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This paper presents a surface inspection prototype of an automatic system for precision ground metallic surfaces, in this case
bearing rolls. The surface reflectance properties are modeled and verified with optical experiments. The aim being to determine
the optical arrangement for illumination and observation, where the contrast between errors and intact surface is maximized. A
new adaptive threshold selection algorithm for segmentation is presented. Additionally, is included an evaluation of a large number
of published sequential search algorithms for selection of the best subset of features for the classification with a comparison of
their computational requirements. Finally, the results of classification for 540 flaw images are presented.

Keywords and phrases: visual inspection, surface reflection, flaw detection, segmentation, statistical classification, feature
selection.

1. INTRODUCTION

In industry, there is an increasing demand for automatic sur-
face inspection systems for quality control of final products.
Thereby, image processing techniques play a crucial role in
this growing field. The customer demands are well founded
on the high costs of poor quality, with the resulting cost for
correction. The human assessment of the product quality in
repetitive tasks, for example, inspection of textiles, achieves
a maximum reliability of only 80% [1]. Thus, replacing the
human visual inspection with a fully automatic system will
normally increase the accuracy of flaw detection and reduce
costs. A survey of automated visual inspection can be found
in [2]. Many papers of surface inspection on steel products
have recently been published [3, 4], most of which concen-
trate on flat objects.

In this paper, an automatic visual surface inspection sys-
tem for bearing rolls, that is, precision surfaces, is presented.
A coarse concept of the automated solution for real-time vi-
sual inspection of bearing rolls is shown in Figure 1.

It consists of five main parts:

(1) an optical arrangement for the acquisition of the sur-
face image data, including the mechanical hardware,
camera, lighting, and frame-grabber (see Section 3),

(2) flaw detection (see Section 4),
(3) image segmentation (see Section 5.1),

(4) feature extraction (see Section 5.2),
(5) feature selection (see Section 5.3), and
(6) classification (see Section 5.4).

The problem at hand is presented in Section 2, whereby,
the demands on the inspection system and the main charac-
teristics of the flaws which must be detected are described.
The design of the optical arrangement (see Section 3) is
based on a modeling of the surface reflectance properties
[5, 6, 7]. Exploratory measurements were performed under
laboratory conditions to verify the model and to determine
the optimal position of the light sources. The inspection of a
single roll requires the processing of approximately 7MBytes
of data. Consequently, in the first step a statistical procedure,
which is numerically efficient (see Section 4), is used to locate
irregularities in the acquired data. These portions of the data
are extracted and submitted as subimages for further pro-
cessing. In this manner, a data reduction of approximately
1 : 100 is achieved.

The classification of the flaws in the subimages is pre-
sented in Section 5. These images are segmented so as to sep-
arate the flaw from the surroundings, so enabling the calcula-
tion of characteristic features. During online processing these
features are used for classification. The identification and se-
lection of the feature set with the best classification perfor-
mance is a complex task and is performed a priori offline. To
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Figure 1: System concept.

Figure 2: Different bearing rolls.

this end, a comparative study of sequential feature selection
algorithms with experimental results from this application is
presented. The paper closes with a summary and gives a per-
spective on the future work.

2. PROBLEM STATEMENT

In the production of high quality bearings, the surfaces of the
bearing rolls have to be free of flaws and defects which can
arise during the production process. To guarantee a long pe-
riod of operation and low friction, bearing rolls which have
flaws with a diameter larger than 0.1mm should be removed
from the production lot. Whereby, the small defects tend to
have a better contrast than the larger defects. The dimensions
of the bearing rolls differ widely, the length is between 45 and
100mm and the diameter varies from 30 to 45mm. The dif-
ferent rolls are shown in Figure 2.

The cycle time for detection and classification of all flaws
on one small bearing roll is specified as 1.2 seconds. Con-
sequently, the data throughput for 100% inspection corre-
sponds to approximately 6MB per second.

Visual inspection is performed straight after the grind-
ing process, so the reflection properties of the rough ground
surface are highly specular and not yet influenced by inho-
mogenities of the corrosion protection liquid.

2.1. Characteristic of flaws

The characteristics of the flaws on the metallic surface de-
pend strongly on the final treatment. There are three main
causes of surface irregularities in this application:

(i) material defects, which are present in the incoming
material prior to grinding;

(ii) flaws produced during grinding;
(iii) chafe marks due to material handling.
According to the human inspectors five different classes

of irregularities have been established during the production.
Thereby, the first three classes degrade the roughness mea-
sure of the surface.

