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Accurate detection and classification of wafer defects constitute an important component of the IC production process because
together they can immediately improve the yield and also provide information needed for future process improvements. One class
of inspection procedures involves analyzing surface images. Because of the characteristics of the design patterns and the irregular
size and shape of the defects, linear processing methods, such as Fourier transform domain filtering or Sobel edge detection,
are not as well suited as morphological methods for detecting these defects. In this paper, a newly developed morphological
gradient technique using directional components is applied to the detection and isolation of wafer defects. The new methods
are computationally efficient and do not rely on a priori knowledge of the specific design pattern to detect particles, scratches,
stains, or missing pattern areas. The directional components of the morphological gradient technique allow direction specific edge
suppression and reduce the noise sensitivity. Theoretical analysis and several examples are used to demonstrate the performance

of the directional morphological gradient methods.
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1. INTRODUCTION

With the increasing gate density of very large scale integra-
tion (VLSI) designs, defects in a wafer are more likely to
cause failures of chip production and lower yields, which is a
significant problem considering the substantial financial in-
vestment in fabrication plants. Intensive defect control pro-
cedures during integrated circuit (IC) production can help
improve yields in several ways. Early detection of defects can
be used to predict the yield. For wafers that have so many
defects that the predicted yield would be unacceptably low,
further processing can be terminated. In addition, analysis
of the defects to identify the type and probable sources can
be used to improve the production process. A great variety
of process defects may occur over all technological steps in
VLSI and application specific integrated circuit (ASIC) pro-
duction. Well-known examples are oxidation stacking faults,
spikes, residues from chemicals, etching defects, and different
kinds of particles [1]. This paper applies detection methods

to defects that result in scratches or spots due to particles,
stains, or missing pattern areas.

A variety of methods and technologies have been applied
to defect inspection of wafers [1, 2, 3, 4, 5, 6, 7, 8, 9]. Vi-
sual inspection with a microscope can take advantage of an
experienced operator’s ability to detect and classify defects.
However, effective automated analysis is more desirable be-
cause it can be scaled up to the desired level of testing with-
out exhausting the limited resource of human inspectors. In
addition, different inspectors will make different judgments
in some cases, and this may cause inconsistent feedback for
process improvement.

Automated analysis methods include raster scans with
laser illumination, frequency domain filtering using optical
methods, and a variety of digital image processing techniques
applied to wafer surface images acquired with a charge cou-
pled device (CCD) camera. These methods are used either to
detect things that should not be present, such as particles or
scratches, or to detect missing parts of the expected design.
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If the specific design is known, then design rule checking
or image comparison may be used. However a more general
technique can be based on the known design feature size of
the technology and the expected characteristics of the defects.

Driven by shrinking design rules, the traditional opti-
cal imaging detection technologies have limited capability
to detect physical defects within high aspect ratio struc-
tures and electrical defects within interconnect structures
[10]. Electron beam technology overcomes the limitation of
resolution, depth of focus, and the detection of subsurface
interconnect structure defects, and it is now moving onto
the production floor. With the new copper process emerg-
ing, scanning electron microscope (SEM) review stations
have become essential and integral parts of wafer production
[11, 12, 13]. In addition, the adoption of 300 mm wafer pro-
duction has made automation an obligatory requirement. It
is no longer sufficient to simply detect 10,000 defects; most
production requires the defects to be classified automatically
to quickly determine the root cause. Thus automatic defect
classification (ADC) has become a mandatory option in in-
spection and review stations [14, 15, 16, 17, 18, 19]. For the
purpose of detecting defects without losing throughput, in-
line automatic defect classification (IADC) or even on the fly
(OTF-ADC) defect classification are required for deposition
of bad wafers at an early stage. Furthermore, the root of cause
of the defect or the defect source identification becomes im-
portant for locating the source of the defect, defect elimina-
tion, and the prediction of yield [8, 20, 21, 22, 23, 24, 25].

Defect detection and classification may be accomplished
in multiple stages [2]. Early detection may rely on simply
subtracting the image from an aligned reference image and
treating any difference as a defect. The location of these po-
tential defects can be used by a later analysis stage to extract
the geometric features of defects, including size, shape, and
orientation. Edge detection operators are usually applied to
obtain this information [2, 26, 27, 28, 29, 30]. The Sobel op-
erator and the first or the second order differential operators
such as the Laplacian of Gaussian (LOG) are well understood
and often used for this purpose. However, for several reasons
these methods are not well matched to the detection of de-
fects with irregular size, shape, and edges in the context of
regular high-contrast geometric patterns. These differential
operators will amplify noise in the image [26, 27, 28, 29],
and their response to irregular defect edges will be weak com-
pared to the design pattern response. A first stage of low pass
filtering can be used to reduce noise and to suppress the sharp
edges of the design features, but this weakens the less distinct
edges of the irregular defects even more. Morphological fil-
ters may also be used in this processing [2, pages 117-119],
[29], but the conventional morphological gradient operator
does not provide edge orientation information which may be
needed for detection of scratches. The morphological gradi-
ent also has a higher noise sensitivity than the Sobel operator
(31, 32, 33, 34].

In this paper, directional morphological gradient opera-
tors are defined [33, 34] and then applied to defect detection.
The proposed operators detect edges and provide both edge
strength and edge orientation information. The sensitivity to

noise is significantly reduced compared to the simple mor-
phological gradient. In addition, the properties of the mor-
phological filter allow it to respond to defects of different
sizes and irregular shapes even if they are blurred by prepro-
cessing. The performance of the proposed operator is com-
pared with the Sobel, LOG [35], and Canny [36] operators
for several wafer defect images. It has been assumed that the
image acquisition process will produce design pattern com-
ponents with a pixel dimension of approximately three or
four to avoid oversampling while guaranteeing adequate res-
olution. It is also assumed that the defects are larger than the
design feature dimension, irregular in shape, and positioned
randomly with respect to the design pattern. Since these as-
sumptions are based on measures relative to pixel dimen-
sions, this method can continue to be used, as design fea-
ture size is further reduced and circuit density is increased as
long as effective image acquisition can be accomplished. The
experimental results for scratch and spot defects show that
proposed operators can detect these defects and suppress the
design pattern to allow geometric shape analysis of the de-
fects. The proposed morphological gradient technique using
directional components discussed in this paper is well suited
for defect redetection and ADC for review stations.

