to start an independent Kalman filter each
time a new point occurs. After collecting data from the en-
tire sequence, a single Kalman filter is stitched together from
all the others. Each time a point disappears from the master
Kalman filter, all the slave filters that have been created up
to that point are examined for replacement candidates. The
point that will survive the longest is then used to replace the
old point. The old reference frame method is used, and the
bias of the new point can be reduced since the depth « can
be obtained from the slave Kalman filter, that has been con-
verging for a while. The master filter is then continued until a
new point disappears, and the procedure is repeated. No at-
tempt is made to reacquire old points—when they reappear
they are treated as new, unknown points.

Since the above-mentioned method is of batch type it
is not well suited for real-time tracking. It can obviously be
modified so that no look-ahead is used, but even so the use of
multiple Kalman filters (one filter for each new point) makes
it a bit computationally expensive in a real-time scenario.
Furthermore, just as in the new reference frame method, any
remaining error in the estimated depth « will result in some
bias. On the other hand, there are advantages to having all
points in the same reference system. For instance, the extra

FIGURE 8: A generic three-dimensional polygonal head model is
aligned with a head-on shot of the video sequence, and the corre-
sponding pixels are texture mapped to the surface of the face model.

matrices for rotation and translation (Ry and Ty) of (5) are
avoided.

3. HEAD TRACKING

In this section, the extended SfM algorithm from Section
2.3.4 will be used in a head tracking application. Recalling
Figure 1, the head is rendered using a generic polygonal face
model' [7] in the predicted pose (lower left). Patches from
this rendered image are matched against the incoming video
(top left). The two-dimensional measurements are fed into
the SfM Kalman filter that calculates the three-dimensional
structure, pose and focal length for a point configuration
defined by the center of each patch. The pose and the focal
length are then used to render the polygonal model, and the
structure is used to predict the positions of the patches’ cen-
ters in the next frame. Whereas the solid arrows in Figure 1
represent information flows that occurs every frame, the
dashed arrows are invoked only at texture update. When the
head has turned sufficiently, texture is grabbed, and both
the three-dimensional model (bottom left) and the extended
Kalman filter (upper right) are updated.

3.1. Initialization

The system is initialized from a frontal position as seen in
Figure 8. The face model (left) is aligned to match with a
head-on view of the face in the video sequence (middle).
The pixels from the video are then texture-mapped onto the
model (right). Our system uses a manual alignment—the
user has to put the head in a prespecified position on the
screen, and make sure that she/he is in a frontal position be-
fore initiating tracking.

After alignment has been performed, the system selects
which feature points to use. The part of the video input con-
taining the face is cropped out (first image of Figure 9) and
further processed. The cropped image is lowpass filtered and
subsampled once to avoid locking on to features that are too

vague to be reliably tracked. The determinant of the Hessian

Lo Ly | . . . .
” | is calculated at every point. To avoid selecting points

IX}’ I)’}’
on parts of the face surface perpendicular to the camera, the
determinant is weighted with the cosine of the angle between
the surface normal and the camera direction. These values

I'The three-dimensional model is a modified version of CANDIDE.
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FIGURe 9: From left: The lowpass filtered incoming video, the
weighting (the cosine of the angle between the surface normal and
the camera direction), the final rating, and the extracted feature
points.

can easily be obtained from the computer graphics hardware
by rendering a gray shade version of the three-dimensional
model with lighting from the camera direction (Figure 9,
second image). The resulting rating of each pixel is shown
in the third image in Figure 9, where brighter pixels indi-
cate a higher score. The 24 points with the highest ratings
are then selected with a minimum-distance constraint be-
tween points. The fourth image in Figure 9 shows 12 of the 24
points selected. Each point is given a three-dimensional po-
sition on the surface of the three-dimensional model. Again,
the computer graphics hardware can be used, this time read-
ing out the value of the depth buffer of the rendered image
in the corresponding pixel location, to calculate the depth of
the feature point.

