
EURASIP Journal on Applied Signal Processing 2002:9, 908–925
c© 2002 Hindawi Publishing Corporation

Design and DSP Implementation of Fixed-Point Systems

Martin Coors
Institute for Integrated Signal Processing Systems, Aachen University of Technology, 52056 Aachen, Germany
Email: coors@iss.rwth-aachen.de

Holger Keding
Institute for Integrated Signal Processing Systems, Aachen University of Technology, 52056 Aachen, Germany
Email: keding@iss.rwth-aachen.de

Olaf Lüthje
Institute for Integrated Signal Processing Systems, Aachen University of Technology, 52056 Aachen, Germany
Email: luethje@iss.rwth-aachen.de

Heinrich Meyr
Institute for Integrated Signal Processing Systems, Aachen University of Technology, 52056 Aachen, Germany
Email: meyr@iss.rwth-aachen.de

Received 31 August 2001

This article is an introduction to the FRIDGE design environment which supports the design and DSP implementation of fixed-
point digital signal processing systems. We present the tool-supported transformation of signal processing algorithms coded in
floating-point ANSI C to a fixed-point representation in SystemC. We introduce the novel approach to control and data flow
analysis, which is necessary for the transformation. The design environment enables fast bit-true simulation by mapping the
fixed-point algorithm to integral data types of the host machine. A speedup by a factor of 20 to 400 can be achieved compared to
C++-library-based bit-true simulation. FRIDGE also provides a direct link to DSP implementation by processor specific C code
generation and advanced code optimization.

Keywords and phrases: fixed-point design, design methodology, data flow analysis, compiled simulation, code optimization.

1. INTRODUCTION

Digital system design is characterized by ever-increasing
complexity that has to be implemented within reduced time,
resulting in minimum costs and short time-to-market. This
requires a seamless design flow that allows the execution of
the design steps at the highest suitable level of abstraction.

For most digital systems, the design has to result in a
fixed-point implementation, either in HW or SW. This is
due to the fact that these systems are sensitive to power
consumption, chip size, throughput, and price-per-device.
Fixed-point realizations outperform floating-point realiza-
tions by far with regard to these criteria.

A typical fixed-point design flow is depicted in Figure 1.
Algorithm design starts from a floating-point description
that is analyzed by means of simulation without taking the
quantization effects into account. This abstraction from all
implementation effects allows an exploration of the algo-
rithm space, for example, the evaluation of different digi-
tal receiver structures. This exploration is well supported by

a variety of commercial block-diagram oriented system level
design tools [1, 2, 3]. Themodeling efficiency on the floating-
point level is high and the floating-point models offer a max-
imum degree of reusability.

In a next step towards system implementation, a transfor-
mation to a bit-true representation of the system is necessary,
that is, assigning a fixed word length and a fixed exponent to
every operand. This process is quite tedious and error-prone
if done manually: often more than 50% of the implementa-
tion time is spent on the algorithmic transformation [4] to
the fixed-point level for complex designs once the floating-
point model has been specified.

The major reasons for this bottleneck are as follows:
(1) There is no unique transformation from floating-

point to fixed-point.
(a) Different HW and SW targets put different con-

straints on the fixed-point specification.
(b) Optimization for different design criteria, like

throughput, chip size, memory size, or accuracy are in gen-
eral mutually exclusive goals and result in a complex design

mailto:coors@iss.rwth-aachen.de
mailto:keding@iss.rwth-aachen.de
mailto:luethje@iss.rwth-aachen.de
mailto:meyr@iss.rwth-aachen.de


Design and DSP Implementation of Fixed-Point Systems 909

ok?ok?

floating
point

floating
point

ok?ok?

quantizationquantization

fixed
point

fixed
point

codingcoding

SW / HWSW / HW

ok?

floating
point

ok?

quantization

fixed
point

coding

SW / HW

D
es
cr
ip
ti
on

tr
an
sf
or
m
at
io
n

A
lg
or
it
h
m
ic

tr
an
sf
or
m
at
io
n

Fi
xe
d-
po

in
t

Fl
oa
ti
n
g-
po

in
t Floating

point

Ok?

Quantization

Fixed
point

Ok?

Coding

SW/HW

Design space
exploration

Evaluation of
the bit-true
behavior

Implementation

Figure 1: Fixed-point design process.

Program memory/
chip size

Quantization
noise

Throughput

Figure 2: Fixed-point design space.

space as sketched in Figure 2. Furthermore, targets with a
given datapath, for example, DSPs put different constraints
on the quantization than ASICs where the datapaths are flex-
ible.

(c) The quantization is generally highly dependent on the
application, that is, on the applied stimuli.

(2) Quantization is a nonlinear process. Analytical mod-
els based on signal theory are only applicable for systems with
a low complexity [5]. An exploration of the fixed-point de-
sign space with respect to quantization noise, performance,
and operand word lengths cannot be done without extensive
system simulation.

(3) Some algorithms are difficult to implement in fixed-
point due to high signal dynamics or sensitivity to quanti-
zation noise. Thus algorithmic alternatives need to be em-
ployed.

Finally, the quantized system is implemented, either
in hardware or in software on a programmable DSP. The

implementation needs to be optimized with respect to chip
area, memory consumption, throughput, and power con-
sumption. Here the bit-true system-level model serves as
a “golden” reference for the target implementation which
yields bit-by-bit the same results.

To increase the designer’s efficiency, software tool sup-
port for fixed-point design is necessary. Ideally the design en-
vironment would have the following features:

(1) A modeling language supporting generic fixed-point
data types to model the fixed-point behavior of the system.
It will also provide a means of data monitoring of variables
and operands during simulation, for example, range, mean,
and variance.

(2) A semiautomatic transformation from floating-point
to a bit-true representation. The designer can bring in his
knowledge about the system and he has full control over the
transformation. The tool will accept a set of constraints spec-
ified by the designer to model the characteristics of the target
hardware.

(3) The ability to perform bit-true simulation with a sim-
ulation speed close to floating-point simulation.

(4) A seamless design flow down to system implementa-
tion, generating optimized input for DSP compilers.

These requirements have been the motivation for
the Fixed-point pRogrammIng and Design Environment
(FRIDGE) [6, 7, 8], an interactive design environment for the
specification, simulation, and implementation of fixed-point
systems.

In this article we describe the principles and elements of
FRIDGE and outline the seamless design flow as it becomes
possible with this design environment. FRIDGE relies on five
main concepts which are briefly introduced in the following.

1.1. Fixed-pointmodeling language

DSP system design is frequently done on a PC or a work-
station utilizing a C/C++-based system-level design environ-
ment. For efficient modeling of finite word length effects,
language extensions implementing generic fixed-point data
types are necessary. ANSI C does not offer such data types
and hence fixed-point modeling using pure ANSI C becomes
a very tedious and error-prone task.

Fixed-point language extensions implemented as li-
braries in C++ [9, 10, 11] offer a high modeling efficiency.
They supply generic fixed-point data types and various cast-
ing modes for overflow and quantization handling. The sim-
ulation speed of these libraries on the other hand is rather
poor. Some of these libraries also offer data monitoring ca-
pabilities during simulation time.

In the FRIDGE design environment, the SystemC fixed-
point data types are used for fixed-point modeling and sim-
ulation. A more detailed description of the SystemC fixed-
point data types is given in Section 3.

1.2. Interpolative transformation

A central component of the FRIDGE design environment
is the interpolative transformation from a hybrid descrip-
tion into a fully bit-true representation. The interpolative



910 EURASIP Journal on Applied Signal Processing

transformation, which is presented in detail in Section 4 uses
analytical range propagation to determine operand word
lengths.

1.3. Data flow analysis

During the development of the FRIDGE design environ-
ment, we have identified a need for accurate data flow anal-
ysis. The published approaches for static and dynamic pro-
gram analysis did not match the requirements of the de-
sign environment, thus we have developed a novel approach
for control and data flow analysis, which is presented in
Section 5.

1.4. Fast bit-true simulation

Existing C++-based simulation libraries model the fixed-
point operands as objects and make extensive use of oper-
ator overloading and container data types. Also, for ease of
use, many decisions are made during run time. Thesemecha-
nisms increase the execution time of fixed-point simulations
by one to two orders of magnitude compared to floating-
point arithmetic. Thismakes the simulation run time amajor
bottleneck during the fixed-point design process.

In Section 7 various approaches for fixed-point simula-
tion are presented and a methodology for fast bit-true sim-
ulation by mapping fixed-point algorithms in SystemC to an
integer based ANSI C algorithm is introduced.

1.5. DSP targetmapping

The final step in a float-to-fixed design flow is the implemen-
tation of the DSP system, either in hardware or in software.
As a case study for targeting a high performance DSP, we have
developed a FRIDGE back end which addresses the Texas In-
struments TMS 320C62x fixed-point DSP processor and its
C compiler. The back end generates target specific integer
C code which exploits the features of the processor and the
compiler to achieve a high efficiency of the compiled code.
In Section 9 the FRIDGE C62x back end and the optimiza-
tion strategies are presented.

2. THE FRIDGE DESIGN FLOW

The FRIDGE design flow starts from a floating-point algo-
rithm in ANSI C. As illustrated in Figure 3, the designer then
annotates single operands with fixed-point attributes. Insert-
ing these local annotations results in a hybrid description of
the algorithm, that is, some of the operands are specified
bit-true, while the rest remain floating-point. A comparative
simulation of the floating-point and the hybrid code within
the same simulation environment shows whether the local
annotations are appropriate, or if some annotations have to
be modified. The integer word length of the local annota-
tions can be derived from operand range monitoring during
simulation runs. Typically, the designer manually annotates
function parameters and key variables, for example, accumu-
lator variables, which account for approximately 5% of all
operands.