2. GRAY SCALE MORPHOLOGICAL GRADIENT
OPERATORS

2.1. Gray scale erosion and dilation

The basic operations for morphological filtering are erosion
and dilation [31, 37]. Let F = f(x, y) be a gray scale im-
age of domain Dy, and let B = b(x, y) be a structuring el-
ement of domain Dy, where x and y are the pixel indices.
The structuring element has a size and shape appropriate for
the geometric features of interest. For a structuring element
(SE) with positive values, the dilation operation enlarges the
bright image areas while reducing the darker areas. Erosion
has the opposite effect. The dilated gray scale image fi(x, y)
and the eroded image f.(x, y) are defined by (1) and (2), re-
spectively, [29, 31]:

fx y)® B = falx, y,B)
max {f(x =i,y — j)

+b(i, j) | (x = 1), (y = j) €Dy; (i, j) € Ds},
(1)

f(x,y)©B = f.(x,y,B)
=min{f(i+x j+y)

—b(i, j)|(i+x),(j+y)€Dyg; (i, j) €Dy}
(2)

When a structuring element has a constant value of zero
over its domain, it is called a flat structuring element [31].
When a flat structuring element is used in (1), the dilated
image value at each pixel position is the maximum of all the
pixel values of the original image over a region defined by
b(—x, —y) shifted to that pixel position. Similarly, the eroded
image value at each pixel position is the minimum of all
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the pixel values in a region defined by b(x, y) shifted to that
pixel position. All values in the dilated and eroded images are
values of some pixel in the original image. Using (1) and (2),
we define (3) and (4) as the dilated and eroded images for the
special case of a flat structuring element:

fa(x, y,B) = max {f(x— i,y — j)

. ‘ . (3)
| (x =), (y = j) € Dy; (i, j) € Dy},

fex, y,B) =min{f(i+x,j+y)
| (i+x),(j+y) €Dy; (i, j) € Dyp}.

The dilated and eroded images can be computed by scan-
ning the list of pixel values for each shifted position of the
structuring element domain and determining the maximum
and minimum values in the list. When a large structuring el-
ement can be created by a sequence of dilations using smaller
structuring elements, the dilation and erosion computation
can also be implemented as a sequence of dilation or erosion
operations using the smaller structuring elements. This de-
composition property, or chain rule, is defined in (5) and (6)
[31]. Let the structuring element B; be formed by the dilation
of two smaller structuring elements B; and B,. Then dilation
or erosion with Bs can be implemented with sequence of the
corresponding operations using By and B;:

(f(x,y) (&) Bl) (&) Bz = f(x,y) @ (B] @Bz)

:f(x)y)®33) (5)
(f(x,y)©B1) @B, = f(x,y) © (B ® By) ©)
= f(x, y) © Bs.

For example, if the domains of By and B, are both 2 X 2 pixel
squares, then the domain of B; would be a 3 x 3 pixel square.
A roughly circular structuring element can be created with a
sequence of dilations alternately using a square and diamond
shaped structuring element. This method can be advanta-
geous for hardware implementations and is efficient when
the intermediate products or multiple sizes for structuring
elements are needed.

2.2. Morphological gradients

The difference between the dilated image and the eroded
image can be defined as the basic morphological gradient
gm(x, y, F, B) given by (see [37])

gm(x; y;F:B) = fd(-x: Y, B) - fe(x’ 2 B) (7)

For a flat structuring element, the value of this gradient will
always be nonnegative, so it cannot be used to distinguish
between rising and falling edges. Variations of this defini-
tion include the erosion residue and the dilation residue
defined, respectively, as the difference between the original
image and the eroded image, and the difference between
the dilated image and the original image [28, 29]. If the
foreground object is brighter than the background, then
the dilation residue pushes the edges of the object outward
while the erosion residue pushes the edges inward. Further

variations of these methods, which are defined to avoid biases
in the position of the edges [38], include gradients defined
as the maximum, the minimum, and the average of the ero-
sion and dilation residues. Because the erosion residue and
dilation residue edges are offset in different directions, the
minimum of the two will be zero for very sharp edges. Thus,
some blurring is necessary for effective use of the minimum
residue.

The erosion and dilation operations capture the extreme
values within a neighborhood defined by the structuring
element. This allows these operators to be effective for ir-
regular objects, but it also results in sensitivity to noise
[34, 38, 39]. Noting this, many investigators have proposed
improvements to reduce the noise sensitivity [38, 39]. The
blur-minimum-operator (BMO) proposed by Lee [38] first
blurs the image f (x, y) with blurring function h,(x, y) to cre-
ate f;(x, y) and then computes the gradient as the minimum
of the erosion and dilation residues of the blurred image.
This operation is defined as

gBMO (x: Y E HS: B) = min {gd(x’ Y FS: B))ge (X, Y FS: B) }(
8)
The blurring suppresses high frequency noise and spreads
sharp edges so they will not be missed when the minimum is
taken. Because the minimum of the residues is used, this op-
erator will usually have a significantly weaker response than
the basic morphological gradient defined by (7).

3. DIRECTIONAL MORPHOLOGICAL GRADIENTS

The orientation of an edge segment can be used by higher
level segmentation processes to make decisions about con-
necting adjacent edge segments with compatible orientations
to form a boundary or rejecting edge segments that are in-
consistent in orientation estimates. For example, the Canny
edge detector uses two thresholds and accepts edge segments
at the lower threshold only when they are connected to edges
at the higher threshold [36]. In applications such as defect
detection for wafer inspection, the orientation of the edge
may be as significant an indicator for defect isolation as the
edge magnitude.