(1) Material flaws (class 1): they exhibit a very low and
homogeneous grey value which lightens at the edge of the
defect. They show no particular shape or size. These errors
already exist in the blank and they appear as a cavity in the
ground surface of the bearing roll.

(2) Grinding flaws (class 2): these flaws arise at the end of
the grinding process when the bearing roll exits the grinding
machine. They commonly exhibit a triangular shape with a
predominant orientation. The grey value of the error is not
as low and homogeneous as in class 1. The visual appearance
of these flaws depend strongly on the illumination direction
(see Section 3). The roughness of the surface is elevated.

(3) Scratches (class 3): scratches develop from the abra-
sive grain of the grinding wheel. Their appearance is very thin
and long with a low homogeneous grey value, and the orien-
tation is mostly between 60◦ and 120◦. They also degrade the
roughness measure of the surface.

(4) Chafe marks (class 4): chafe marks are caused by the
manipulators. They show no particular shape, but the object
itself is normally very inhomogeneous. These flaws are in fact
a polishing of the surface.

(5) Spots (class 5): the genesis of spots is unsolved. They
cannot be removed by the cleaning process before the visual
inspection. Dark spots show a small size and a medium grey
value. They do not alter the roughness measure of the sur-
face.

A representative example of each class is shown in
Figure 3.

An additional complication in this task is that the flaw
types 4 and 5 should not lead to a part being removed from
the production lot. This places additional requirements on
the classification algorithms.

3. OPTICAL ARRANGEMENT AND EXPERIMENTAL
SETUP

An optimal illumination can enhance the visual appearance
of the surface defects. Especially for flaws of class 2 and class 3
the positioning of the light source significantly influences the
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Figure 3: Different flaws: (a) material flaw, (b) grinding flaw, (c)
scratch, (d) chafe mark, (e) spot.

image contrast. These defects are characterized by an alter-
ing microstructure of the surface, which degrades the rough-
ness measure. Therefore, the optimal direction of the inci-
dent light is derived from the surface topography. For this
reason, a modeling of the surface reflectance properties have
been performed and validated by means of optical experi-
ments.

3.1. Reflectionmodel

The surface is regarded as a composition of a collection of
microfacets which constitute a surface patch having a mean
normal vector n. In analyzing the surface reflection proper-
ties, the roughness of the surface is determined by the slope
distribution of the microfacets. Each microfacet is character-
ized by the slope α, which is the tilt angle of its normal vector
with respect to the mean normal vector n. The surface is de-
scribed by the standard deviation σα of the assumed mean-
centered normal distribution.

Nayar et al. [7] compared the Beckmann-Spizzochino [5]
physical optics model to the Torrance-Sparrow [6] geomet-
rical optics model and proposed a unified reflectance frame-
work for smooth and rough surfaces, which is comprised of
three reflection components: the diffuse lobe Idl, the specular
lobe Isl, and the specular spike Iss. These three components
are shown in Figure 4. The radiance in the sensor direction
of the three components is determined through the intersec-
tions of the lobes with the line joining the light source and
the origin [7].

The light reflected from the surface in the direction of the
camera causes an image with the intensity

Iim = Idl + Isl + Iss. (1)

(1) Diffuse lobe: the diffuse component is represented by
the Lambertian model,

Idl = Kdl cos θi, (2)

where Kdl denotes the strength of the diffuse lobe and θi is
the angle of the incident light rays.

(2) Specular lobe: due to its simpler mathematical form,
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Figure 4: Three reflection components for a fixed viewing direction
and a varying source angle (from Nayar et al. [7]).

a Torrance-Sparrow model [6] is used to predict the specular
lobe,

Isl = Ksl exp
(
− α2

2σ2α

)
F
(
θ′i , η

′)G(θi, θr , φr), (3)

where Ksl is the magnitude of the specular lobe and the ex-
ponential term describes the slope distribution of the micro-
facets assuming a normal distribution.

The Fresnel coefficient is represents by F(θ′i , η′), where
θ′i is the local angle of incidence and η′ is the complex index
of refraction. In the literature it is observed that for metals,
the Fresnel coefficient is nearly constant until θ′i approaches
75◦ [7]. Therefore, this coefficient is assumed constant in this
application.

The geometric attenuation factor G(θi, θr , φr) [6] de-
scribes the shadowing and masking effects of facets by ad-
jacent facets, where θr and φr are the direction of the camera.
The factorG equals to unity over a large range for θi when the
viewing direction coincides with the mean normal vector n.