Floating-point
ANSI-C code

Local
annotations

Hybrid code

“Hybrid”
simulation

Global
annotations

Interpolation

Simulation
engine

Fixed-point
code

Bit-true
simulation

Figure 3: Quantization methodology with FRIDGE.

Once the hybrid programmatches the design criteria, the
remaining floating-point operands are automatically trans-
ferred to fixed-point operands by interpolation. Interpola-
tion denotes the process of computing the fixed-point pa-
rameters of the nonannotated operands from the informa-
tion that is inherent to the annotated operands and the op-
erations performed on them. Additionally, the interpola-
tor has to observe a set of global annotations, that is, de-
fault restrictions for the calculation of fixed-point param-
eters. This can be, for example, a default maximum word
length that corresponds to the register length of the target
processor.

The interpolation results in a fully annotated program,
where each operand and operation is specified bit-true way.
Cosimulating this algorithm with the original floating-point
code will give an accuracy evaluation—and for changes now
only the set of local and/or global annotations have/has to be
modified, while the rest is determined and kept consistent by
the interpolator.

Described above are the algorithmic level transformations
as illustrated in Figure 1, that change the behavior or accu-
racy of an algorithm. The resulting completely bit-true algo-
rithm in SystemC is not directly suited for implementation,
thus it needs to be mapped to a target, such as, a proces-
sor’s architecture or to an ASIC. This is an implementation
level transformation, where the bit-true behavior normally
remains unchanged. Within the FRIDGE environment, dif-
ferent back ends map the internal bit-true specification to
different formats/targets, according to the purpose or goal of
the quantization process.

3. FIXED-POINT DATA TYPES AND LOCAL
ANNOTATIONS

Since ANSI C offers no efficient support for fixed-point data
types [12, 13], we initially developed the fixed-point lan-
guage fixed-C [14] that is a superset of the ANSI C language.
It comprises different generic fixed-point data types, cast op-
erators, and interpolator directives. The fixed-C language was
licensed to Synopsys, Inc., and Synopsys contributed it as a
set of additional fixed-point data types to the Open SystemC



Design and DSP Implementation of Fixed-Point Systems 911

iwl fwl

s

wl

wl : word length
iwl : integer word length
fwl : fractional word length
s : sign encoding/sign bit

Figure 4: Fixed-point attributes of a bit-true description.

Initiative (OSCI) [11]. Together with additional fixed-point
language elements from the A|RT Library by Frontier Design
Inc., [10] fixed-C has been the base for the development of
the SystemC fixed-point data types that are now used in the
FRIDGE project as well.

The SystemC fixed-point data types are utilized for dif-
ferent purposes in the FRIDGE design flow:

• Since ANSI C is a subset of SystemC, the additional
fixed-point constructs can be used as bit-true annotations to
dedicated operands of the original floating-point ANSI C file,
resulting in a hybrid specification. This partially fixed-point
code can be used for simulation or as input to the interpola-
tor.

• The bit-true output of the interpolator is represented
in SystemC as well. This allows a maximum transparency of
the results to the designer, since the changes to the code are
reduced to a minimum and the effects of the designer’s direc-
tives, such as local annotations in the hybrid code, become
directly visible.

The additional fixed-point types and functions are part
of a C++ class library that can be used in any design and
simulation environment that are based on or can integrate C
or C++ code (see, e.g., [1, 2, 3].)

For a bit-true and implementation independent specifi-
cation of a fixed-point operand, a three-tuple is necessary:
the word length wl, the integer word length iwl, and the sign s,
as illustrated in Figure 4.

For every fixed-point format, two of the three parameters
wl, iwl, and fwl (fractional word length) are independent; the
third parameter can always be calculated from the other two,
wl = iwl + fwl.

With a given sign encoding s, we can also compute the
minimum and maximum value that the fixed-point for-
mat <wl,iwl> can hold. For example, for a two’s comple-
ment (tc) signed representation the minimum and maxi-
mum compute to

max
〈wl,iwl,tc〉

= 2iwl−1 − 2fwl,

min
〈wl,iwl,tc〉

= −2iwl−1.
(1)

For an unsigned representation (us), on the other hand, the
minimum and maximum are

max
〈wl,iwl,us〉

= 2iwl − 2fwl,

min
〈wl,iwl,us〉

= 0.
(2)

Note that an integral data type is merely a special case of
a fixed-point data type with an iwl that always equals wl—
hence an integral data type can be described by two parame-
ters only, the word length wl and the sign encoding s.

In the following sections, we provide a short overview of
the most frequently used fixed-point data types and func-
tions in SystemC. A more detailed description can be found
in the SystemC users manual [11].

3.1. The data types sc fixed and sc ufixed

The two’s complement data type sc fixed and the unsigned
data type sc ufixed receive their format when they are de-
clared, that is, the fixed-point attributes must be known at
compile time (static arguments),

sc_fixed<wl,iwl> d,*e,g[8];
sc_ufixed<wl,iwl> c;

Thus they behave according to these fixed-point parame-
ters throughout their lifetime. This concept is called declara-
tion time instantiation (DTI). Similar concepts exist in other
fixed-point languages as well [9, 10, 15]. Pointers and arrays,
as frequently used in ANSI C, are supported as well.

For every assignment to a DTI variable, a data type check
is performed. If the left-hand data type does not match the
right-hand data type as illustrated in the code example below,
an implicit cast to the left-hand data type becomes necessary,

sc fixed<6,3> a,b;
sc ufixed<12,12> c;
a = b; /* correct, both types match */
c = b;
/* type mismatch -> implicit cast necessary */

The data types sc fixed and sc ufixed are the data
types of choice, for example, for interfaces to other function-
alities or for lookup tables, since they behave like a memory
location of a specific length and a known embedding/scaling.

3.2. The data type sc fxval

Additionally to the DTI data type concept, SystemC provides
the assignment time instantiation (ATI) data type sc fxval.
This type may hold fixed-point numbers of arbitrary format
and is especially tailored for the float-to-fixed transformation
process. A declaration of a variable of type sc fxval does
not specify any fixed-point attributes and if subsequently in
the code a fixed-point value is assigned to a sc fxval vari-
able, the variable is (re-)instantiated with all fixed-point at-
tributes of the assigned value.

3.3. The data types sc fix and sc ufix

Along with the static attribute types sc fixed and
sc ufixed, SystemC also provides the fixed-point types
sc fix and sc ufix thatmay also take nonstatic fixed-point
attributes such as variables. The function in the code exam-
ple below has the word length wl and the integer word length
iwl as formal parameters, that is, wl and iwl are not known
at compile time.



912 EURASIP Journal on Applied Signal Processing

sc fxval cast func(int wl, int iwl, sc fxval in)
{
return sc fix(in,wl,iwl);
}

As shown in this example, the constructor for the types
sc fix and sc ufix are often used to cast a value to a dif-
ferent fixed-point format.

3.4. Castmodes

For a cast operation to a fixed-point format <wl,iwl,
sign>, it is also important to specify the overflow and pre-
cision reduction in case the target data type cannot hold the
original value:

a = sc_fix(input,wl,iwl,q_mode,o_mode);

The variable a holds a two’s complement fixed-point
format <wl,iwl> and the value of input is cast to this
fixed-point data type according to the quantization mode
q mode1 and the overflow mode o mode.2 The most im-
portant casting modes are listed below. SystemC also spec-
ifies many additional cast modes to model target specific
behavior.

Quantizationmodes

Truncation (SC TRN). The bits below the specified LSB are cut
off. This quantization mode is the default for SystemC fixed-
point types and will be used if no other value is specified.

Rounding (SC RND). Adds LSB/2 first, before cutting off
the bits below the LSB.

Overflowmodes

Wrap-around (SC WRAP). In case of an overflow the MSB
carry bit is ignored. This overflow mode is the default for
SystemC fixed-point types and will be used if no other value
is specified.

Saturation (SC SAT). In case the minimum or maximum
value is exceeded the result is set to the minimum or maxi-
mum value, respectively.

With the sc fxval type, every assignment to a variable
overwrites all prior instantiations, that is, one sc fxval vari-
able may have different context-specific bit-true attributes in
the same scope. This concept of ATI is motivated by the spe-
cific design flow: transformation starts from a floating-point
program, where the designer abstracts from the fixed-point
problems and does not think of a variable as finite length reg-
ister.

The concept of local annotations and ATI is also an ef-
fective way to assign context specific information without
changing structures or variables when exploring the fixed-
point design space.

1The quantization handling specifies the behavior in case of a word
length reduction at the LSB side.

2The overflow handling specifies the behavior in case of a word length
reduction at the MSB side.

4. INTERPOLATION

The interpolator with its control and data flow analyzer is
the core of the FRIDGE design environment. As depicted
in Figure 3 it determines the fixed-point formats for all
operands of an algorithm, taking as input a user annotated
hybrid description of the algorithm and a set of global default
rules, the global annotation file. Hence interpolation describes
the computation of the fixed-point parameters of the non-
annotated operands from the information that is inherent to
the annotated operands.

The interpolative concept is based on three key ideas:
(1) Attribute propagation. The method of using the at-

tributes of the bit-true specified operands in the code to cal-
culate bit-true attributes for the remaining operands and op-
erations in the code.

(2) Global annotations. The description of default rules
and restrictions for attribute propagation.

(3) Designer support. The interpolator supplies feedback
and reports to assist the designer to debug or improve the
interpolation result.

For a better understanding the first two points are ex-
plained more detailed in the following.