Operators such as the Sobel and Prewitt operators deter-
mine orientation information by separately computing hor-
izontal and vertical differences. The Sobel operator uses the
two linear separable filters defined by the vector outer prod-
ucts, 0.25 - [1 2 1]T-[1 0 —1] and 0.25 - [1 0 —1]T .
[1 2 1], to create two orthogonal difference components at
each pixel location. These components are interpreted as vec-
tor components to compute a gradient magnitude and an-
gle for each pixel position. The Robert’s cross computation is
similar except that a 2 X 2 region is used instead of a 3 X 3
region.

A similar approach can be applied to morphological gra-
dients to estimate the orientation of the gradient [32, 33, 34].
The directional morphological gradient (DMG) is developed
from the basic MG of (7) and the directional blur-minimum
operator (DBMO) is developed from the BMO of (8). Since
the development of these two new methods involves similar
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FIGURE 1: Four flat one-dimensional structuring elements By, for
| = 3 at orientations 0 = 0, /2, n/4, and 37/4.

analysis, we adopt the notation of (9) to represent either type
of directional morphological gradient,

gm(x, ¥, F, B) if op = MG,

g(x, y,E,B,op) =
if op = BMO.

(9)

gemo (%, y, E, Hy, B)

3.1. DMG and DBMO operators

The directional morphological gradient operator uses sev-
eral one-dimensional flat structuring elements [32, 33, 34].
Let these structuring elements be called Bg;, where [ is the
length of the structuring element in pixels and 0 is the orien-
tation. To have overlapping center reference points, / should
be an odd integer. The four structuring elements of length 3
shown in Figure 1 provide horizontal, vertical, and diagonal
domains. The gradient component values for each direction
are calculated using (10), with gradient operators defined in

9),
Go1 = g(x, y, F, By, op). (10)

There are two major advantages of using several one-
dimensional structuring elements to compute morphologi-
cal gradients. One is to produce orientation information in a
manner similar to the Sobel and other related operators. An-
other is to reduce the noise sensitivity, which increases as the
size, in pixels, of the structuring element increases [32, 34].
The four separate SEs of size [ will have a lower noise sensi-
tivity than one SE of size I>. When I = 3 and the four angles
0, /4, n/2, and 37/4, are used, all pixels in a 3 X 3 neigh-
borhood can contribute to the gradient calculation. A third
advantage when using four rather than two SE orientations is
that the two angle estimates can be combined to give a more
accurate orientation estimate than the Sobel operator. The
two angle estimates also allow additional noise suppression
capability if incompatible estimates are taken as an indica-
tor of noise, and the corresponding segment may be rejected
even when the edge magnitude is significant.

3.2. Application to ideal step edge and constant
gradient models

Although using the one-dimensional structuring elements
to create directional components for morphological gradi-
ent methods is similar in approach to the Sobel and related
methods, the computation of the magnitude and the orienta-
tion of the morphological gradient requires a method differ-
ent from the vector component method. This will be devel-
oped by first considering the response to a noiseless constant

gradient image. Then an ideal step edge at arbitrary orien-
tation and offset from the pixel grid axes will be considered.
It will be assumed that the aperture function of the image
acquisition device is known. An example of these two edge
models is shown in Figure 2. Figure 2a shows an ideal step
edge and Figure 2c shows a surface with a constant gradient.
These two edge models are applicable to defect detection be-
cause the design pattern will consist primarily of sharp well-
defined edges. Defects will generally be less well defined, and
defect boundaries may be similar to the gradual ramp model.
Application examples will demonstrate the importance of ac-
curate and consistent angle estimation made by the direc-
tional morphological gradient when used to determine the
orientation of scratches.

A constant gradient source can be modeled by the con-
tinuous function

s(x, y) = so + a(x(cos 0) + y(sin 9)), (11)

for continuous variables x and y. This represents a ramp sur-
face with the parameter a determining the slope and the pa-
rameter 6 determining the direction of the steepest change.
The constant s is the value at the origin of the x-y coordinate
system. If the aperture function of the image acquisition sys-
tem is symmetric, the acquired digital image, f(x, y), will be
a scaled copy of s(x, y) for values of x and y corresponding to
pixel centers. For this image model, the horizontal and verti-
cal components from the Sobel operator will be 2a cos(6) and
2asin(f). These values are independent of the coordinates x
and y because the constant gradient model has no localiza-
tion to any specific position. A magnitude of 24 and an an-
gle of 0 will be computed from the two vector components.
Using (3), (4), and (7) for a DMG with two perpendicular
structuring elements of length 3, the gradient components
are go3 = |2acos(0)| and gr/p,3 = [2asin(8)|. Both the So-
bel operator and the morphological gradient results are in-
dependent of the constant offset value s.

From the definitions of (3), (4), and (7), a morphologi-
cal gradient component value must always be a nonnegative
difference between a maximum and minimum value over
a region specified by the structuring element. Clearly, from
these two components, an angle and a magnitude could be
computed using the same vector interpretation of the com-
ponents as the Sobel method. However, without the sign in-
formation, the angle could be in any of the four quadrants.
The DBMO gradient is computed in the same manner. If
its smoothing is symmetric the constant gradient image will
not be changed by the smoothing operation. The component
values will be half of the DMG component values because
the minimum residue is used. When the length of the struc-
turing element, /, is increased, the angle estimated by both
the DMG and DBMO for the constant gradient image will
not change. The magnitude computed by the DMG will be
a*(l — 1). When comparing the performance of gradient es-
timators, all are normalized to provide a unit output for a
vertical ideal step edge.

Computation of edge segment orientation with the So-
bel operator is well understood, but orientation estimation is
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FIGURE 2: Images of mathematical models for step edge (a) and con-
stant gradient image (c) when the angle is /6. Small aperture blur-
ring of (a) results in the model shown in (b). The result of appli-
cation of the directional morphological gradient to the smoothed
ideal step edge is shown in (d).