(3) Specular spike: the specular spike component is a very
sharp function which is approximated by the delta function,

Iss = Kssδ
(
θi − θr

)
δ
(
φr
)
, (4)

where Kss is the strength of the specular spike component.
The coordinate system used for the model is shown in

Figure 5.
The ratio Ksl/Kss is dependent on the surface roughness

[7]. For rough surfaces, the specular lobe is dominant com-
pared to the specular spike which is negligible when the stan-
dard deviation of the surface height σh, divided by the wave-
length λ of the light, exceeds a factor of 1.5 [7]. The surface
roughness of the bearing rolls is small, however, the optical
measurements (see Section 3.3) show that no specular spike
is present. The change of the surface roughness caused by the
flaws only influences the specular lobe component in the re-
flection model. Hence, the reflectance model is restricted to
the specular lobe component to describe the difference of the
reflectance of an intact and flawed surface.
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Figure 5: Coordinate system for the reflection model (adopted
from Torrance and Sparrow [6]).
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Figure 6: 3D profile of a scratch.

3.2. Measurements of surface roughness

The proposed reflection model is verified with the mea-
surements of the surface roughness. The surface height
measurements of the flaws and the adjacent error-free sur-
face were acquired using a topography measuring apparatus
(Wyko NT-1000, Veeco Instruments, Inc., New York, USA).
The 3D surface of a scratch is shown in Figure 6.

Basically, the reflection properties of machined surfaces
must be divided into a reflection function parallel and per-
pendicular to the machining direction [8]. In the proposed
arrangement (see Figure 11), the camera, the light source,
and the axis of the roll lie in a plane. Hence, the reflection
function parallel to the machining direction can be neglected
and the investigations concentrate on modeling the reflec-
tion function in the plane given by the optical setup. The
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Figure 7: Roughness profiles of a grinding flaw and a scratch.

roughness profiles for a scratch and grinding error measured
in the direction of the roll axis are visualized in Figure 7. Both
flaws degrade the surface smoothness.

The standard deviation of the approximately normal dis-
tributed surface slopes σα is for the errors lower than for the
intact surface. The change of the surface height in case of a
flaw is at least twice that of the error-free surface, also the
frequency of the main oscillation of the roughness profile is
lower and the slopes are smoother, these effects result in a
lower σα. The measured σα for the grinding error is 4.8 and
for an intact surface 5.5. This difference causes a shift of the
reflection property.

The reflection intensity of the specular lobe component
is computed according to the model (see (3)) and plotted in
Figure 8. The viewing direction is fixed at θr = 0◦ and the
source direction θi is varied.

The difference in the reflected intensities (see Figure 8)
for the intact surface and a grinding flaw reflects the dif-
ference in surface roughness. The largest difference is given
for an angle of illumination θi in the range from 10◦ to 30◦.
Hence, an illumination angle in this range should lead to an
optimum contrast.

3.3. Optical measurements

The influence of the surface roughness on the reflected light
was measured using a camera and a point light source. The
source direction θi is varied from 0◦ to 90◦ while the sensor
direction coincides with the normal vector n of the surface
and is constant with θr of 0◦. The intensity measurements are
obtained for both an error-free and a flawed area by means
of averaging. In Figure 9, the measured intensity distribution
is plotted.

A rough surface leads to less light being reflected into the
camera. The maximum contrast between a flaw and intact
surface is achieved for an illumination angle in the range
from 10◦ to 40◦. This experimental result corresponds well
with the model prediction (see Figure 8), despite, the simpli-
fications and assumptions which were made in [6, 7].
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Figure 8: The relative reflected intensity for an error-free surface
and a grinding error is computed according to the reflection model
which is restricted to the specular lobe component.
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Figure 9: Relative intensity measured for an error-free surface and
a grinding error for a fixed viewing direction θr = 0◦ and a varying
source direction.

3.4. Practical implementation for the production
environment

The bearing roll is illuminated axially from two sides using
a focused lightline in order to achieve a uniform illumina-
tion across the complete surface. Due to the geometry of the
light source, the light rays impinging on the surface are dis-
tributed over a wide range of incident angles, as shown in
Figure 10.

Camera

Extended light source

α
δ

β

β
γ

Bearing roll

Figure 10: Arrangement of the light sources.