(1) Attribute propagation. Given the information of the
fixed-point attributes of some operands, the type and the
fixed-point format of other operands can be extracted from
this information. For example, if for the inputs to an opera-
tion both the range and the relevant fractional word length
are specified, the same attributes can be determined for the
result.3

Consider the following line of code:

c = a + b; d = 1.5; e = c * d;

The corresponding data flow graph is depicted in
Figure 5. We assume that the ranges and the precision of the
variables a and b are known, for example, by user annota-
tions:

a ∈ [−0.25, 0.75] =⇒ Ra = [−0.25, 0.75]; fwl(a) = 2,

b ∈ [−1.25, 0.5] =⇒ Rb = [−1.25, 0.5]; fwl(b) = 2.
(3)

To receive the range Rc for the variable c that contains the
sum of the variables a and b we add the ranges Ra and Rb (a
detailed description of the range arithmetic used here can be
found in [14]),

Rc = Ra + Rb =
[
min
a

+min
b
,max

a
+max

b

] = [−1.5, 1.25].
(4)

The precision Pc (fwl) for the sum c computes to the maxi-
mum of the precisions Pa and Pb,

Pc = max
(
Pa,Pb

) = 2. (5)

The information on the range and on the precision of the
variable c is sufficient to calculate the required word length

3An exception is the division, where the accuracy of the operation must
be specified as well.



Design and DSP Implementation of Fixed-Point Systems 913

a
[−0.25, 0.75]

b
[−1.25, 0.5] c

[−1.5, 1.25]

d = 1.5

e
[−2.25, 1.875]

∗

+

Figure 5: Example for interpolation of ranges/word lengths.

or integer word length for c. The correlation between fwl,
range, and iwl yields the iwl of c:

iwlc =
⌈
max

(
log2

∣∣min
c

∣∣, log2
(∣∣max

c

∣∣ + 2−fwlc
))

+ 1
⌉

= �max(0.58, 0.58) + 1
⌉ = 2.

(6)

Thus the resulting format for c is <4,2,tc>, where tc
indicates the two’s complement representation of c.

The next step for the interpolator is to compute the fixed-
point format of the constant d. Since the range of d is Rd =
[1.5, 1.5] and the precision is Pd = fwld = 1 the iwl of d can
be calculated as

iwld =
⌈
log2

(
max
d

+2−fwl
)⌉ = ⌈ log2(1.5 + 0.5)

⌉ = 1. (7)

After all fixed-point parameters of the input operands to
themultiplication e = d * c are known to the interpolator,
it continues with the calculation of the bit-true format and
parameters for the variable e:

Re = Rc ∗ Rd = [−1.5, 1.25]∗ 1.5 = [−2.25, 1.875],
Pe = Pc + Pd = 2 + 1 = 3 =⇒ iwle

= ⌈max
(
log2

∣
∣min

e

∣
∣, log2

(∣∣max
e

∣
∣ + 2−fwle

))
+ 1
⌉

= ⌈max(1.17, 1) + 1
⌉ = 3.

(8)

Hence we receive a fixed-point format of <6,3,tc> for
the variable e.

Note that this is a rather conservative way of interpola-
tion, bits that may contain any information are never dis-
carded. For the MSB side this is called a worst case interpo-
lation, since with the iwl calculated by the interpolator an
overflow is impossible, while on the other hand it may lead
to iwls much larger than actually needed. In this case the de-
signer may add additional local annotations to cut back the
iwl to a more suited value. For the LSB side this is called
maximum precision interpolation (MPI) interpolation, that
is, by default every LSB of the operands is kept, maintaining
the highest possible accuracy. LSBs are only discarded if the
word length exceeds the maximum word length specified in
the global annotation file. This can lead to a large increase in
the (fwl), but with additional local annotations the designer
can also keep the fwl shorter. In [6] we also describe amethod
to have the interpolator calculate a less conservative value for
the fwl.

(2) Global annotations. While local annotations express
fixed-point information for single operands, the global an-
notations describe default restrictions to the complete de-
sign. For different targets, different global restrictions apply.
For SW, the functional units to perform specific operations
are already defined by the architecture of the processor. Con-
sider a 16 × 16 bit multiplier writing to a 32-bit register. A
global annotation can supply the information to the interpo-
lator that the word length of a multiplication operand must
not exceed 16 bits, while the result may have a word length of
up to 32 bits.

4.1. Implementational issues

In a first step the FRIDGE front end parses in the hybrid de-
scription into a C++-based intermediate representation (IR).
Then range propagation is performed to determine the bit-
true format for all the operands. During this process, control
and data flow analysis is also carried out. The information
gained is stored in the IR. The advanced algorithms used for
the analysis will be described in Section 5.

After this process the IR holds a bit-true description of
the algorithm with additional control and data flow infor-
mation. These data structures form the basis for additional
transformation steps performed in the FRIDGE back ends
that target different languages and platforms.

5. ADVANCED DATA FLOWANALYSIS

During the development of the FRIDGE design environ-
ment, we have identified a need for accurate data flow anal-
ysis to cater the needs of the interpolation, the fast simula-
tion code generation and the target specific code optimiza-
tion. The published methods were not capable of matching
the requirements, thus we have developed a novel approach
for data flow analysis that can provide the necessary data for
the FRIDGE back ends.

Researchers have worked on program analysis techniques
since the 1960s and there is, by now, an extensive literature
[16]. There are two major approaches to program analysis:

(a) There are static analysis techniques that analyze the
program code at compile time. Usually, sets of equations
are set up according to the program semantics and solved
by finding their fixpoint. One of the best known static ap-
proaches is Data Flow Analysis. It is treated in depth in
standard compiler books [17, 18]. Other techniques such
as constraint-based analysis and abstract interpretation are
also described in [19]. PAG [20] is a tool for generating
interprocedural data flow analyzers that implement these
techniques.

(b) On the other hand, there are techniques for dy-
namic analysis that are used for examining the behavior
of program code during execution. Typically, these tech-
niques are employed by profiling tools. Profiling informa-
tion can for example be used by programmers to find crit-
ical pieces of code or as input to profile-driven optimiz-
ers. Dynamic program analysis techniques have been im-
plemented in tools like Pixie [21] or QPT [22]. By princi-
ple, dynamic program analysis relies on input vectors to be



914 EURASIP Journal on Applied Signal Processing

processed during execution. Thus the results are of no gen-
eral nature.

Analysis techniques of neither category are suited for
the needs of the FRIDGE design environment. Static anal-
ysis puts tight constraints onto the code to be analyzed. The
use of pointers is usually not supported or yields too con-
servative results. Implementations of digital signal process-
ing systems usually make extensive use of pointers, even, for
example, for iterating over data arrays. Furthermore, static
analysis is blind for program properties that result from run
time effects. However, especially these properties have to be
taken into account by FRIDGE in order to obtain precise
results.

Dynamic analysis is to some extend capable of detect-
ing these properties. Nevertheless, it is not applicable for
the FRIDGE design environment for two reasons. First, the
results are of statistical, numerical nature. There is no way
to gain information about data flow or control flow prop-
erties. Second, the results are not generally valid, that is,
they only reflect the behavior of the program running on
the given input vectors. FRIDGE requires analysis results
that are valid for all possible executions of the program
though.

The requirements for the analysis employed by FRIDGE
are different from those of standard tools like, for exam-
ple, a general purpose compiler. FRIDGE is focused on digi-
tal processing systems. These systems are typically data flow
dominated, that is, their execution is to a great extent in-
dependent from the data to be processed. Besides, the ac-
curacy and quality of the results are more important than
speed (of analysis). This allows for a more comprehensive
code analysis than, for example, a general purpose com-
piler can apply. In order to gain precise results including
also run time properties and being able to handle pointer
operations, the code is interpreted. Since there is no con-
crete data to be processed, we process abstract data instead.
In the following this methodology is referred to as abstract
execution.

The data flow analysis unit in the FRIDGE design envi-
ronment is based on three main components:

(1) The concept of data abstraction.
(2) The state controlled memory model.
(3) The concept of coupled iterators.

5.1. Data abstraction

While in concrete execution numeric values are written to
and read frommemory, we use operations for abstract execu-
tion. An operation is a collection of information about possi-
ble values. The two most important elements are

(1) the range, that is, the minimum value and the maxi-
mum value, and

(2) a reference to the expression in the code that corre-
sponds to the operation.4

4This is for gaining data flow information.

Furthermore, operations may be ambiguous. Consider
the code example below.

01 int func(int x, int y, int z){
02 int a, b, c, d;
03
04 switch(y){
05 case 1:
06 a = 8; break;
07 case 2:
08 a = 16; break;
09 case 3:
10 a = 32;}
11
12 if(z>0)
13 b = 0;
14 else
15 b = 1;
16
17 if(x>0){
18 c = 5;
19 d = a;}
20 else {
21 c = b;
22 d = 7;}
23
24 return c + d;
25 }

The only information available about parameters x, y,
and z is that they are integers. Hence it cannot be decided
which branches of the switch- and if-statements in lines
04, 12, and 17 are executed. This results in an ambiguous
content, for example, of variable b, namely, values 05 and
1, referring to the expressions in lines 13 and 15, respec-
tively. We combine both operations to an ambiguous opera-
tion. In addition, ambiguous operations are associated with
conditions, under which the alternatives are chosen. In the
example, alternative 0 is chosen if (z > 0) is true, alter-
native 1 if it is false. In general, there may be more than
two alternatives and conditions may be combined by a logi-
cal AND.

Operations are arranged in graphs similar to binary de-
cision diagrams introduced by Akers [23], where the nodes
embody the ambiguous operations and the leafs the unam-
biguous operations.

In general, operations are described by the following
rules:

(i) an operation is either an unambiguous operation or an
ambiguous operation;

(ii) an unambiguous operation represents a possible con-
tent in memory during concrete execution of a pro-
gram;

5When talking about a value, we mean an operation with a range degen-
erated to a value.



Design and DSP Implementation of Fixed-Point Systems 915

Interpreter read/write

State
controlled
memory
model

C
on

trol

Current
state

M
es
sa
ge
s

Figure 6: Abstract execution.