3.2. Feature point tracking

As shown in Figure 1, the tracking is carried out between the
rendered frame and the video input. Both images are sub-
sampled in order to track larger and more robust features.
Since the feature points are fixed with respect to the three-
dimensional model, their two-dimensional coordinates in
the rendered image are known. A 7 X 7 pixel patch around
each feature point is cropped out. This patch is then matched
with patches from the video input image in a 17 X 17 pixel
search window using weighted normalized correlation. More
specifically, if a and b are the vectors obtained by raster scan-
ning the patch in the rendered image and the video input
respectively, then the b that maximizes

A

A b
0 = G(x, ) cos(8) = G(x, y) > (6)

al||[b||
is selected, where & = a — p,, b=b- Ub, I - || represents the

norm, and G(x, y) is a Gaussian weighting function that pun-
ishes large jumps of the patches. The search window is cen-
tered around the position that is estimated from the structure
from motion algorithm. An exhaustive search is carried out
in the search window and the candidate with the lowest error
is selected.

3.2.1

Since the two images are subsampled before matching, the
accuracy of the tracking is only +1 pixel. However, since an
exhaustive search is performed over the search window, the

Subpixel refinement

error is known in the adjacent positions. By approximating
error derivatives with central differences, the error surface is
approximated by a second degree Taylor polynomial

0(Ax) = 0o + cTAx + AxTHAx. (7)

The (subpixel) location of the minimum of the resulting
paraboloid is then used as the feature location. If the er-
ror surface is very irregular, however, the minimum of the
paraboloid can be outside the 2 X 2 pixel area. In this case,
the Taylor polynomial is a bad approximation of the error
surface and the centroid of the 2 X2 pixel area is used instead.

3.3. Estimating measurement noise covariance

From the model and the image data it is possible to gather in-
formation about the quality of each point measurement. For
instance, if the correlation coefficient g is very small, there is
a reason to believe that the point is not in the correct posi-
tion, and we would like the Kalman filter to discard that mea-
surement. The same should happen if the point on the model
is facing away from the camera or is occluded by other parts
of the model. Finally, instead of estimating the variances of
the error in the x- and y-direction individually, the covari-
ance matrix = of the error of each measurement (x, yx) can
be estimated from the Taylor expansion of g.

In the case of template matching, there are basically two
types of matching errors. Either the correct match is found,
offset only slightly because of small changes in lighting, small
errors in the projective transformation of the patch, and so
forth. This is called the small error case in this paper. The
other possibility is that the match is completely wrong, for
instance due to occlusion or to that the normal of the feature
point is almost perpendicular to the camera direction. This
is named the large error case. Depending on the residual er-
ror, the angle to the camera and the visibility of the triangle,
>k will be selected to be X, in the small error case, and X;
otherwise.

3.3.1

Inspired by Jebara and Pentland [2], the covariance could be
made proportional to the Hessian of the Taylor expansion of
the error (equation (7)),

Small error case >,

2~ (-H)™". (8)

This means that all points that contribute to a certain corre-
lation value o will get the same probability. In other words,
the iso-residual ellipses will correspond to iso-probability el-
lipses. We will assume that all measurements of the small er-
ror type will be of equal quality and should be given similar
uncertainties. Thus the Hessian H should only contribute to
the shape of the error distribution. If (—H)~! is symmetric
and positive definite (which it should if a proper maximum
has been found), it can be diagonalised into (—H)~! = RDR”
[25], where R is a rotation matrix and D is a diagonal ma-
trix with positive elements. The radii (g, b) of the ellipse
x'(—H)x = 1 will then correspond to the square roots of
the elements in D; a = +/di1, b = +/da,. If the rotation angle
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FIGURE 10: Resulting estimation of X,. The radii of the ellipses
xTZx = 1 are shown, where long radii correspond to large uncer-
tainties.

and the thickness of the ellipse x”2'x = 1 are set to be the
same as for x’ (—H)x = 1, this means that the rotation ma-
trix R and the ratio of the radii a/b should remain the same.
Hence, ¥ can be written as

2
_fca O T
ZS—R(O cb) R, 9)

where the constant ¢ can be set to give X, the desired
uncertainty, or entropy. Shannon [26] shows that the en-
tropy of a Gaussian random variable of covariance X equals
In((27e)¥2|2|2). The constant ¢ is chosen so that = has the
same entropy as e = (%2 ;)2 ), where o = 4 pixels. A check
is also made on ca and cb so that they are at least 1 pixel.