Further, the illumination across the roll is nonuniform
with respect to each light source. The left side of the roll is
illuminated primarily by the left light source and vice versa.
The best illumination angle has been determined experimen-
tally to be α = 45◦. This implies, taking the mechanical
arrangement and dimensions into account, that β = 14◦,
γ = 65◦, and δ = 18◦. Consequently, the angle of inci-
dence θi for most of the light rays lies between δ = 18◦ and
α + β = 59◦.

For an illumination angle θi greater than 60◦ and a view-
ing angle θr of 0◦, the shadowing andmasking effects of facets
by adjacent facets modeled in the Torrance-Sparrow model
[6, 7] with the geometrical attenuation factor must be con-
sidered. This would be the case for a portion of the surface
if the roll was illuminated using only one light source (e.g.,
for the left portion of the roll when illuminating from the
right-hand side).

3.5. Experimental setup

A monochrome CCD line-scan camera with 2048 pixels is
employed. Approximately 3500 lines for one perimeter of the
small rolls are scanned. The sampling interval is chosen to be
less than a half of the smallest flaw which should be detected.
The pixel size in the horizontal direction is 0.049mm and
0.027mm in the vertical direction. The mechanical arrange-
ment is shown in Figure 11.

4. FLAWDETECTION

The flaws have to be detected in the acquired surface image,
where they are embedded in a more or less homogeneous
texture. The roughness of the ground rolls causes an image
composed of statistical textures which are characterized by a
stochastic spatial distribution of grey values. In comparison,
structural textures are composed by texture primitives which
occur repeatedly in a deterministic manner.
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In the first step, regions of interest (i.e., areas with possi-
ble errors) are determined by moving a sliding window over
the entire surface. In this window a reduced set of features
is calculated to determine if a possible flaw is present or not.
Regions with feature values exceeding predetermined limits
are extracted as subimages for further processing. This step
brings a data reduction of approximately 1 : 100. Basically,
two main approaches to textural features are proposed in
the literature, either features of the spatial domain, or of the
spatial-frequency domain. The most difficult task is to ex-
tract adequate features, which are most descriptive and se-
lective according to the appearance of the flaws. Due to the
real-time demands in this application only first-order statis-
tical features [9] of the spatial domain, for example, mean,
variance, skewness, and kurtosis are computed. They deliver
a reliable detection of the surface flaws even in the case of
weak contrast.

5. CLASSIFICATION

The classification of the detected irregularities is achieved
by means of characteristic descriptors (features). Thus each
subimage is described by a feature vector,

xT =



x1
...
xN


 , (5)

where xi represents the ith descriptor andN is the number of
all features.

To this end, the irregularity within the subimages is seg-
mented and features are derived. The most appropriate fea-
tures for classification are not known a priori. Hence, the fea-
tures must be selected in a prior offline step from a large set
so as to give optimal classification performance.
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Figure 12: Segmentation through threshold based on maximizing
the area of the triangle: (a) grinding error, (b) histogram, (c) bi-
nary image after applying the threshold and the morphological fil-
tering, (d) smoothed histogram, grey line represents the threshold
T = 149.

5.1. Segmentation

Themost widely used method for segmentation is threshold-
ing. The threshold is derived from the histogram. The grey
value distributions of the flaw and the surrounding statisti-
cal texture may overlap so the smoothed histogram has only
a single peak. Some of the defects in this application show
a very low contrast which results in a unimodal histogram
having a tail. It is assumed that the flaw, represented as a
more or less homogeneous region in the image, is mapped to
the tail of the histogram. Consequently, the threshold has to
be located at the point where the curvature of the histogram
slope changes into the tail. Before the threshold is determined
the noise in the histogram has to be reduced sufficiently by
smoothing. This is necessary to guarantee a successful oper-
ation of the thresholding algorithm.

The histogram H(i) is convoluted,

H̃(i) = H(i)∗ g(i, σ) (6)

with a one-dimensional Gaussian kernel

g(i, σ) = 1√
2πσ2

exp
(
− i2

2σ2

)
, (7)

where i is the grey value, σ is the width of the kernel, and H̃(i)
denotes the smoothed histogram [10]. An appropriate value
for σ must be chosen to avoid degradation of the algorithm
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performance. A too large value of σ leads to over-smoothing
and a loss of characteristics, whereby a too low value results
in insufficient smoothing.