TasLE 1: Octant location based on ratios q; and g5.

q1(x, y) (%, y) 0 range
<1 <1 0<0<mn/4
>1 <1 n/4<0<mn/2
>1 >1 /2 <60 <3n/4
<1 >1 3n/d<0<m

a new capability for the DMG based on directional structur-
ing elements. The angle estimation error for the DMG will
be shown to be similar to that of the Sobel operator, and
the four-component DMG will offer additional features not
available from the two-component Sobel operator. When the
two components at 77/4 and 37/4 are added to the DMG, the
orientation can be determined over a range of —77/2 < 0 <
7/2 rather than just over one quadrant. However a rising
edge and falling edge at the same orientation will still not
be distinguished. For imaging relative to wafer defect de-
tection and isolation, this ambiguity is not a problem. Let
the gradient component ratios q; and g, be defined by (12).
The octant of the angle can be determined based on whether
each ratio is greater than or less than one, as summarized in
Table 1, and arctangents can be used to determine the angle
value

&n/2,3 (.X, 2 F: Bn/2,3) op )
80,3 (x’ 2 F) BO,3) op )

qxy) =

(12)
$31/43(%, ¥, F, Bsgja3,0p)

gr/a3(% 9, E Byjas,op)

@xy) =

Although the orientation estimates for the constant gra-
dient model will always be correct, the results for an ideal
step edge will have variability depending on the location
of the edge relative to the pixel grid. The ideal step edge
is modeled as an abrupt localized change in value defined
by (13),

S, ifx(cos @) + y(sin6) = d,
s(x, y) = _ _ (13)
S1 ifx(cos @) + y(sin6) < d.

The angle of the edge is 8 and the distance of the edge from
the origin of the coordinate system is d. The step edge can
be interpreted as a thresholded ramp from the definition of
(11). Unlike the constant gradient case, the acquired digi-
tal image f(x, y) is not the same as s(x, y) due to the blur-
ring of the sharp edges by the aperture function. In addi-
tion, the edge response here will depend on the coordinates x
and y and will be strongest at coordinates close to the abrupt
change. Figure 2b shows the ideal step edge of Figure 2a af-
ter blurring by an aperture of width 7. Figure 2d shows the
gradient of the blurred edge computed using the DMG.
When the Sobel operator is used on f(x, y), an edge at
a specific orientation can generate a range of values for the
edge magnitude and orientation. This range will depend on
0, the true orientation of the ideal edge, on the shape and
size of the aperture of the image acquisition device, and on



Wafer Defect Detection Using Directional Morphological Gradient Techniques 691

p» the distance of the edge from to the pixel center. For flat
apertures of about one pixel in size, the error in the So-
bel orientation estimate for an ideal step edge is limited to
roughly 3°. Figure 3 shows the orientation error from the
Sobel operator for the ideal step edge with position offsets
of p = 0.0, 0.25, and 0.5 pixel widths relative to the nearest
pixel center. Figure 3a shows results for a circular aperture of
radius = 0.707 pixel widths and Figure 3b shows the same re-
sults for a circular aperture with a radius of one pixel width.
A straight edge with an orientation of 8 typically will have
individual pixel length segments which have offsets from the
nearest pixel center spanning the full range possible. When
the aperture size is known, a table lookup method could re-
duce the error for edges with p = 0.0, but a table could not
compensate for estimate variations due to variations in the
value of p along the edge. As the amount of blurring increases
due to convolution of the step edge image source with a larger
aperture function, the ideal edge will have an extended area
of gradual change and less localization.

Using the DMG instead of the Sobel operator, compen-
sation for variations due to edge position offsets can be made
with the four-component morphological gradient method
[34] using a small table and interpolation. For very sharp
edges with no added noise, this table can also be used to es-
timate the relative position of the ideal edge and the pixel
center. When the length of the one-dimensional filters is 3,
a reasonable estimate of the angle can be made by averag-
ing the arctangents of q; and ¢,. This is shown in Figure 4
where it can be seen that the error is limited to 4.5°. It is
significant that these angle errors are so similar to the Sobel
angle errors shown in Figure 3 because the basic morpholog-
ical gradient provides no orientation information. By using
a two-dimensional table lookup for a known aperture and
interpolation rather than the average of the arctangents, the
DMG angle error can theoretically be reduced as much as de-
sired by adding more data to the table. However, other factors
such as added noise will still limit accuracy.

Since two different estimates of the orientation are avail-
able, inconsistency in the estimates can be used to reject some
noise that creates false edges [32, 33, 34]. Thus, some edge
segments with a significant gradient magnitude can be re-
jected as noise if the two estimates are not compatible. Con-
sider for example an impulsive noise sample on a constant
amplitude background. This will result in both ¢; and ¢,
having the same values, which is not consistent with an edge.
In a similar fashion, gradients from a checkerboard pattern
would also be rejected for inconsistency.

3.3. Addition of low pass and median filters

The Sobel and Prewitt operators use separable filters for
each gradient component which perform a three-coefficient
smoothing in the direction perpendicular to the differenc-
ing filter direction. The Robert’s cross filter can also be inter-
preted in a similar way for a 2 X 2 neighborhood rather than
a 3 X 3 neighborhood. Since these operations are linear, the
order of the smoothing and difference operations does not
matter. By definition, the morphological gradient methods
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FIGURE 3: Angle estimation error for the Sobel operator for an ideal
edge acquired with a flat circular aperture of radius r = 0.707 (a)
and r = 1.00 (b). In both figures the solid line represents an ideal
edge passing through the pixel center, while the dotted curve repre-
sents an edge offset from the pixel center by one quarter of a pixel
width, and the dot-dash curve represents an offset of half of a pixel
width.

include only a difference operation, and performance might
be improved by adding smoothing either before or after the
difference is taken. The effect of smoothing operations used
with morphological gradients will depend both on the or-
der in which the smoothing and differencing are done and
also on whether the smoothing uses a linear filter or a me-
dian filter. A class of morphological filters with linear post
smoothing is called DMGF [34].