(iii) an ambiguous operation is associated with a control
flow ambiguity in the code (dashed line in Figure 7)
and matches each possible branch to an operation.

Thus these trees do not only contain the alternatives, but
also the conditions under which the alternatives are taken.
The conditions are determined by all the ambiguities along
the path from the root to the alternative. Each ambiguity
contributes to the condition in this way, that the condition
for the execution of the control flow branch must be fulfilled,
that is associated with the link to the next operation on the
path. A logical AND is applied to the contributions of each
ambiguity.

For example, the tree in Figure 7 with A3 as its root shows
the ambiguity tree corresponding to variable d in line 24.
The path to value 32 (bold line) goes through ambiguities
A3 and A4. A3 is associated with the if-statement and the
path follows the link that is associated with the true-branch.
That yields the condition (x > 0) == true. Further on,
the path passes through A4 and follows the link to 32. A4 is
associated with the switch-statement and the link to 32 with
case 3. That yields the condition y == 3. Thus the result-
ing condition for A3 taking on the value 32 is6

(x > 0) == true && y == 3

5.2. The state controlledmemorymodel

As illustrated in Figure 6, the state controlled memory Model
serves as a regular memory that can be read and written to.
Besides, it is responsible for building the ambiguity trees de-
scribed in Section 5.1.

As long as the current state is in initial state, the behavior
of the state controlled memory model does not differ from
a regular memory. Once the current state contains a condi-
tion, all changes done to memory contents only occur un-
der that condition and result in appropriate ambiguity trees.
The state is defined by a set of assumptions about the re-
sult of particular expressions in the code. A logical AND is
performed on these assumptions. The initial state makes no
assumptions at all. Other valid states could for example be
“(x > 0) == true” or “(x > 0) == true && y == 3.”
During abstract execution, the state can be changed by the
interpreter.

6This notation is according to C syntax.

if (x > 0)

A1

true 5

false true

A2
false

0

1

if (z > 0)

switch (y)

A3

true

false

A4

7

case 1:

8

case 2:

16

case 3:

32

Step
Nr.

Current
state

(1)

(2)

(3)

(4)

(5)

(6)

(x > 0) == t&&y == 1

(x > 0) == t&&y == 2

(x > 0) == t&&y == 3

(x > 0) == f&&(z > 0) == t

(x > 0) == f&&(z > 0) == f

Figure 7: Iterating over ambiguities.

5.3. Iterating over ambiguities

When abstractly executing statements (Section 5.4) or com-
puting the set of all possible evaluations of an expression,7

We have to iterate over the alternatives of ambiguities. This is
basically done by traversing the corresponding tree. However,
the current state is taken into account, that is, only those alter-
natives are visible, whose conditions are not contradictory to
the current state. Furthermore, when selecting an alternative
from an ambiguity, the corresponding conditions are—if not
yet included—added to the current state. This way, the fol-
lowing is achieved: All data couplings are taken into account,
that is, no impossible cases are considered. Alternative exe-
cutions of statements can be done without further thought
about the current state (see Section 5.4).

Selecting an alternative from an ambiguity is done by
building a path through the corresponding tree. The end of
the path is an unambiguous operation. In principle, iterating

7For example, this is done when computing fixed-point parameters of an
expression.



916 EURASIP Journal on Applied Signal Processing

is performed on all successors of an ambiguity first, until it
will be iterated over the alternatives of the ambiguity itself
(depth first). When establishing a path through an ambigu-
ity, two basic cases have to be considered:

(1) The current state contains a condition respective to
the control flow fork that is associated with the ambiguity.
In this case, the path must follow the link that corresponds
to the condition and may not be altered. The node would be
considered a slave node.

(2) The current state does not yet contain a condition re-
spective to the control flow branch that is associated with the
ambiguity. In this case, a possible branch is selected and the
path is extended by the corresponding link. The correspond-
ing condition is added to the current state. The node would be
considered a master node. During further iteration, the path
will switch to all other links successively. When this is done,
the respective condition has to be updated accordingly. After
that, the condition is removed from the current state.

The trees in Figure 7 show the contents of variables c
(left-hand side) and d (right-hand side) connected to line
24 in the code. Figure 7 also illustrates how to iterate over
all possible combinations of contents of both variables. Note
how building a path through an ambiguity affects the cur-
rent state and how the current state masks the visible alter-
natives of ambiguities. First of all value 5 is selected from
ambiguity A1. The corresponding condition ((x > 0) ==
true) is added to the current state. Thus A1 becomes a mas-
ter node. When building the path through A3, A3 becomes
a slave node, because the current state already makes an as-
sumption about the control flow ambiguity that is associated
with A3 ((x > 0)). Therefore, the path must follow the link
from A3 to A4. Nodes A2 and A4 are associated with different
control flow forks, respectively. They always become master
nodes and never affect any other ambiguities. Steps 2 and 3 it-
erate over the remaining visible alternatives of the right-hand
tree. Step 4 switches to the second alternative of master node
A1 (false). This affects the slave A3 in this way as long as the
path in the left-hand tree goes from A1 to A2 (steps 4 and 5),
the only visible alternative of the right-hand tree is 7. In step
6 the iteration has been completed.

5.4. Execution of a program

Figure 8 shows how statements are abstractly executed. The
solid lines represent the control flow of a concrete execu-
tion. Abstract execution also follows that control flow. How-
ever, statements that depend on ambiguous data are executed
multiple times (dashed lines), once for every possible vector
of the involved ambiguities. The vectors are iterated over as
described in Section 5.3. Thus every execution is performed
in a different current state, such that changes in memory to-
gether with their corresponding states are stored in ambi-
guity trees. This algorithm is applied recursively for nested
statements. Any code constructs can be executed this way.

Although a possibly large number of execution states ex-
ists, we found that the run time and the memory consump-
tion of the analysis were remarkably low for typical signal
processing algorithms. In most cases the control and data

Control flow

Statement

Statement

Alternative
executions

Figure 8: Abstract executions of sequential statements.

flow analysis was performed in less than one second on a
800MHz PC.

The information gained during abstract execution is
stored in the intermediate representation of the algorithm.
The FRIDGE back ends, which will be introduced in the
next sections, access this information to perform several code
transformation steps.

6. FAST BIT-TRUE SIMULATION

As pointed out in Section 1, transforming a signal processing
algorithm from a floating-point to a fixed-point requires ex-
tensive simulations due to the nonlinear nature of the quanti-
zation process. The available C++-based fixed-point libraries
[10, 11] offer a high modeling efficiency but the simulation
speed of these libraries on the other hand is rather poor. This
makes simulation speed amajor bottleneck in the fixed-point
design process.

Utilizing C-based fixed-point libraries like the ETSI ba-
sic arithmetic operations [24] does not overcome this prob-
lem as the simulation speed still has a considerable overhead
compared to an equivalent floating-point implementation.

Existing C++-based simulation libraries model the fixed-
point operands as objects. In order to offer generic fixed-
point data types without word length restrictions, data con-
tainer types are used as an internal representation. Bit-true
operations are performed by operator overloading. Range
checking, the choice of cast modes and many other decisions
necessary for correct bit-true behavior are done at simula-
tion time. The price for this flexibility and ease of modeling
is slow execution speed as the generic fixed-point data types
modeled by extensive C++ constructs cannot be efficiently
mapped to the architecture of the host machine by today’s
C++ compilers.

A simulation speedup can be achieved by mapping the
fixed-point operands to the mantissa of the floating-point
hardware of the host machine and bit level manipulations
to maintain bit-true behavior. This restricts the maximum
word length of the fixed-point operands to the word length
of the mantissa. This approach has been described by Kim
et al. [25] and it is also implemented in the SystemC library
[11].



Design and DSP Implementation of Fixed-Point Systems 917

Another mean of speeding up fixed-point simulations is
the use of a hardware accelerator, for example, an FPGA to
perform computationally expensive operations. The acceler-
ation can be achieved either by utilizing configurable logic or
by combining configurable logic with a processor. This ap-
proach has been described by De Coster [26]. The mapping
of the algorithm to the different hardware units and the data
transfer between the units make additional transformation
steps necessary.

The work described in this article proposes a mapping of
fixed-point algorithm in SystemC to an integer-based ANSI
C algorithm that directly addresses the built-in integer ALU
of the host machine. An efficient mapping includes an em-
bedding of all fixed-point operands into the host machine
registers, a cast mode optimization and many other aspects,
and requires a detailed control and data flow analysis of the
algorithm. Independently from the authors’ work, De Coster
[26] proposed a similar method, using DFL [27] as input lan-
guage and targeting directly a Motorola DSP65000.

Our work presented here represents a continuation of the
research results published by Keding et al. [6] and Willems
[14] and introduces improved concepts for the mapping pro-
cess that result in a considerable simulation acceleration.

For the fast simulation back end we assume that fixed-
point attributes are assigned to every operation. The back
end also requires the information collected during the con-
trol and data flow analysis stored in the IR. After a number of
IR refinements, an ANSI C representation of the algorithm
using only integral data types can be derived from the IR.
It is important to note that the transformation in the back
end, in contrast to the float-to-fixed transformation in the
IR, does not change the behavior of the algorithm. The fully
quantized algorithm coded in SystemC and the integer-only
ANSI C algorithm yield bit-by-bit identical results, making
the fast simulation back end output ideally suited for fast bit-
true simulation on a workstation or PC.