Once the histogram has been smoothed, the threshold al-
gorithm based on maximizing the area of a triangle is ap-
plied. The point at the maximum of the histogram p1 =
[x1, y1] and the point corresponding to the end of the left
tail p2 = [x2, y2] are chosen to form the baseline of the
triangle. The point on the histogram p3 = [xi, yi] is now
sought, which has the maximum normal distance to the
baseline. This is equivalent to determining the maximum
area enclosed by the three points. However, determining
the enclosed area Ai is numerically more efficient than de-
termining the normal distance. The area Ai is determined
as half of the magnitude of the cross product between the
x and the y components of the given three points p1, p2,
and p3. This is equivalent to determining the determinant
as

Ai = 1
2

∣∣∣∣∣∣∣∣

xi yi 1

x1 y1 1

x2 y2 1

∣∣∣∣∣∣∣∣
, (8)

or

Ai = 1
2

[
xi
(
y1 − y2

)− yi
(
x1 − x2

)
+
(
x1y2 − x2y1

)]
. (9)

This equation can be further simplified, since p1 and p2 are
constant during the search:

Ai = xic0 + yic1 + c2. (10)

The threshold value T is

T = xi | x2 < xi < x1 ∧ Ai = max
(
Ai
)
. (11)

The result of the segmentation is shown in Figure 12.
The threshold generated in this manner leads to a com-

pact segmentation of the flaw. However, the major advan-
tage is that the algorithm is independent of the number
of peaks in the histogram. In the case of a bimodal his-
togram the threshold level is selected in the minimum be-
tween the peaks. When the image contrast is low, the selected
threshold level lies at the transition of the distinct classes
(flaw/surroundings) of the unimodal histogram. If the peak
caused by the flaw is larger than the peak of the surroundings
this method fails. However, in this application the surround-
ing area is always dominant.

5.2. Feature extraction

The result of the segmentation is a well-defined object in the
subimage. This is necessary for the next step where shape de-
scribing features are computed as well as grey value depen-
dent descriptors. The algorithms for the computation of the
different features are described in [9, 11, 12] and summarized
in Table 1. Altogether, 54 features were extracted of each flaw
in a preliminary step.

Basically, four different approaches for feature extraction
were used that may roughly be divided into statistical fea-
tures, contour-based descriptors, region-based methods, and
gradient features.

(1) Region-based features: simple region-based descrip-
tors are derived from the binary image. These features re-
fer either to all segments obtained after segmentation or to
the largest segment extracted through a region labeling al-
gorithm described in Sonka et al. [11]. Most of the features
are derived from the region projections and from translation
invariant central moments.

(2) Statistical features: these first-order statistic measures
are computed either from the image or separately from the
flaw and its background. Additionally, the ratio of the mean
and the standard deviation of the flaw and the appropriate
background serve as features.

(3) Contour-based features: the boundary of the largest
segment in the binary image is described with the help of
Fourier descriptors [9, 11]. Therefore, the contour is rep-
resented as a closed curve �c(i) = (cx(i), cy(i)), where i =
1, . . . , L, L is the curve length, and cx(i) and cy(i) are the co-
ordinates in x and y. The Fourier descriptors are computed
for cx(i) and cy(i) and therefrom the first few translation, ro-
tation, and magnification invariant descriptors are used as
measure for the shape of the flaw.

(4) Gradient features: the gradient of an image describes
abrupt changes of the grey value between neighboring pixels.
The maximum of the gradient in both directions is used to
discriminate between low contrast and clearly defined flaws.

5.3. Feature selection

In real-world classification problems, the relevant features
for classification are often unknown a priori. Hence, the task
of feature selection is to reduce the number of extracted fea-
tures to a set of a few significant ones, which optimize the
classification performance. Therefore, many algorithms exist
which typically consist of four basic steps [13]:
(1) a generation procedure to generate the next subset of

features X ;
(2) an evaluation criterion J to evaluate the quality of X ;
(3) a stopping criterion for concluding the search. It can

be based either on the generation procedure or on the
evaluation function;

(4) a validation procedure for verifying the validity of the
selected subset.

Feature selection is performed offline and hence, only the
selected features are considered during online classification.

The best subset

X = {xi | i = 1, . . . , d; xi ∈ Y
}

(12)

is selected from the set

Y = {yi | i = 1, . . . , D
}
, (13)

where D is the number of extracted features and d ≤ D de-
notes the size of the feature subset [14, 15]. A feature se-
lection criterion function J(X) evaluates a chosen subset X ,
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Table 1: List of features used for the feature selection experiments.