The performance of the combination of the DMG with
smoothing filters can be analyzed for the constant gradient
model and the step edge model. Linear smoothing before the
DMG differencing operation is equivalent to modifying the
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FIGURE 4: Angle estimation error for the DMG operator of length
3 using the average arctangent for the same edges and apertures
shown in Figure 3. In both figures the solid line represents an ideal
edge passing through the pixel center, while the dotted curve repre-
sents an edge offset from the pixel center by one quarter of a pixel
width, and the dot-dash curve represents an offset of half of a pixel
width.

aperture function of the image acquisition system. For the
constant gradient model linear smoothing with a symmetric
filter will not change the function. The effect of increasing
the aperture for the step edge has already been discussed and
demonstrated in Section 3.2. A median filter applied to ei-
ther edge model will not change the function since both edge
models are either monotonically nondecreasing or moniton-
ically nonincreasing in any direction. Thus, the value at the
center will always be the median value. Smoothing filters may
also be applied after the DMG. The monotonic behavior of
both edge models causes the length 3 DMG to produce the
same result as the differencing part of the Sobel operator.

Thus linear post filtering applied to DMG results from either
edge model could reproduce the Sobel or Prewitt smoothing
operations. However, the DMG can also use longer structur-
ing elements and larger filters. A one-dimensional median
filter applied to the DMG results for either model will not
change the output.

For defect detection and isolation from the design pat-
tern, filters designed to attenuate the design pattern relative
to the defect have been used [2]. For design pattern structures
that are about four pixels in width, this type of smoothing
filter would be much larger than the three pixel width Sobel
filter. It will be shown in the next section that although such
filters do suppress the design pattern to some extent, they do
not provide reliable separation of the defect and the design.
The defect is also blurred by the filtering, and, as a result,
its edge strength is distributed over a fixed spatial interval.
However, the DMG responds to difference anywhere within
a fixed length defined by its SE, rather than to fixed spatial
frequency. This allows the DMG to detect the larger irregu-
lar defects more effectively than the Sobel operator after an
initial smoothing operation has been applied to the images.
The next section will demonstrate this capability on several
examples and Section 5 will use analytical methods and ad-
ditional examples to determine the range of effectiveness of
the method.

4. APPLICATION TO DEFECT IMAGES

Several 256 X 256 sections of larger inspection images were
analyzed using the directional morphological gradients and
results were compared to other well-known methods. Al-
though the pixels were represented by 8 bits, only 6 or 7 bits
were needed for the full range of values used. The defects
shown here are due to scratches and particles, but the miss-
ing pattern defect images have characteristics similar to the
particle defects. The objective of the processing is to separate
the defects from the expected design pattern without a priori
knowledge of the design details. It is assumed that the sur-
face image of a design pattern free of defects would consist
primarily of horizontal and vertical edges with sharp bound-
aries or arrays of connection points. Lines in the design are
expected to be about four pixels in width in the inspection
images to provide adequate resolution for the design inspec-
tion. In contrast, the defects are assumed to have random ori-
entations with less distinct boundaries and irregular shapes
and sizes.

The upper half of Figure 5 shows three examples of de-
fects. Figure 5a shows a scratch and Figure 5b shows a spot
on a relatively simple design pattern. Spots on completely
regular arrays of connection points or lines were not consid-
ered because many methods based on periodic pattern anal-
ysis will easily separate the defect in that context. Similarly,
defects on a uniform background were not considered here
because many methods would work in that case. Figure 5¢
shows a more diffuse defect on a more complex design pat-
tern. In all three examples it is clear that the pixel intensity
levels cannot be used to separate the defects from the design
pattern. The dark values associated with the defects are the



Wafer Defect Detection Using Directional Morphological Gradient Techniques

693

(d)

(e) ()

FIGURE 5: Three images showing defects on design patterns (a), (b), and (c) and the magnitudes of the corresponding two-dimensional

Fourier transforms (d), (e), and (f).

(a) (b)

FIGURE 6: Images from Figure 5 after smoothing. Images (a) and (b) are Figure 5b after smoothing by a 7 X 7 and a 15 x 15 uniform average,
respectively. Images (c) and (d) are Figure 5c after smoothing by a 7 X 7 and a 15 X 15 uniform average.

same as those associated with connection points or the edges
of the design pattern.

By viewing the corresponding spatial frequency domain
images shown in the lower half of Figure 5, it is also clear
that there is no reasonable spatial frequency separation be-
tween the spot defects and the design pattern. Low pass fil-
tering will reduce the high frequency components, but this
will blur both the design pattern edges and the defect edges.
This is confirmed by the images shown in Figure 6 in which
7 x 7 and 15 X 15 uniform averaging filters have been ap-
plied to the images of Figures 5b and 5c. The design pattern
is attenuated relative to the defect, but it is not completely
eliminated. A comparison of the histograms of the original
images and the smoothed images would show, as predicted,
that the dynamic range of the intensity values is reduced by

the filtering operation. The scratch however is easily visible
in the transform domain. The coherent edge at an unusual
orientation is seen as a line through the origin of the trans-
form domain at the angle corresponding to the gradient di-
rection. Thus scratches should be detectable based on the ori-
entation of the gradient responses as long as the scratches
are not aligned with the horizontal or vertical pattern
directions.