7. TRANSFORMATION TO ANSI C

7.1. The lbp alignment

For the embedding of a fixed-point operand specified by a
triple (wl, iwl, sign) into a register of the host machine with
the machine word length (mwl) the minimum requirement
is

mwl ≥ wl = iwl + fwl. (9)

Figure 9 illustrates different options for embedding an
operand with a word length of 5 bit into a given mwl of 8.
Obviously, for mwl > wl, a degree of freedom for choosing
the location of binary point (lbp) exists:

mwl− iwl ≥ lbp ≥ wl− iwl = fwl. (10)

Beside this degree of freedom, there are also a number of
constraints for the selection of the lbp:

(i) Interface constraints. For interface elements, such as,
function parameters or global variables, the lbp must be de-

mwl
wl

iwl fwl

s s s s s s s s s s

Ibp

s s s

mwl : machine word length
wl : word length
iwl : integer word length
fwl : fractional word length
Ibp : location of binary point
s : sign encoding

Figure 9: Embedding a 5-bit word into an 8-bit register.

fined identically for a function and all calls to this function.
Otherwise, the data written to or read from these data ele-
ments will be misinterpreted.

(ii) Operation constraints. Each operation has an lbp syn-
tax. This lbp syntaxmay include constraints on the lbp of the
operand(s) of the operation and/or rules for the calculation
of the lbp of the result. For example, the operands and the
result of and addition must have the same lbp.

(iii) Control and data flow constraints. Generally, a read
access to a storage element must use the same lbp as the pre-
ceding write access to the storage element. This implies that if
a write operation to a memory location occurs in alternative
control-flow branches, the lbp must be at the same position
in both write operations, as no run time information about
the lbp is available in a following read operation. The same
applies to ambiguous write operations to arrays and write
operations via pointers.

7.1.1 The lbp alignment algorithm

The lbp alignment algorithm implemented in the fast sim-
ulation back end is designed to take advantage of the de-
gree of freedom described by (10), while meeting the con-
straints specified above. Meeting these constraints and main-
taining the consistency of the lbps require precise informa-
tion about the control and data flow of the algorithm. To ob-
tain this information we used the data flow analysis method
described in Section 5. The data flow information is repre-
sented basically as define-use (du) chains and use-define (ud)
chains [17, 18], with additional and more accurate informa-
tion about ambiguous control flow.

Initially, for all operands lbp = fwl is chosen. Thus all
operands are right aligned. In a first step we set the lbps of all
interface elements according to the interface constraints.

Then, in an iterative process, the data flow information
is used to adjust the lbps by insertion of shift operations to
meet the operation constraints and the control and data flow
constraints. The algorithm terminates when all conditions are
fulfilled and the lbps did not change during the last iteration.

The operation constraint lbp alignment algorithm basi-
cally consists of an iteration over all operations and an ad-
justment of the operand and result lbps according to the op-
eration’s lbp syntax.

The control and data flow constraint lbp alignment algo-
rithm searches for all read accesses from a data element the
associated previous write accesses to the same data element,
that is, finding all defines for a use of a data element (ud-



918 EURASIP Journal on Applied Signal Processing

chains). According to the control and data flow constraints
the lbp of operands linked by such ud-chains are set to the
same value.

Finally, the embedding of constants can be done in a way
that the required shift operations when using the constant
are minimized.

Unlike described by Kum et al. [28], we do not use a shift
operation minimizing approach here, but using the degree
of freedom in choosing a suited lbp (10) and the accurate
data flow information, we found that there is not sufficient
potential for this optimization to justify the effort.

7.2. Data type selection

The next step in the transformation process is the selection
of suitable integral data types for fixed-point variables. The
FRIDGE internal bit-true specification of the algorithm fea-
tures arbitrary word lengths. With the SystemC back end this
does not represent a problem, since the SystemC data types
are generic and may be of any bit length required. With the
fast-simulation back end, on the other hand, we only have the
limited pool of the built-in data types of the host machine,
that is, integral data types like char, short, int, long.

7.2.1 Basic constraints for any data element

A matching data type for every fixed-point variable has to be
chosen. The minimum requirement for the data type chosen
is that it can be embedded into the host machine data type
with word length mwl at the correct location, (see Figure 9
for illustration) iwl + lbp ≤ mwl.

7.2.2 Structural constraints

Additionally, the requirements introduced by data structures
that force each of their elements to be of the same data type
have to be met. An example for this behavior are arrays. The
target data type for theN elements of an array must fulfill the
following condition: maxN−1i=0 (iwlarray[i] + lbparray[i]) ≤ mwl.

7.2.3 Semantical constraints

Another constraint becomes important if aliasing of data el-
ements, for example, by pointers occurs: a pointer may point
to different data elements. For syntax and semantics reasons
all aliased data elements and the base type of the pointermust
be identical [13]. This only causes a problem if data types
are changed like it is done in fixed-point optimizations or
the floating-point to fixed-point transformation process de-
scribed in Section 2: initially, most numerical data types are
floating-point types but after the transformation there are
various different fixed-point data formats. Hence special care
must be taken during the code generation process to ensure
that the types are consistent. A detailed description of the
data type selection algorithm used can be found in [29].

7.3. Castmode transformation

Cast operations can reduce or limit the word length on the
MSB side of a word (overflow handling) or at the LSB side of
a word (quantization handling). They are used either to pre-

vent indeterministic behavior of fixed-point systems8 or to
model a data path that is different from the host machine.
This is often the case when algorithms for DSP systems are
developed. Fixed-point libraries like in SystemC offer various
generic overflow and quantization handling modes, which
makes SystemC an efficient means of modeling fixed-point
systems. For fast fixed-point simulation, on the other hand,
the use of these generic casting modes are simply ruled out
for performance reasons.

7.3.1 Overflow handling

Overflow handling is required if it is necessary to reduce the
wl at the MSB side of the word or if the carry bit is set for the
MSB. Examples for frequently used overflow handlingmodes
in digital signal processing algorithms are wrap-around and
saturation [30].

Saturation

In SystemC, a cast of an expression expr to a wl-bit tc data
type with integer word length iwl applying saturation as over-
flow mode can be modeled as follows:

result = sc_fix(expr,wl,iwl,...,SC_SAT);

The fast simulation code generation on the other hand trans-
lates this into plain C code that first tests if the range of data
type is exceeded, and if so it sets the resulting value to the
minimum or maximum of this type, which is

MAX
wl,iwl,lbp,tc

= 2iwl+lbp−1 − 2lbl−fwl,

MIN
wl,iwl,lbp,tc

= −2iwl+lbp−1 + 2lbl−fwl − 1.
(11)

Thus the fast simulation code construct generated is the fol-
lowing:9

int tmp;
result=((tmp=expr)>MAX)?MAX:(tmp<MIN)?MIN:tmp;

Introducing an additional temporary variable avoids multi-
ple evaluations of expr.

Wrap-Around

The SystemC way of casting an expression expr to a wl-bit tc
data type with integer word length iwl applying wrap-around
as overflow mode is shown here,

result = sc_fix(expr,wl,iwl,...,SC_WRAP);

For the bit-true ANSI C equivalent of this operation sev-
eral options exist. An example for a code construct for wrap
around assuming two’s complement arithmetic and a ma-
chine word length of mwl is

8In many cases, the ANSI C standard [13] does not specify the bit-true
behavior of integral data types in case of overflow, quantization, and so
forth.

9Note that for the code generation we also take the bit-true properties of
the processor and compiler into account.



Design and DSP Implementation of Fixed-Point Systems 919

result = (expr << SHIFT) >> SHIFT;

The amount of shifts computes to SHIFT = mwl− iwl−
lpb. The shift left eliminates theMSBs whereas the arithmetic
shift right provides a sign extension for the new MSB.

7.3.2 Quantization handling

If the word length of an operand is reduced at the LSB side,
we can apply different quantization handling modes. The
most frequently encountered are rounding and truncation.

Rounding

In SystemC the method for casting an expression expr to a
wl-bit two’s complement data type with integer word length
iwl applying rounding as quantization mode is

result = sc_fix(expr,wl,iwl,SC_RND,...);

Rounding is defined by adding DELTA = LSB/2 to the
operand and eliminating the LSBs, for example, by shifting it
right SHIFT = lbp − fwl bits. Thus the rounding operation
can be realized in the fast simulation code by

result = ((expr + DELTA)>>SHIFT)<<SHIFT;

Truncation

The truncation operation, given in SystemC by

result = sc_fix(expr,wl,iwl,SC_TRN,...);

can be implemented efficiently by a bit mask operation,

result = expr & (~MASK);

Where MASK is given by 2lpb−fwl−1.
For several combinations of cast modes, for example,

wrap-around combined with rounding or truncation, more
efficient joint quantization and overflow handling C code
constructs are generated. The shift operations introduced by
the cast code constructs are also utilized to adjust the lbp of
the expression, eliminating the need for additional scaling
shifts.

8. EXPERIMENTAL RESULTS

The code generated by the FRIDGE fast simulation back
end has been benchmarked against the fixed-point simula-
tion classes, which are part of the C++-based SystemC lan-
guage. The simulation classes offer two simulation modes: a
mode supporting unlimited fixed-point word lengths based
on concatenated data containers and amode supporting lim-
ited precision up to 53 bits based on float-arithmetic and bit
manipulations.

The benchmarks have been performed on a SUN Ul-
tra 10 workstation running SOLARIS using the GCC com-
piler version 2.95.2 with the -O3 option. The SystemC li-
brary version 1.0 was utilized for the bit-true simulations.
The benchmark is based on typical signal processing ker-
nels, FIR 17-tap FIR filter, DCT 8× 8 JPEG DCT algorithm,

Autocorr 25 elements 5th order autocorrelation, IIR 3rd
order IIR filter, FFT complex FFT of length 8, Matrix 4 × 4
matrix multiplication.

Four different versions of the kernel functions have been
benchmarked:

(i) Floating-Point. The execution speed of the floating-
point implementation of the algorithms serve as reference for
the benchmarks.