An example of estimation of X, can be seen in Figure 10,
where the radii ca and cb have been plotted. Just as expected,
the uncertainty is bigger along elongated features such as the
mouth and the side of the nose.

3.3.2 Large error case

In the large error case, the assumption is that the true posi-
tion is somewhere in the search area region. A standard devi-
ation of 100 = 40 pixels is used, which is in the same order of
magnitude as the 22 X 22 pixel search window (11 X 11 in the
subsampled image). Since the best match is assumed to be
in the wrong position, the local Taylor expansion is not valid
and no attempt is made to shape the noise. Hence, the co-
variance matrix ¥; = ( 108‘72 Lobe2 ) 18 used for the large error
case.

3.3.3 Choosing covariance matrix

The choice between %, and X is mainly decided by the cor-
relation value . The small error model should be selected if
p(small | ¢) > p(large | ¢), which is equivalent to

f(o | small)p(small) > f (g | large ) p(large) (10)

using Bayes’ rule. p(small) and p(large) vary a lot during
tracking. For instance when the head is frontal, p(small) is
almost one, whereas when the head is rotated far from the

0.07

0.06 | : ]
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0.04 |
0.03
0.02

0.01 |

0 . , . .
0.4 0.5 0.6 0.7 0.8 0.9 1

F1GURE 11: Estimated f (¢ | small) (dotted) and f (g | large) (solid).

F1GURE 12: Converged depths estimates. Small circles indicate large
depth.

initialization pose, p(large) might be the bigger one. Assum-
ing they are equally probable, the decision rule is now sim-
plified to

f(o |small) > f(o | large). (11)

To estimate f(o | small) and f(g | large), the following
experiment was conducted. The tracker was allowed to run,
and the user’s head was rotated to a critical pose where the
tracked point deviated from its correct position. The correla-
tion value was measured for a number of frames, each mea-
surement being an example of f(¢ | large). Next, the head
was moved until the feature point just moved back to the
correct position. The correlation value was then measured
continuously during a rotation from this critical pose to a
frontal pose, in order to get correlation values from all types
of poses. These correlation values were used as examples of
f(o | small). The procedure was repeated for all points,
and f(o | large) and f(¢ | small) were estimated using
normalized histograms. The same number of measurements
was used from each point. The result is shown in Figure 11.
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FIGURE 13: From left: head-on shot used for initialization, first tracked frame, frame just before texture update, frame just after texture
update. The small area in last image shows where the system looks for new feature points.

FIGURE 14: (a) Original texture, (b) mask, (c) input image, (d) color blob.
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FIGURE 15: (a) Between-eyes template, (b) correlation surface, (c) result, (d) model position.

The diagram shows that, using the rule in (11), the deci-
sion boundary should be put at around ¢ = 0.8. This value
has also proven to work well in practice. For the angle 8 be-
tween the triangle normal and the viewing direction, a deci-
sion boundary of cos(6) = 0.2 was found. Thus Z; is selected
if 0 > 0.8, cos(0) > 0.2, and the triangle is visible. Otherwise,
Y, is selected.

3.4. Depths convergence

The tracked trajectories of the feature points are forwarded
to the Kalman filter, which uses this information to infer
the depths of the points. In Figure 12 the converged depths
estimates are shown. Note the small circles near the cen-
ter of the eyes. This converged structure is then used by
the Kalman filter to constrain the motion of the individual
feature points and thus improve the tracking of the head
movements.