No. Feature name Method

1 Area of all segments

Region-based features

2 Boundary length of all segments
3 Compactness of all segments
4 Center of gravity in x

5 Center of gravity in y

6 Polar measure minimum
7 Polar measure maximum
8 Polar measure mean
9 Ratio of width to height of all segments
10 Height of all segments
11 Width of all segments
12 Roundness of all segments
13 Number of discontinuation in the horizontal projection
14 Number of discontinuation in the vertical projection
15 Number of free columns within the object
16 Number of free rows within the object
17 Number of objects
18 Area of the largest segment
19 Boundary length of the largest segment
20 Direction of the largest segment
21 Length of the bounding rectangle of the largest segment
22 Width of the bounding rectangle of the largest segment
23 Rectangularity of the largest segment
24 Compactness of the largest segment
25 Axis ratio of the bounding rectangle
26 a0 of the first order fit of the horizontal projection of the largest segment
27 a1 of the first order fit of the horizontal projection of the largest segment
28 Angle of the regression line of the horizontal projection of the largest segment
29 Absolute error of the regression line to the horizontal projection
30 b0 of the second-order fit of the horizontal projection of the largest segment
31 b1 of the second-order fit of the horizontal projection of the largest segment
32 b2 of the second-order fit of the horizontal projection of the largest segment
33 Absolute error of the second-order fit to the horizontal projection
34 Ratio of the areas
35 Eccentricity
36 Ratio area/width

37 Mean grey value of all segments

Statistical features

38 Standard deviation of all segments
39 Mean grey value of the background
40 Standard deviation of the background
41 Ratio of the mean of the segments and the background
42 Ratio of the standard deviation of the segments and the background
43 Maximum grey value of the image
44 Minimum grey value of the image
45 Moment of 4th order of the image
46 Skewness of the image
47 Standard deviation of the image
48 Mean of the image

49 Second harmonic coefficient of the Fourier descriptor

Contour-based features
50 Third harmonic coefficient of the Fourier descriptor
51 Fourth harmonic coefficient of the Fourier descriptor
52 Fifth harmonic coefficient of the Fourier descriptor

53 Maximum of the gradient in x direction
Gradient features

54 Maximum of the gradient in y direction
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whereby a higher value of J indicates a better subset. For-
mally, the problem of feature selection is to find a subset
X ⊆ Y such that the number of chosen features |X| is d and
J reaches the maximum

J
(
Xopt) = max

X⊆Y, |X|=d
J(X). (14)

The evaluation criterion J is proposed to be the performance
of a statistical classifier (classification rate) used as decision
rule. Other evaluation measures are available, but Dash and
Liu [13] showed that the best accuracy of selecting the subset
is achieved by using the same classifier as for the online ap-
plication. Unfortunately, this is computationally demanding.

Extensive investigations were carried out with subopti-
mal sequential feature selection algorithms. Further, genetic
algorithms were applied to the same data set for feature selec-
tion (see [12]). Sequential feature selection algorithms search
in a sequential deterministic manner for the suboptimal best
feature subset. The forward methods start with an empty
set and add features until a stopping criterion concludes the
search. The backward algorithms are the counterpart. They
begin with all features selected and remove features itera-
tively. The well-known suboptimal sequential algorithms are
listed and a comparative study is given afterwards.

(1) Sequential forward selection (SFS): with each itera-
tion one feature among the remaining features is added to
the subset, so that the subset maximizes the evaluation crite-
rion J .

(2) Sequential backward selection (SBS): in each step one
feature is rejected so that the remaining subset gives the best
result.

(3) Plus l-take away r selection (PTA (l, r)): this iterative
method enlarges the subset by adding l features with the help
of the SFS algorithm in the first step. Afterwards r features
are removed with the SBS algorithm.

(4) Generalized sequential forward selection (GSFS (r)):
at each stage r features are added simultaneously instead of
adding just one feature to the subset at a time like the SFS
method.

(5) Generalized sequential backward selection (GSBS (r))
is the counterpart of the GSFS method.

(6) Generalized plus l-take away r selection (GPTA (l, r)):
the difference between the PTA and the GPTAmethod is that
the former approach employs the SFS and the SBS proce-
dures instead of the GSFS and GSBS algorithms.

(7) Sequential forward floating selection (SFFS): the
SFFS includes new features with the help of the SFS proce-
dure. Afterwards conditional exclusions of the worst features
in the previously updated subset take place. Therefore, the
parameters l and r are superfluous.