(ii) SystemC. The quantized bit-true version of the algo-
rithms utilizing the SystemC fixed-point data types. The al-
gorithms have been quantized using the FRIDGE design en-
vironment.

(iii) SystemC limited precision. The quantized bit-true
code has been compiled with the limited precision option to
speed up SystemC fixed-point operations.

(iv) Fast simulation code. The fast fixed-point simulation
code based on integral data types has been generated by the
FRIDGE back end applying the transformation techniques
described in the previous sections. The code yields bit-by-bit
the same results as the code utilizing the SystemC data types.

The experimental results are presented in Table 1. As the
floating-point code has been used as a reference, the exper-
imental data has been scaled relative to the execution speed
of the floating-point code. The bit-true SystemC code con-
sumes by a factor of 325 to 1103more run time than the orig-
inal floating-point code, making bit-true simulation a major
bottleneck in the fixed-point design flow. Utilizing the lim-
ited precision mode of the SystemC library, a speedup by a
factor of 3.1 · · · 5.2 can be achieved, but the fixed-point code
is still by a factor of 67 · · · 234 slower than the floating-point
reference.

The fast simulation code runs by a factor of 18.8 · · · 90.9
faster compared to the SystemC fixed-point code utilizing
the limited precision option. For the unlimited precision the
speedup is 91.0 · · · 454.2, respectively.

Compared to the floating-point reference code, the fast
simulation code is by a factor of 2.5 · · · 6.9 slower. This is
due to the host system’s architecture and additional shift and
bit mask operations necessary to perform lbp-alignment and
cast operations to maintain bit-by-bit consistency with the
quantized code.

The quantized DCT algorithm contains many cast oper-
ations to reduce fixed-point word lengths introduced by the
quantization process. As these operations can be modeled ef-
ficiently by bit mask operations in the fast simulation code,
the highest speedup was achieved for this kernel function.

9. DSP CODE GENERATION

During the recent years, new architectural approaches for
DSP processors have been made. The current generation of
high performance DSP processors features a pipelined VLIW
architecture (very long instruction word), which offers a very
high computing performance if a high degree of software
pipelining in combination with instruction level parallelism
is used. But programming these processors manually utiliz-
ing assembly language is a very tedious task. In awareness of
this problem, the modern DSP architectures have been de-



920 EURASIP Journal on Applied Signal Processing

Table 1: Relative execution speed.

Floating-point ANSI C SystemC SystemC limited precision Fast simulation code

FIR 1.0 386.5 102.7 2.8

DCT 1.0 1103.1 233.9 2.5

Autocorr 1.0 694.6 130.6 6.9

IIR 1.0 371.0 120.2 3.1

FFT 1.0 354.7 67.7 2.6

Matrix 1.0 325.9 71.2 3.6

veloped using a processor/compiler codesign methodology
which led to compiler-efficient processor designs.

On the other hand, a significant gap in the system design
flow is still evident; there is no direct path from a floating-
point system level simulation to an optimized fixed-point
implementation. Today a manual implementation on the
DSP and target specific code optimization is necessary, in-
creasing time-to-market and making design changes very te-
dious, error prone, and costly. Thus we have developed an
optimizing FRIDGE back end to generate target optimized
DSP C code. The target specific code generation is necessary
for two reasons:

(i) The generic fixed-point data types used for fixed-
point simulations are not suited for DSP implementation, as
the currently available DSP compilers do not support C++
fixed-point data types. The upcoming generation of DSP
compilers will support C++ language constructs, but com-
piling the fixed-point libraries for the DSP is no viable al-
ternative as the implementation of the generic data types
makes extensive use of operator overloading, templates, and
dynamic memory management. This will render fixed-point
operations rather inefficient compared to integer arithmetic
performed on a DSP.

(ii) Compiling the FRIDGE-generated integer ANSI C
code on a DSP is also not sufficiently efficient as the generic
C code does not exploit the capabilities of the DSP hardware
such as built-in saturation and rounding logic or SIMD pro-
cessing.

As a case study, we have chosen the TMS320C62x pro-
cessor and its C compiler as a target for the FRIDGE de-
sign environment.This enables a seamless design-flow from
floating-point to optimized C62x C code utilizing integral
data types. Generating a C62x optimized version of a signal
processing algorithm using a different set of fixed-point pa-
rameters becomes a matter of hours instead of days or weeks
using the conventional manual techniques. The C62x integer
code generated by the design environment yields bit-by-bit
the same results as the fixed-point code utilizing C++ simu-
lation classes on the host machine. Thus a comparative sim-
ulation to the “golden reference model” gives the designer a
high degree of confidence in the generated code.

The first objective of our case study was to find out
which C code constructs compile into efficient C62x as-
sembly code. Thus we applied the DSPstone benchmarking
methodology to the C62x optimizing C compiler. The DSP-
stone project [31], conducted in 1994 by ISS, Aachen Uni-

versity of Technology established a benchmarking method-
ology for DSP compilers by comparing the performance of
compiled C code to hand optimized assembly code in terms
of program/data memory consumption and execution time.
As a consequence, it allows to identify a possible mismatch
between architecture and compiler. The benchmarking has
been done using eleven typical signal processing algorithms
(FIR, FFT, DCT, minimum error search, etc.). The bench-
marking gives quantitative results for cycle count and pro-
gram memory consumption.

In a second step, we used C62x specific C language ex-
tensions (intrinsics) and compiler directives to restructure
the off-the-shelf C code while maintaining functional equiv-
alence to the original code. These optimizations led to a con-
siderable improvement in performance in many cases as the
compiler was able to utilize software pipelining and instruc-
tion level parallelism to speed up the code. It has turned out
that software pipelining is the key to achieving a high per-
formance but, on the other hand, requires careful analysis
and code restructuring. The evaluation [32] gave quantita-
tive performance data for the C62x compiler and a set of code
optimization techniques to generate efficient C62x C code.

In a third step, we benchmarked various implementa-
tions of the fixed-point quantization and overflow handling
modes on the C62x. This led to a set of optimized implemen-
tations for the quantization and overflow handling function-
ality.

9.1. DSP code transformation

The FRIDGE C62x back end performs similar transforma-
tion steps as the fast bit-true simulation code generation
presented in Section 6: lbp alignment, cast mode transfor-
mation, and data type selection. Additionally, target specific
code optimization is performed.

The designer has to keep the special requirements of
the DSP target in mind to reach a high level of efficiency.
Through our experiments we found that, for example, the
number of cast statements and shift operations has a strong
influence on the efficiency of the generated code. Thus if the
designer chooses settings for the global annotations and the
default cast mode during the early stages of the transforma-
tion which do not represent the properties of the target ar-
chitecture properly, the code optimization and the DSP com-
piler are not able to generate efficient assembly code.

The optimizations performed in the FRIDGE C62x back
end are source level transformations to supply the C62x com-



Design and DSP Implementation of Fixed-Point Systems 921

piler with the best C code possible. The amount of analy-
sis done in an optimizing compiler is usually limited due to
constraints of the time used for compilation. In the FRIDGE
design environment, control and data flow analysis is per-
formed with the maximum possible accuracy utilizing the
techniques presented in Section 5. The information gained
during this analysis is available for the back end code trans-
formation as well. Thus we are able to perform code restruc-
turing techniques, which are usually beyond the scope of an
optimizing compiler.

9.1.1 The lbp alignment

As the TI C6000 processor family has an integer multiplica-
tion mode, the right alignment strategy of the lbp alignment
algorithm can also be applied in the C62x back end. This al-
gorithm implicitly minimizes the number of scaling shifts. In
contrast to the fast bit-true simulation, the number of scal-
ing shifts generated is important for the C62x code genera-
tion. For the fast simulation code generation we found the
potential of shift minimization limited to a performance im-
provement of 3% · · · 13% [29]. This is different for the C62x
code generation. As the C62x can perform two scaling shift
operations per cycle, a shortage of functional units limits the
performance in highly software pipelined loops. Thus “shift
poisoning” of loops must be avoided, for example, by choos-
ing suitable fixed-point data types for function parameters
and central data structures.

9.1.2 Data type selection

As the properties of the data paths of the C62x processor and
the width of the integral data types supported by the C62x
C compiler are known, the design environment can utilize
this information during the transformation process. A set of
global annotations for the C62x guides the interpolation pro-
cess and a set of integral data types with a given bit length is
supplied to the C62x back end.

9.1.3 Castmode transformation

The generic overflow- and quantization handling modes of-
fered by SystemC have to be mapped to the target hardware
in an efficient manner. The C62x offers built-in saturation
hardware which can be used by the back end. This is illus-
trated by the following example.

Cast mode: saturation
A cast of an expression to a wl-bit two’s complement data
type with integer word length iwl applying saturation as over-
flow mode is modeled in SystemC as follows:

result=sc_fix(expr,wl,iwl,...,SC_SAT);

An implementation of this code construct in generic
ANSI C is

int tmp;
result=((tmp=expr)>MAX)?MAX:(tmp<MIN)?MIN:tmp;

On the C62x the sshl intrinsic (saturating shift left) can
be used to perform the saturation operation:

result=(signed)_sshl(expr,SHIFT)>>SHIFT;

where SHIFT is given bymwl−(iwl+lbp). Utilizing the built-
in saturation hardware of the C62x via the sshl intrinsic al-
lows the generation of code with linear control flow in con-
trast to the forked control flow in the ANSI C implementa-
tion. This significantly speeds up the code.

9.1.4 Loop optimizations

The key to high execution speed on the C62x is software
pipelining and instruction level parallelism. This is especially
important for loops, where most of the execution time is
spent for most digital signal processing algorithms. The latest
version of the C62x C compiler is able to perform quite so-
phisticated loop optimizations to achieve high performance.
This can be further improved by restructuring the loops at
source level, applying techniques like loop unrolling, scalar
expansion and splitting data paths. By introducing SIMD
(single instruction multiple data) intrinsics it is possible to
reduce the required number of load/store operations signif-
icantly. The C62x back end utilizes the data- and control
flow information and the code transformation infrastructure
to identify possible loop optimizations and to perform the
necessary loop restructuring. The design environment main-
tains the consistency of generated code.