3.5. Texture update

Since the initialization procedure is done using a head-on
shot of the head, all the feature points will be situated in the
frontal face area. Thus, at large out-of-plane rotations, few or

no feature points will be visible in the image and the system
will inevitably lose track. Tracking points at the side of the
head would solve this problem. However, since the texture
is acquired from the zeroth frame during the initialization
procedure, parts of the head that are not visible in a head-
on shot will not get an accurate texture. Therefore, the sys-
tem automatically extracts new texture when the head has
rotated enough. More specifically, the texture for the entire
side of the head will be acquired from the video when the
scalar product between the camera direction and the triangle
normal is greater than a certain constant value. Figure 13 il-
lustrates this; the first image is the head-on shot used for ini-
tialization. The second image is the texture map acquired at
the first frame. The third and the fourth image is the model
just before and after the acquisition of the new textures on
the side. The new feature points on the acquired texture are
obtained the same way as described in Section 3, with one
difference. Since points that are too close to the head bound-
ary, or to the discontinuous “seam” between the two tex-
tures are undesirable, only a smaller area of the texture is
searched for feature points. The small area in the last image
in Figure 13 shows where the system looks for new feature
points.
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4. REINITIALIZATION

Sooner or later, the tracking will fail. Typical scenarios are
that the head moves too quickly, that it is rotated out of the
tracking range, or that the entire head is occluded, for exam-
ple, by an arm. In situations like these, it is desirable to have
the system detect the failure and start a reinitialization pro-
cedure. It should be noted that reinitialization is a simpler
task than original initialization. This is due to the fact that a
lot of information from the initialization can be used to sim-
plify the search for the head, for example, the texture of the
face and the converged Kalman filter. This means that simple
methods such as skin color blobs and template matching can
be reliably used, since they can be tuned for the specific ap-
pearance of the actual face.

Prior attempts at reinitialization are not that plentiful in
the literature. Jebara and Pentland [2] detect tracking fail-
ure by normalizing the face texture back to frontal position
and measuring the distance from face space (DFFS). When
the DFFS is larger than a threshold, a face detection pro-
cess restarts the tracker from scratch, disregarding informa-
tion gathered so far. Crowley and Berard [27] use three vi-
sual processes for two-dimensional tracking and continu-
ous reinitialization; a skin-color blob model, a correlation
tracker, and a blink detector. Perhaps the most similar ap-
proach to reinitialization is proposed by Matsumoto and
Zelinsky [28]. They use the correlation values from the track-
ing to detect failure, and a coarse-to-fine template match-
ing step of the entire face in order to find a good restarting
position. Their face tracking system is using stereo camera
input, in contrast to monocular camera input as proposed
here.

4.1. Failure detection

The tracking procedure described in Section 3.2 produces a
correlation value ¢ for each point. A value of ¢ close to 1
indicates an accurate match, whereas a low @ means that
the measurement is insecure. If the tracking has failed, it is
unlikely that any point will produce a high ¢. We declare a
tracking error if the best ¢ is smaller than a threshold value
for the entire duration of ten frames. The resulting detector is
not fail proof, but since the ¢ measurements are a by-product
of the tracking, it is virtually cost-free. It also works reason-
ably well in practice.

4.2. Finding the face

Once a tracking failure is declared, the reinitialization pro-
cess starts with building a skin color model. This is a widely
used method for finding faces and hands, introduced by

(e)

FiGure 17: Typical tracking sequence. The tracking is initialized in
(a), and continued in (b). The image (c) shows the maximum rota-
tion that can be managed without losing track, whereas the track is
lost in (d). In (e) the tracking is regained.
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(a) (b)

(0) (d)

FiGURrk 18: Occlusion robustness due to estimation of the measurement noise covariance matrix. Left: fixed covariance, resulting in mis-
matched points (a) and lost track (b). Right: covariance estimated with the proposed method. Only points that are estimated to be small

error cases are shown in (c). The tracking is almost unaffected (d).

Crowley and Berard [27] and by Olivier et al. [29]. By gath-
ering statistics from the original texture (Figure 14a) in the
areas likely to contain skin color (Figure 14b), the probability
p(skin | x) that a pixel with color x depicts skin can be mod-
eled as a Gaussian in Y CrCb space. The skin color probabil-
ity can then be calculated and thresholded for every pixel in
a subsampled version of the image (Figure 14c¢). A connected
components processing step is performed on the binary im-
age, and the biggest connected skin color blob is assumed to
be the face (Figure 14d).