(8) Sequential backward floating selection (SBFS). This
method is the counterpart of the SFFS method.

(9) Adaptive sequential forward floating selection
(ASFFS (rmax, b, d)): this algorithm is similar to the SFFS pro-
cedure where the SFS and the SBS methods are replaced by
their generalized versions GSFS (r) and GSBS (r). The level
of generalization r is determined dynamically. For a detailed
description we refer to [16].
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Figure 13: Results of feature selection obtained by different sequen-
tial optimization methods for a subset size up to d = 22 using the
3NN classification result as evaluation criterion. The performance
is achieved by averaging four optimized classification results gained
over a rotation scheme of four data set parts.

(10) Adaptive sequential backward floating selection
(ASBFS (rmax, b, d)): this method is the counterpart of the
ASFFS algorithm.

The SFFS and SBFS algorithms are described in Pudil et
al [17]. The recently published adaptive floating algorithms
(ASFFS, ASBFS) are presented in [16]. All other sequential
methods are explained in [14, 18]. Some interesting com-
parative studies of feature selection algorithms are shown
in [15, 19].

The feature selection algorithms were applied to a data
set of 540 flaw images equally distributed into five classes
gained from the surface inspection and a total of D = 54
extracted features of each image were used. The feature se-
lection algorithms were compared in terms of the quality of
the classification result. The performance of the 3-nearest-
neighbor decision rule serves as optimization criterion. The
evaluation of the sequential forward algorithms is shown in
Figure 13.

Generally, the floating algorithms perform better than
their nonfloating counterparts. The adaptive floating
method (ASFFS (3,3,d)) performs best.1 Whereby, there
is only a marginal difference to the result obtained by the
classical floating algorithm (SFFS). For a small subset size,

1For the ASFFS (3,3,d)method, different optimization runs for each sub-
set size d were performed and the best achieved results are summarized.
With the given parameter setting, the classification performance of a subset
size of d within a neighborhood of 3 is optimized more thoroughly, whereby
the highest level of generalization is 3.
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Figure 14: Approximate number of evaluations for different se-
quential selection algorithms.
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Figure 15: Verification of the results of the ASFFS(3,3,d) algorithm
obtained by using the 3NN decision rule as evaluation criterion.

the generalized PTA method achieves roughly the same
performance as the ASFFS algorithm. The approximate
number of evaluations performed during optimization by
different algorithms is shown in Figure 14. The number of all
nonfloating algorithms is fixed for a given parameter setting.
For the floating algorithms the number also depends on the
training set due to the floating property. The adaptive float-
ing algorithm with the chosen parameters is approximately
three times more costly than the classical floating algorithm.

Due to overfitting of the training set the selected features
for an optimal classification of the training data produce in-
ferior accuracy on independent test data. In practice the re-
sult of the feature selection optimization must be validated
with a test set of objects [13]. Therefore, several methods are
suggested in the literature [20, 21].

The four performances obtained by optimizing with four
data set parts (rotation scheme) and the classification esti-
mate of the best feature subsets found for the remaining test
data are averaged and shown in Figure 15.

The effect that a small subset of features yields a better
classification performance on test data is apparent. The best
classification performance of the training data is obtained
with a feature subset size of 18, whereby the best classifica-
tion performance of the test data set is achieved for a feature
subset size around 4. Therefore, the chosen features are those
with numbers 19, 22, 24, and 41 of Table 1.

For the decision of the optimal size of the feature subset
some conflicting issues should be taken into account. Dis-
criminatory informationmay be lost in choosing too few fea-
tures. Otherwise, a smaller subset results in lower computa-
tional effort and the designed classifier yields a better gener-
alization.

5.4. Statistical classification

Prior to classification the descriptors were scaled [22] by their
sample means and standard deviations. Each feature x′mn is
normalized using the following equation:

xmn = x′mn − µn
σn

, m = 1, 2, . . . ,M, n = 1, 2, . . . , N, (15)

where

µn = 1
M

M∑
m=1

x′mn, σn =

√√√√√ 1
M

M∑
m=1

(
x′mn − µn

)2
, (16)

are the mean value and the standard deviation,N is the num-
ber of features, andM is the number of samples. This scaling
approach achieves an objective normalization of the different
features with the statistical properties of µn = 0 and σn = 1.

During classification the object is assigned to a certain
class according to the selected features. The Bayes decision
rule is a fundamental probabilistic approach to statistical pat-
tern recognition [23, 24, 25].