10. EXPERIMENTAL RESULTS

We have benchmarked the cycle count performance of the
generated C62x integer C code using two sets of typical sig-
nal processing kernel functions: The first set consists of six
off-the-shelf kernels which have been initially coded with-
out DSP specific code optimization. The second set of kernels
has been extracted from TI’s C6000 compiler benchmarking
suite.

10.1. Off-the-shelf kernels

This set of kernels consists of six signal processing functions,
which also have been used for the benchmarks in Section 8:
FIR, DCT, Autocorr, IIR, Matrix, Dotprod. The code has been
translated using TI’s C6x compiler version 4.0 [33] and the
performance has been compared with three reference codes:

(i) C67x floating-point C code. The C67x floating-point
DSP is code-compatible to the C62x and its C compiler is
mostly identical to the C62x C compiler, thus the perfor-
mance of the generated fixed-point C code can be compared
to the original floating-point C code.

(ii) C62x floating-point emulation. The floating-point
emulation library which is part of the C62x compiler’s run
time library allows the user to perform floating-point arith-
metic on the C62x processor. The floating-point operations
are executed as function calls.

(iii) C62x integer ANSI C code. The FRIDGE back end al-
lows the designer to generate ANSI C fixed-point code with-
out C62x specific optimization. This code can also be com-
piled and executed on the C62x processor. The efficiency of
the target specific code optimization can be benchmarked us-
ing this code.



922 EURASIP Journal on Applied Signal Processing

Table 2: Cycle count.

Floating-point Float emulation Generic ANSI C Target specific C

Device C67x C62x C62x C62x

FIR 132 1304 523 234

DCT 331 34163 1509 622

Autocorr 564 6581 3057 1041

IIR 73 708 82 81

Matrix 108 4999 1600 233

Dotprod 95 9436 1300 406

0%

20
0%

40
0%

60
0%

80
0%

10
00
%

12
00
%

14
00
%

16
00
%

Floating-point C67×
ANSI-C C62×
Optimized C62×

Dotprod

Matrix

IIR

Autocorr

DCT

FIR

427%
1368%

100%

216%
1481%

100%

111%
112%
100%

185%
542%

100%

188%
456%

100%

177%
396%

100%

Figure 10: Cycle count relative to floating-point code.

Table 2 presents the benchmarking results for the six ker-
nel functions. Figure 10 illustrates the relative cycle count. As
the C67x floating-point code has been used as a reference, it
was scaled to 100%. For readability the results of the floating-
point emulation have been omitted in the bar graph.

As depicted in Table 2 the C62x floating-point software
emulation has a cycle count which is by a factor of 9.7 to 103
higher than the cycle count of the same code compiled for
the floating-point processor.

The generic ANSI C integer code without C62x specific
language extensions is by a factor of 1.1 to 14.8 slower than
the floating-point code. The integer code performs addi-
tional shift- and bit-masking operations to ensure the bit-
true behavior. Some of the cast-operations cannot easily be
modeled in generic ANSI C. Thus a significant overhead is
introduced for kernel functions where many cast operations
are inserted by the interpolation (e.g., the DCT).

The performance can be improved by matching the gen-
erated code to the target architecture. For example, utilizing
the sshl intrinsic is a convenient way to access the C62x sat-

uration hardware directly. This reduces the overhead intro-
duced by the additional shift and cast operations to a factor
of 1.1 to 4.3 compared to the floating-point code.

For the floating-point code of the Dotprod kernel func-
tion, the compiler was able to generate efficient code using
95 cycles for 64 vector elements. For the fixed-point code, the
additional operations needed for cast operations in the inner
loop prevent the compiler from achieving similar efficiency.
Removing all scaling shifts and overflow protection from the
inner loop of the fixed-point code for this kernel yields a cy-
cle count of 83. Introducing a single scaling shift in the inner
loop brings the cycle count up to 147, adding overflow pro-
tection yields 406 cycles. Similar effects appear in theMatrix
kernel benchmark.

10.2. TI compiler benchmarking kernels

This set of kernels consists of six signal processing functions:
IIR 16-coefficient IIR filter, IIR cas biquads 10 cascaded bi-
quads, FIR 10-tap 40 sample FIR filter, MAC VSELP two 40
samples vectors,VQMSEMSE between two 256 element vec-
tors, VEC SUM vector sum of two 44 sample vectors.

For these kernels hand-optimized C62x assembly code
and C62x integer C code is available on TI’s website. It is
noteworthy that neither the C code nor the assembly code
was coded with overflow protection. For the embedding of
input and output operands, implicit assumptions were made
which reduced the number of scaling shifts in the kernel
functions. Thus the hand-optimized C62x assembly code can
serve as an “upper bound” for the efficiency of the FRIDGE
C62x design flow.

We derived the floating-point code from the integer C
code. The function interfaces in the floating-point code were
manually annotated with fixed-point specifications to get hy-
brid code. The hybrid code was used as input to generate op-
timized C62x integer code from the FRIDGE C62x environ-
ment. The FRIDGE generated C62x code features full over-
flow protection and maintains consistency for the “location
of binary point” for input and output operands. The code has
been translated using TI’s C6x compiler version 4.0 [33] and
the performance has been compared to the reference codes:

(i) C67x floating-point C code. This is the floating-point
code compiled for the C67x processor.

(ii) C62x hand-optimized integer C code. This is the orig-
inal hand-optimized code from the benchmarking suite.



Design and DSP Implementation of Fixed-Point Systems 923

Table 3: Cycle count.

Floating-point Assembly Hand optimized ANSI C FRIDGE

Device C67x C62x C62x C62x

IIR 85 42 38 72

IIR BIQUAD 149 70 82 108

FIR 315 237 278 373

MAC VSELP 175 61 59 207

VQMSE 559 279 275 275

VEC SUM 63 48 51 127

0% 50% 100% 150% 200% 250%

Floating-point C67×
Hand-optimized assembly

Hand-optimized C

FRIDGE

VEC SUM

VQMSE

MAC VSELP

FIR

IIR BIQUAD

IIR

202%
76%
81%

100%

49%
49%
50%

100%

153%
34%
35%

100%

103%
88%

75%
100%

72%
55%

47%
100%

85%
45%
49%

100%

Figure 11: Cycle count relative to floating point code.

(iii) C62x hand-optimized assembly code. The hand-
optimized assembly code served as a reference for the bench-
marks.

Table 3 presents the benchmarking results for the six ker-
nel functions. Figure 11 illustrates the relative cycle count.
For consistency, the floating-point code has been used as a
reference, it was scaled to 100%.

For these kernels, the C6x compiler was obviously able
to generate very efficient code. For consistency we have mea-
sured the cycle count including the function call. This causes
the hand-optimized C code to be faster than the hand-
optimized assembly code for some kernels. The floating-
point code is slower than the hand-optimized assembly and
C code in all cases as the floating-point instructions need
more execution stages than their integer counterparts. For

this set of kernel functions the FRIDGE generated code con-
sumes more cycles than the hand-optimized code as addi-
tional shift and cast operations for overflow protection are
performed. For some kernels, such as, the MAC VSELP and
the VEC SUM, this leads to a significant overhead as the
hand-optimized code uses the processor’s functional units in
a very efficient manner. Introducing additional shift and bit
mask operations in the innermost loop slows down the code,
as no unused functional units are available in the very tight
loop pipelining schedule. Especially the s-unit which per-
forms shift operations is heavily used and becomes the per-
formance bottleneck. Nevertheless, the FRIDGE generated
code comes very close in performance to the hand-optimized
code while offering full overflow protection and maintaining
consistency of input and output data formats.



924 EURASIP Journal on Applied Signal Processing

11. SUMMARY

The FRIDGE design environment presented in this article
allows the designer to concentrate on the critical issues of
floating-point to fixed-point design flow. Thus he is able to
explore the design space more efficiently. The interpolative
transformation which is based on analytical range propaga-
tion enables an accelerated development cycle and in conse-
quence a shorter time-to-market.

The fast simulation code generation as well as the DSP
back end benefits directly from the advanced control and
data flow analysis techniques we developed. The concept of
abstract execution, in combination with a state-driven mem-
ory model and coupled iterators, yields results with the pre-
cision necessary for the back end transformation steps.

The verification of the fixed-point algorithm has to be
performed by means of simulation. Existing C++-based
fixed-point libraries increase simulation-time by up to
two orders of magnitude compared to the corresponding
floating-point simulation. The FRIDGE fast simulation back
end applies advanced compile-time analysis concepts, ana-
lyzes necessary casting operations, and selects the appropri-
ate built-in data type on the host machine, thus a speedup
by a factor of 20 to 400 compared to the SystemC code while
maintaining bit-by-bit equivalence was achieved.

The target specific C code generation provides a direct
link from a floating-point code to C62x C code using inte-
gral data types. The generated code yields bit-by-bit the same
results as the bit-true SystemC code for host simulation,
enabling comparative simulation to the reference model.
As proven by the experimental data, the generated C62x C
code comes very close to hand-optimized C- and assembly
code.

These features make FRIDGE a powerful design environ-
ment for the specification, evaluation, and implementation
of fixed-point algorithms.

REFERENCES

[1] Synopsys Inc., “CoCentric System Studio—User’s Manual,”
Mountain View, Calif, USA.