The skin color blob provides a very robust but not en-
tirely accurate position of the head. To refine this posi-
tion, a 13 X 13 template (Figure 15a) from the area be-
tween the eyes is cropped out from a subsampled version
of the original texture. The bounding box of the color blob
is used as a search window for the template. Exhaustive
search using normalized correlation is used in the search
window, and the location of the maximum of the correla-
tion (shown in Figure 15b) is used. Figure 15c shows a re-
sult of the template matching. Since the texture between
the eyes is situated in the middle of the face, it is visible
even for relatively large out-of-plane rotations. Empirically,

it also works for comparatively large changes in scale. The
model is then placed in the estimated position, facing the
camera head-on and at the same z distance as in the origi-
nal initialization (Figure 15d). The tracker is then restarted
and the Kalman filter will resolve the rotation and scale of
the head for a rather large set of head poses. This is shown
in Figure 16. The left-most image shows the video input at
the time of reinitialization. The tracker is restarted in the
position shown in the second image. After five iterations
(about 0.2 second) the tracker has converged to the correct
pose.

5. SYSTEM EVALUATION

The tracking system performs in real time on a SGI O2
R12000 270 MHz workstation. The feature point finding al-
gorithm (executed once at the start of the tracking process)
takes about 100 milliseconds, and the rest of the tracking
runs at 25Hz. A typical tracking sequence can be seen in
Figure 17. The system is initialized in Figure 17a, the head is
tracked in Figures 17b and 17c, the track is lost in Figure 17d
and regained in Figure 17e.
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FiGure 19: Example of tracking of a synthesized sequence where the motion is known. In each graph, the dashed curve represents the ground
truth motion, and the solid curve represents the motion estimated from the tracker.

5.1. Robustness to occlusion

Due to the estimation of the measurement noise covariance
matrix, the system is robust to occlusion of a large number of
the feature points by, for example, a hand, as shown in the se-
quence (Figure 18). Figures 18a and 18b show what happens
when the covariance matrix is fixed; the estimated pose jerks
severely and the track is often lost. With the proposed esti-
mation of the covariance matrix, the tracking is almost com-
pletely unaffected by the occlusion (Figures 18c and 18d).
The sequence shown in Figure 18 is one of many such ex-
amples.

5.2. Evaluation on synthetic data

To get an idea of the accuracy of the tracking, the follow-
ing experiment has been conducted: first the tracker is run
on a live image sequence to provide ground truth motion

parameters (the first pass). Then a synthetic sequence is ren-
dered using these motion parameters. The tracker is now
run a second time on the synthetic sequence (second pass),
and the estimated motion parameters are compared to the
ground truth data. It should be noted that such an experi-
ment does not measure how well the tracker can follow the
motions in the original, live image sequence. The reason for
this is that it is not possible to rule out that the original se-
quence is moving in a way that the tracker in the first pass
does not follow, and that this complex motion is filtered out
from the ground truth data. Tracking the synthetic sequence
would then be an easier task than tracking the original live
sequence. Still, the experiment gives an idea of how well
the tracker can behave on a naturally moving head. The top
row of Figure 19 shows a few frames from the synthetic se-
quence. The middle row and the bottom row show the trans-
lation and rotation parameters, respectively. In each chart the
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ground truth is marked with a dashed curve and the tracked
data is marked with a solid curve. The most striking system-
atic error is that there is a delay between the ground truth
and the estimates from zero to about ten frames (0.4 second).
Also, at around frame 150, the error between the estimated
parameters and the ground truth widens temporarily, as best
seen in the Y translation and in quaternion 1, 2, and 4.
Around frame 160, however, the estimates have recovered.

6. CONCLUSIONS

The SfM algorithm by Azarbayejani and Pentland has been
analyzed for planar surfaces. Although the performance of
the algorithm decreases for such surfaces, the behavior is not
catastrophic and can be compared with measurement noise,
poor depth priors, or low motion excitation. The algorithm is
extended to handle new points, and it is then used in a head
tracking system. Due to estimation of the covariance of the
measurement noise, the system is robust to simultaneous oc-
clusion of a large number of feature points. Furthermore, the
system automatically detects tracking failure and performs a
reinitialization using a color model and a template learned
from the model. An experiment on synthetic data has also
been conducted, showing a good following of the estimated
parameters.
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