Patterns x are assigned to a class ωj as

x −→ ωj if P
(
ωj | x

) = max
i=1,...,t

P
(
ωi | x

)
, (17)

where t is the number of classes, P(ωi | x) is the a posteri-
ori probability of the ith class computed by the probability
density function p(x | ωi) as

P
(
ωi | x

) = p
(
x | ωi

)
P
(
ωi
)

∑t
j=1 p

(
x | ωj

)
P
(
ωj
) . (18)

Various classification schemes were developed by estimating
or approximating the class density function p(x | ωi) and
the a priori class probability P(ωi). Simple decision rules as-
sume this probability density function as parametric form.
Most frequently the multivariate normal density distribu-
tion, which is characterized by the mean vector µi and the
covariance matrix Σi for each class i, is assumed. This leads
to the well-known minimum distance and Mahalanobis dis-
tance decision rules given in [23].

Due to the strong overlap of the classes in the feature
space of this classification task parametric decision rules are
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Table 2: Classification table of a set of 108 observations in each class
using a 3NN decision rule.

Correct class Predicted class

1 2 3 4 5

1 94 1 2 0 11

17.41% 0.19% 0.37% 0.00% 2.04%

2 0 95 3 10 0

0.00% 17.59% 0.56% 1.85% 0.00%

3 3 1 94 3 7

0.56% 0.19% 17.41% 0.56% 1.30%

4 0 10 5 88 5

0.00% 1.85% 0.93% 16.30% 0.93%

5 8 1 7 2 90

1.48% 0.19% 1.30% 0.37% 16.67%

inferior compared to the nonparametric decision rules such
as the k-nearest-neighbor (kNN) approach.

The proposed kNN decision rule aims to estimate di-
rectly the a posteriori probability function P(ωi | x). A ref-
erence set of labeled samples is available and k-nearest-
neighbors of the actually unknown object are extracted. The
new object is assigned to the most frequently occurring class
of its neighbors stated as follows:

x −→ ωj if kj = max
i=1,...,t

ki. (19)

For a finite training set the kNN decision rule will approxi-
mate the Bayes rule [25]. To establish the optimal value of k,
Raudys and Jain [21] recommend estimating the classifica-
tion performance for a different number of k.

Finally, for the classification experiments, 108 samples
for each of the 5 classes of flaws are classified using the estab-
lished four features. For the classification the actual chosen
object is removed from the reference set of the kNN decision
rule. In this manner, 85.37% of the data is classified correctly
(see Table 2).

The main characteristics of the classification table are
summarized as follows:

(i) wrong classified objects of class 1 are mostly assigned
to class 5 and vice versa;

(ii) observations which belong to class 3 are, in the case of
misclassification, mostly categorized to class 5;

(iii) objects of class 2 and class 4 also strongly interfere.
In consideration of the fact that flaws of types 4 and 5

on the bearing rolls should not lead to a removal from the
production lot, the performed classification result is not sat-
isfactory. Therefore, an extension of the classification with a
rejection class is suggested.

6. CONCLUSION AND FURTHERWORK

This paper presents a prototype for the detection and classi-
fication of flaws on bearing rolls.

The first part concentrates on the optical reflectance
properties of the rough surface of the machined rolls. The

change of themicrostructure of the surface in case of an error
strongly influences the reflectance function. This was shown
with a reflectance model using the roughness measurements,
and the results were validated with optical experiments. Ad-
ditionally, considerations about the optimal illumination an-
gle for the lightline source used to achieve a constant illumi-
nation across the bearing roll were performed.

The second part deals with the issues of flaw detection,
segmentation, feature extraction, feature selection, and clas-
sification. A robust adaptive segmentation algorithm, which
works on unimodal and bimodal histograms based on maxi-
mizing the area of a triangle embedded in the smoothed his-
togram, was shown. In order to classify the detected flaws,
features were derived, and themost significant features which
optimize the classification performance were extracted using
sequential feature selection algorithms. Therefore, a compar-
ative study of suboptimal feature selection methods has been
performed. The effect that a small subset of features yields a
better classification performance on an independent test data
set was shown.

The future work focuses on algorithms for the classifica-
tion of the flaws. There exists a huge variety of different clas-
sification algorithms which might perform better than the
current kNN decision rule. Special attention will be dedi-
cated to Bayesian network classifiers which seem to be the
most powerful decision rules at present. Additionally, a com-
bination of different classifiers could increase the classifica-
tion performance.
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