Applying the well-known Sobel operator and Canny edge
detector to the images of Figure 5 does not separate the de-
fect from the design pattern. Although gradient-based edge
detectors will be used to detect and isolate defects, it is not
necessary, or even desirable, to locate all edges in an image.
The Canny method is very effective for detecting edges [36],
and it will be used to demonstrate that spatial filtering alone
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Figure 7: Canny edge detector output after 7 X 7 averaging of images from Figure 5.
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FiGure 8: Comparison of methods for particle or spot detection. Images from processing Figure 5b are shown in (a), (b), (c), and (d) and
images from processing Figure 5c are shown in (e), (f), (g), and (h). On the left a smoothing filter of size 7 X 7 was used by the Sobel operator
(a), (e) and the DMG?7 (b), (f). On the right a smoothing filter of 15 x 15 was used by the Sobel operator (c), (g) and the DMG7 (d), (h).

is not sufficient. When the Canny edge detector is applied
to the images shown in Figures 5a, 5b, and 5c¢ almost all of
the design features and defect features are identified. How-
ever, the edges belonging to the design pattern cannot be
easily separated from the edges belonging to the defect. Af-
ter smoothing the original images with a 7 x 7 filter, applica-
tion of the Canny edge detector creates the results shown in
Figure 7. Figure 7a has lost some design detail relative to the
unfiltered version, which is not shown, but the scratches are
still present, and Figure 7b has lost only a small amount of
design detail due to the image smoothing filter. In Figure 7c,
there is no way to distinguish design edges from defect edges.
When the size of the smoothing filter is doubled to 15 x 15,
there is even less possibility of separating the defects from

the design based on edges. The scratch is almost completely
lost and only the most distinct design features remain in the
scratch image. Similar experiments with the well-known So-
bel edge detector showed even worse results.

A directional morphological gradient is much more ef-
fective at separating the defect from the design pattern than
separation methods based on image pixel intensity, spatial
frequency, or application of simpler well-known edge detec-
tors. The main reason that the approach demonstrated in
Figure 7 fails is that the spatial frequencies of the design and
the defect overlap, and the smoothing operations cannot fil-
ter out or reduce the design pattern while leaving the de-
fect untouched. The defect boundaries, which may be less
distinct than the design pattern in the original image, are
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blurred further. The characteristic that distinguishes the de-
fect is that it is larger, but not predictable in size compared
to the design features. Because of this, after smoothing the
larger extent of the defect edge makes a stronger contribu-
tion to the morphological gradient than to the Sobel gradi-
ent components. By using a morphological gradient filter to
find the maximum difference over a region regardless of the
spatial separations within the region, the defect edges will be
stronger than the design pattern edges. In contrast, an oper-
ator such as the Sobel operator, which is defined by spatial
frequency response, cannot make this distinction.

This process is demonstrated in Figure 8 for the two im-
ages shown in Figures 5b and 5c. The images were created by
computing the magnitude of the gradient and then thresh-
olding the result at a level determined by the dynamic range
of the input image and the size of the filters. The image in-
tensity scale was then reversed so that darker values corre-
spond to higher values of the gradient magnitude. Prior to
edge detection, the images on the left were smoothed using
a 7 x 7 pixel filter. The magnitude of the Sobel edge detector
results were thresholded to produce Figures 8a and 8e. These
results are almost indistinguishable from using a DMG with
a length of 3 instead of the Sobel operator. However, when a
DMG with length 7 is used instead, as shown in Figures 8b
and 8f, the design pattern is greatly reduced compared to the
defect boundary. The same procedure was repeated to pro-
duce the images on the right, except that the prefilter used
a 15 x 15 smoothing filter in place of a 7 X 7 smoothing
filter. Using the DMG with a length of 7, as shown in Fig-
ures 8d and 8h, retains the defects and suppresses the design
pattern.

The histograms of the intensity values of the gradient
images prior to thresholding, which are shown in Figure 9,
clearly demonstrate that the morphological gradient pro-
duces a wider range of intensity values than the Sobel opera-
tor. All the images produced by the Sobel operator in Figure 8
all used a threshold level of 7. In Figures 8c and 8g this re-
sulted in some loss of the defect definition while parts of the
design pattern remain. Increasing the threshold causes addi-
tional loss of both the defect and the design pattern. There is
no threshold for the two Sobel images which completely sup-
presses the design pattern while leaving a recognizable and
measurable portion of the defect. The images produced by
the DMG all used a threshold of 20, but a reasonable varia-
tion of this level does not cause much change in the images. If
the DMG threshold level is increased by 20% from 20 to 24,
all of the design pattern is still suppressed. There is a small
loss of definition of the defects so that they are similar to the
defects shown in the Sobel results with the best threshold in
Figures 8c and 8g. If the DMG threshold is reduced by 20%
to 16, the defect image becomes stronger and the amount of
undesired design pattern that is present is similar to that of
the best threshold for Sobel operator results shown in Figures
8c and 8g. It should be noted that these threshold values were
determined by the properties of the input data range and the
filter definitions, not by the shape of the histogram. A similar
variation of 20% in the threshold value for the Sobel operator
does not produce usable results.
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FIGURE 9: Pixel intensity histograms for the gradient images that
were thresholded to create the corresponding images in Figure 8.

While the gradient magnitude method described above
is effective at detecting spots that are larger than design fea-
tures, it will not effectively separate scratches. The gradient
orientation information must be used to detect the presence
of long lines at an unexpected orientation relative to the de-
sign pattern. Both the Sobel edge detector and the DMG
have reasonably accurate orientation estimators, so a simple
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FiGure 10: Histogram of orientations detected for the Sobel operator and the DMG3 operator (a) and (c) are histograms that Sobel edge
orientation applied to image from Figures 5a and 5b. (b) and (d) are histograms that DMG3 edge orientation applied to image from Figures

5a and 5b.

first approach might accept individual edge segments only
if their orientations were not near the horizontal and ver-
tical lines of the design pattern and then examine the re-
sulting image for remaining long lines. This method was
not successful. It effectively erased most of the horizontal
and vertical design pattern lines, but it also took out some
of the edge segments associated with the scratch because
the scratch has an irregular edge boundary. What was left
was a scratch that had an edge strength similar to the weak
horizontal and vertical edges and to all the other parts of
the design pattern that had any curvature. Thus, in the re-
sulting image the edge of the scratch was not easily sepa-
rated from the design pattern. Further, when this method
was applied to the images from Figures 5b and 5c¢, which
do not have scratches, there was a significant residue of
edge elements that exceeded the amount left in the scratch
image.