[2] Mathworks Inc., “Simulink Reference Manual,” March 1996.
[3] Cadence Design Systems, 919 E. Hillsdale Blvd., “SPW User’s

Manual,” Foster City, Calif, USA.
[4] T. Grötker, E. Multhaup, and O. Mauss, “Evaluation of

HW/SW tradeoffs using behavioral synthesis,” in Proc. Int.
Conf. on Signal Processing Application and Technology, Boston,
Mass, USA, October 1996.

[5] B. Liu, “Effect of finite word length on the accuracy of digital
filters—a review,” IEEE Trans. on Circuit Theory, vol. 18, no.
6, pp. 670–677, 1971.

[6] H. Keding, M. Willems, M. Coors, and H. Meyr, “FRIDGE:
A fixed-point design and simulation environment,” in Proc.
European Conference on Design, Automation and Test, pp. 429–
435, Paris, France, February 1998.

[7] M. Willems, V. Bürsgens, and H. Meyr, “FRIDGE: Floating-
point programming of fixed-point digital signal processors,”
in Proc. Int. Conf. on Signal Processing Application and Technol-
ogy, pp. 1000–1005, San Diego, Calif, USA, September 1997.

[8] M. Willems, V. Bürsgens, H. Keding, T. Grötker, and H. Meyr,
“System level fixed-point design based on an interpolative ap-

proach,” in Proc. Design Automation Conference, pp. 293–298,
Anaheim, Calif, USA, June 1997.

[9] S. Kim, K. Kum, andW. Sung, “Fixed-point optimization util-
ity for C and C++ based digital signal processing programs,”
in Workshop on VLSI and Signal Processing ’95, pp. 197–206,
Osaka, Japan, November 1995.

[10] Frontier Design Inc., “A|RT Library User’s and Reference
Documentation,” Danville, Calif, USA, 1998.

[11] Synopsys Inc., CoWare Inc., Frontier Design Inc., “SystemC
User’s Guide, Version 2.0,” 2001.

[12] W. Sung and K. Kum, “Word-length determination and scal-
ing software for a signal flow block diagram,” in Proc. IEEE
Int. Conf. Acoustics, Speech, Signal Processing, pp. 457–460,
Adelaide, Australia, April 1994.

[13] B. W. Kernighan and D. M. Ritchie, The C Programming Lan-
guage, Prentice-Hall, Englewood Cliffs, NJ, USA, 2nd edition,
1988.

[14] M. Willems, A methodology for the efficient design of fixed-
point systems, Ph.D. thesis, Aachen University of Technology,
1998.

[15] Mentor Graphics, “DSP Station User’s Manual,” San Jose,
Calif, USA.

[16] C. Hankin, “Program analysis tools,” International Journal on
Software Tools for Technology Transfer, vol. 2, no. 1, pp. 6–12,
1998.

[17] A. Aho, R. Sethi, and J. Ullman, Compilers, Principles, Tech-
niques and Tools, Addison-Wesley, Reading, Mass, USA, 1986.

[18] M. J. Wolfe, High Performance Compilers for Parallel Comput-
ing, Addison-Wesley, Redwood City, Calif, USA, 1996.

[19] C. Hankin, F. Nielson, and H. R. Nielson, Principles of Pro-
gram Analysis, Springer, Heidelberg, Germany, 1999.

[20] F. Martin, “PAG—an efficient program analyzer generator,”
International Journal on Software Tools for Technology Transfer,
vol. 2, no. 1, pp. 46–67, 1998.

[21] MIPS Computer Systems, “UMIPS-V Reference Manual
(Pixie and Pixstats),” Sunnyvale, Calif, USA, 1990.

[22] T. Ball and J. R. Larus, “Optimally profiling and tracing pro-
grams,” ACM Transactions on Programming Languages and
Systems (TOPLAS), vol. 16, no. 4, pp. 1319–1360, 1994.

[23] S. B. Akers, “Binary decision diagrams,” IEEE Trans. on Com-
puters, vol. 27, no. 6, pp. 509–516, 1978.

[24] European Telecommunication Standard Institute, “GSM
full rate speech transcoding,” GSM recommendation 06.10,
February 1992.

[25] S. Kim, K. Kum, andW. Sung, “Fixed-point optimization util-
ity for C and C++ based digital signal processing programs,”
IEEE Trans. on Circuits and Systems II: Analog and Digital Sig-
nal Processing, vol. 45, no. 11, pp. 1455–1464, 1998.

[26] L. De Coster, Bit-true simulation of digital signal processing
applications, Ph.D. thesis, KU Leuven, 1999.

[27] Mentor Graphics, “DSP Architect, DFL User’s and Reference
Manual,” 1994.

[28] K. Kum, J. Kang, and W. Sung, “A floating-point to integer
C converter with shift reduction for fixed-point digital signal
processors,” in Proc. IEEE Int. Conf. Acoustics, Speech, Signal
Processing, vol. 4, pp. 2163–2166, Phoenix, Ariz, USA, March
1999.

[29] H. Keding, M. Coors, O. Lüthje, and H. Meyr, “Fast bit-true
simulation,” in Proc. the Design Automation Conference, pp.
708–713, Las Vegas, Nev, USA, June 2001.

[30] S. K. Mitra, Digital Signal Processing: A Computer-Based Ap-
proach, McGraw-Hill, New York, NY, USA, 1998.

[31] V. Živojnović, J. Martı́nez, C. Schläger, and H. Meyr, “DSP-
stone: A DSP-oriented benchmarking methodology,” in Proc.
International Conference on Signal Processing Applications and
Technology, Dallas, Tex, USA, October 1994.



Design and DSP Implementation of Fixed-Point Systems 925

[32] M. Coors, O. Wahlen, H. Keding, O. Lüthje, and H. Meyr,
“C62x compiler benchmarking and performance coding tech-
niques,” in Proc. International Conference on Signal Processing
Applications and Technology, Orlando, Fla, USA, November
1999.

[33] Texas Instruments, USA, “TMS320C6000 Optimizing Com-
piler User’s Guide,” March 2000.

Martin Coors received the diploma in elec-
trical engineering from Aachen University
of Technology (RWTH), Aachen, Germany.
In 1997, he joined the Institute for Inte-
grated Signal Processing Systems (ISS) at
RWTH Aachen as a research assistant. His
research interests include DSP code op-
timization techniques, fixed-point design
methodologies and code generation for em-
bedded processors.

Olaf Lüthje received the diploma in elec-
trical engineering from Aachen University
of Technology (RWTH), Aachen, Germany,
and is currently working towards the Ph.D.
degree in electrical engineering at the same
institute. His research interests focus on
fixed-point design methodology and data
flow analysis.

Holger Keding received the diploma in electrical engineering from
Aachen University of Technology (RWTH), Aachen, Germany.
From 1996 to 2001 he was with ISS to work towards his Ph.D.
thesis. Having finished his Ph.D., he joined the system level design
group of Synopsys as a senior corporate application engineer. His
research interests include fast bit-true simulation and fixed-point
and system-level design methodology.

Heinrich Meyr received his M.S. and Ph.D.
from ETH Zurich, Switzerland. He spent
over 12 years in various research and man-
agement positions in industry before ac-
cepting a professorship in electrical engi-
neering at Aachen University of Technology
(RWTH Aachen) in 1977. He has worked
extensively in the areas of communication
theory, synchronization, and digital signal
processing for the last thirty years. His re-
search has been applied to the design of many industrial products.
At RWTH Aachen he heads an institute involved in the analysis
and design of complex signal processing systems for communica-
tion applications. He was a cofounder of CADIS GmbH (acquired
1993 by Synopsys, Mountain View, California), a company which
commercialized the tool suite COSSAP extensively worldwide used
in industry. He is a member of the Board of Directors of two com-
panies in the communications industry. Dr. Meyr has published
numerous IEEE papers. He is author together with Dr. G. Ascheid
of the book “Synchronization in Digital Communications,” Wiley
1990, and of the book “Digital Communication Receivers. He is
also the author of “Synchronization, Channel Estimation, and Sig-
nal Processing” (together with Dr. M. Moeneclaey and Dr. S. Fech-
tel), Wiley, October 1997. He holds many patents. He served as a
Vice President for International Affairs of the IEEE Communica-
tions Society and is a Fellow of the IEEE.


	1. INTRODUCTION
	1.1. Fixed-pointmodeling language
	1.2. Interpolative transformation
	1.3. Data flow analysis
	1.4. Fast bit-true simulation
	1.5. DSP targetmapping

	2. THE FRIDGE DESIGN FLOW
	3. FIXED-POINT DATA TYPES AND LOCAL ANNOTATIONS
	3.1. The data types sc fixed and sc ufixed
	3.2. The data type sc fxval
	3.3. The data types sc_fix and sc_ufix
	3.4. Cast modes

	4. INTERPOLATION
	4.1. Implementational issues

	5. ADVANCED DATA FLOWANALYSIS
	5.1. Data abstraction
	5.2. The state controlledmemorymodel
	5.3. Iterating over ambiguities
	5.4. Execution of a program

	6. FAST BIT-TRUE SIMULATION
	7. TRANSFORMATION TO ANSI C
	7.1. The lbp alignment
	7.1.1 The lbp alignment algorithm
	7.2. Data type selection
	7.2.1 Basic constraints for any data element
	7.2.2 Structural constraints
	7.2.3 Semantical constraints

	7.3. Cast mode transformation
	7.3.1 Overflowhandling
	7.3.2 Quantization handling


	8. EXPERIMENTAL RESULTS
	9. DSP CODE GENERATION
	9.1. DSP code transformation
	9.1.1 The lbp alignment
	9.1.2 Data type selection
	9.1.3 Castmode transformation
	9.1.4 Loop optimizations


	10. EXPERIMENTAL RESULTS
	10.1. Off-the-shelf kernels
	10.2. TI compiler benchmarking kernels

	11. SUMMARY
	REFERENCES