Detection of the scratch requires the detection of a co-
herent set of edge segments with similar orientation, so de-
tection from a histogram of image edge orientations will be
more effective. Figure 10 shows histograms of the orientation
of edge segments when the Sobel operator and the DMG3

operator are applied to the images of Figure 5a, which has a
scratch, and Figure 5b which does not. Note that the Sobel
operator identifies the edge orientation over all four quad-
rants while the DMG3 specifies the orientation only within
a two-quadrant range. All of the histograms show the ex-
pected strong response due to horizontal and vertical lines
from the design pattern. However, in the upper plots of
Figure 10, which came from the scratch image of Figure 5a,
the histograms also show an additional strong peak due to
the scratch. Once this peak has been located in the orienta-
tion histogram, edge segments near that particular orienta-
tion can be separated and the scratch can be located using a
Radon or Hough transform [26].

It is significant that the DMG provides orientation with
suitable accuracy for this task. The traditional morpholog-
ical gradient provides no orientation information and it is
only through the use of the directional structuring elements
that accurate angle estimates are possible. The angle esti-
mates are made using SEs of length 3. Using the decompo-
sition property of (5) and (6), three consecutive operations
using a length 3 element is equivalent to one operation us-
ing a length 7 element. Thus the gradient components used
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FiGuRre 11: Histograms from Figures 10a and 10b, respectively, after removal of horizontal and vertical edges.
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FIGURE 12: Orientation histogram (b) and modified histogram (c) for the image with a scratch shown in (a).

for the angle estimate are available from the early processing
stages and require no additional computation.

For comparison, the image from Figure 5b was used to
generate the lower histograms of Figure 10. These histograms
show identifiable peaks for the horizontal lines and a much
smaller peak for the vertical lines. The remaining edge seg-
ments associated with the spot and the connection points
in the image are distributed relatively evenly over all of the
angles. Although the image has a significant number of edge
segments which are not horizontal or vertical, there is no in-
dication of a peak which could be misinterpreted as a scratch.
This method is effective for the location of scratches which
are not aligned with the axes of the design pattern and which
are long enough to generate a detectable concentration of
edge segments at the orientation angle of the scratch.

The peaks of the angle histograms can be found using
conventional histogram peak finding techniques, but for pur-
poses of scratch detection, it is only necessary to detect a
coherent edge at an angle that is not 0 nor 90 degrees. A
number of peak detection techniques will find the peaks
associated with the scratch in Figures 10a and 10b. One
simple method would compute a coarse histogram with
10 degree wide bins and a 5 degree overlap. Any angle with

a population significantly above the floor value would be
considered a coherent edge. The classic peak detection meth-
ods usually start with a lowpass filter applied to smooth
the histogram. Then the first order derivative or gradient is
used for the one-dimensional histogram array. Correspond-
ing zero-crossing points are taken as peak points. Once peak
points are located, a sorting process in terms of voting num-
ber will be used to find higher peaks and lower peaks. With
the orientation information of the design pattern, the peak
of the orientation for the defects can be found. Since the
angle estimated for a scratch will typically represent a small
range of angles, tolerance factors will be used to group them
together.

Although classic peak finding algorithms may be used to
detect the peaks associated with the scratch orientation in
Figure 10, it is easier to locate these peaks if the large peaks
associated with horizontal and vertical lines are first elimi-
nated. Although this was ineffective in the image space analy-
sis, it works well on the histogram. Figure 11 shows the mod-
ified histograms from the upper half of Figure 10 after elim-
ination of all angles within ten degrees of horizontal or ver-
tical. In Figure 12, a second image with a scratch is analyzed
using the gradient orientation histogram. As in the example
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from Figure 10, the modified histogram with horizontal and
vertical gradients removed shows a clear peak associated with
the scratch, while the gradients associated with the circular
pattern structures are spread over all angles.

5. PERFORMANCE EVALUATION

Performance of the DMG demonstrated in the previous sec-
tion can be predicted based on models of the images of the
design pattern structures and defects. It has been assumed
that the image acquisition process will produce design pat-
tern components with a pixel dimension of approximately
three or four so that the design pattern can be observed in the
image. A smoothing filter that would significantly attenuate
the variability due to the design pattern should have a mini-
mum size of twice the feature dimension, so a 7 X 7 smooth-
ing filter was tested first. However, the periodicity of the array
of design elements is also important, and a larger smoothing
filter of 15 X 15 would be expected to cause greater attenua-
tion. Smoothing filters of size 7, 15, and 21 are investigated.

For this analysis it is useful to define a rectangular func-
tion rect(x), which has a value of 1 for —0.5 < x < 0.5
and is 0 elsewhere. A vertical pattern stripe of infinite
height and width a centered at x = x, can be written as
f(x,y) = rect((x — x.)/a) while a square aperture func-
tion of size b centered at the origin can be written as
s(x, y) = (1/b)* rect(x/b) rect(y/b). Consider a stripe defined
by fi(x,y) = A rect((x — x.)/a) blurred by s(x, y). The re-
sulting blurred stripe has a trapezoidal intensity pattern with
a central width of (1 + |b — al) and a complete width of
(a+ b — 1). The slope on the rising and falling edges of the
trapezoid has a magnitude of (A/b) per pixel, and for all b
larger than g, the maximum value in the central width is
Aa/b. Thus, as b increases, the value of both the slope and
the central maximum decrease. The Sobel operator will have
a response of 2/b for a unit height stripe of width 3 or larger,
while the DMG7 will have a response of a/b for a unit height
stripe of width a < 7 and a response of 7/b for a > 7.

The same blurring will be applied to defects as well as
the pattern structures. However, the DMG can respond to
the maximum difference over a range defined by the struc-
turing element, while a linear operator like the Sobel oper-
ator responds only to difference at fixed spatial separations.
This allows the DMG to have a stronger response to the de-
fect than the Sobel operator. Several examples of this effect
on performance are shown in Figure 13. Each of the four
defect images shown on the left is smoothed by a 15 x 15
filter. The gradient computed using the Sobel operator is
shown in the center and the gradient computed using the
DMG is shown on the right. The image defect in the top
row has well-defined edges and appears on a design pattern
with densely packed small features. In this case the smooth-
ing filter suppresses most of the design pattern and both gra-
dients show the boundary of the defect. The Sobel opera-
tor result has a small amount of design pattern remaining.
The second and third rows show less well-defined defects
against a more open design pattern with larger features. In
both cases, the gradient intensities computed by the Sobel

operator for the design pattern and for the defect had over-
lapping values and could not be separated by thresholding.
In contrast, the DMG produced nonoverlapping gradient in-
tensities for the defect and the pattern which allowed sep-
aration. It should be noted that the edge effects of the im-
age processing, which frame the images, were left to facilitate
alignment when most structures were suppressed. The fourth
row shows a defect with very diffuse boundaries. The DMG
gradient produces a more reliable boundary for it than the
Sobel operator, but both methods miss the lightest part of
the defect edge.

In Figure 14, the effect of increasing the size of the
smoothing filter is explored. The results from the two ex-
amples in the middle of Figure 13 are shown with gradient
magnitudes computed after smoothing by a 7 x 7 filter on
the left, by a 15 x 15 filter in the center, and by a 21 x 21 fil-
ter on the right. In both examples, the DMG performs well
for all three filter sizes, though the edges of the defect start to
break up for the largest filter. For the 7 x 7 filter, the Sobel
operator retains a significant amount of the design pattern
structure. For the 21 X 21 filter, most of the design pattern is
suppressed but the defect boundary is also diminished. This
demonstrates that the DMG gives more reliable performance
than the Sobel operator over a wider range of input and im-
age processing variability.

Figures 15 and 16 show two examples that are problem-
atic for both the Sobel operator and the DMG. The first ex-
ample shows a very small defect against a high contrast pat-
tern structure. The DMG is better able to separate it from
the design than the Sobel operator, but some definition of
the defect is lost. The second example shows a very diffuse
defect with very little contrast compared to the background.
The higher contrast design pattern dominates the defect for
both methods over all three filter sizes.

6. CONCLUSION

A new directional morphological gradient method has been
presented and applied to the automatic detection and isola-
tion of particle, spot, and scratch defects visible in surface
images. For particle and spot detection, the separation of the
design pattern elements from defects based on image inten-
sity levels, spatial frequencies, and linear filtering is not ef-
fective. The new directional morphological gradient method
presented has a computational complexity similar to the So-
bel operator. It can more reliably detect spots and particles
that are larger than the design feature size because the re-
sponse of the morphological gradient is not tied to specific
spatial frequencies. The irregular diffused boundaries of the
defects are more reliably captured by the one-dimensional
morphological gradient components which respond to the
maximum change anywhere within the region defined by
the structuring element regardless of the interval over which
the maximum change occurs. The size of the structuring
element is easily modified to adapt to new applications.
This method can continue to be applied as the feature size
decreases and circuit density increases as long as imag-
ing technology is available to provide surface images with
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FiGURE 13: Four images of defects are shown on the left (a), (d), (g), and (j). After smoothing with a 15 X 15 filter, gradient detection by the
Sobel operator is shown in the center (b), (e), (h), and (k), and gradient detection by the DMG7 is shown on the right (c), (f), (i) , and (1).

sufficient resolution that design features span three or four
pixels.

The same directional morphological gradient methods
used to detect the particle defects can also be used to de-
tect a large number of scratch defects. This application uses
the orientation information that was added to the basic mor-
phological gradient by using small one-dimensional struc-
turing elements. Since the new directional morphological

gradient produces accurate orientation information for edge
segments, a histogram of edge angles can be used to find a set
of edge segments aligned with a direction other than the ver-
tical and horizontal axes of the design pattern. This approach
is effective for all scratches that are long enough to create an
identifiable concentration of edge segments at an unexpected
orientation. Breaks in the irregular edges of the scratches
will not affect this approach since the histogram contains no
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FIGURE 14: Defect images from Figures 13d and 13g processed by Sobel operator and DMG?7 after using smoothing prefilters of size 7 X 7
(left), 15 x 15 (center), and 21 x 21 (right). The results for Figure 13d are shown in (a) for the Sobel operator and (b) for the DMG?7. The
results for Figure 13g are shown in (c) for the Sobel operator and (d) for the DMG?7.

(a) (®) (0) (d)

F1GURE 15: Two defect examples (a), (c) and corresponding images after 15 X 15 smoothing.
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FIGURE 16: Defect images from Figures 15a and 15¢ processed by Sobel operator and DMG7 after using smoothing prefilters of size 7 X 7
(left), 15 x 15 (center), and 21 x 21 (right). The results for Figure 15a are shown in (a) for the Sobel operator and (b) for the DMG?7. The
results for Figure 15¢ are shown in (c) for the Sobel operator and (d) for the DMG?7.

information about connectivity of the edge segments. Also
nonrectangular structures such as connection points will not
cause problems with the scratch detection histogram. Their
edge segments will have orientation values distributed over
the full range of angles. For design patterns which have sig-
nificant edges that are not horizontal or vertical, specific ex-
clusion of these particular angles would also be necessary.
The new directional morphological gradient method
presented in this paper uses the basic operations of mor-

phological filtering and simple structuring elements. How-
ever, these operations are combined in a new way which
provides important orientation information that has not
typically been used with morphological methods. Because
the decomposition property allows intermediate results from
simple structuring elements to be used for more complex
structuring elements, these methods can be used easily with
a wide variety of other established morphological filtering
methods.
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