EURASIP Journal on Applied Signal Processing 2002:5, 459-470
(© 2002 Hindawi Publishing Corporation

Space-Time Turbo Trellis Coded Modulation
for Wireless Data Communications

Welly Firmanto

School of Electrical and Information Engineering, The University of Sydney, Sydney 2006, Australia

Email: firmanto@ee.usyd.edu.au

Branka Vucetic

School of Electrical and Information Engineering, The University of Sydney, Sydney 2006, Australia

Email: branka@ee.usyd.edu.au

Jinhong Yuan

School of Electrical Engineering and Telecommunications, The University of New South Wales, Sydney, NSW 2052, Australia

Email: ].Yuan@unsw.edu.au

Zhuo Chen

School of Electrical and Information Engineering, The University of Sydney, Sydney 2006, Australia

Email: zhuochen@ee.usyd.edu.au

Received 1 June 2001 and in revised form 22 March 2002

This paper presents the design of space-time turbo trellis coded modulation (ST turbo TCM) for improving the bandwidth effi-
ciency and the reliability of future wireless data networks. We present new recursive space-time trellis coded modulation (STTC)
which outperform feedforward STTC proposed by Tarokh et al. (1998) and Baro et al. (2000) on slow and fast fading channels. A
substantial improvement in performance can be obtained by constructing ST turbo TCM which consists of concatenated recursive
STTC, decoded by iterative decoding algorithm. The proposed recursive STTC are used as constituent codes in this scheme. They
have been designed to satisfy the design criteria for STTC on slow and fast fading channels, derived for systems with the product
of transmit and receive antennas larger than 3. The proposed ST turbo TCM significantly outperforms the best known STTC on
both slow and fast fading channels. The capacity of this scheme on fast fading channels is less than 3 dB away from the theoretical
capacity bound for multi-input multi-output (MIMO) channels.

Keywords and phrases: space-time coding, MIMO fading channels, space-time trellis codes, turbo coded modulation, interative
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1. INTRODUCTION

In the present cellular mobile communication systems, mul-
tiple antennas are being considered for applications at base
station receivers with the aim to suppress cochannel inter-
ference and minimize the fading effects on the uplink. The
size of base stations allows the deployment of receive diver-
sity on the uplink. On the downlink, however, the limited size
and power of the mobile stations make it more practical to
consider transmit diversity. Transmit diversity decreases the
required processing power of the receivers, resulting in a sim-
pler system structure, lower power consumption and lower
cost. Furthermore, transmit diversity can be combined with
receive diversity to further improve the system performance
and increase the spectral efficiency. Channel coding com-

bined with spatial diversity is called space-time (ST) coding.

Code design criteria based on the rank and the deter-
minant of the codeword distance matrix for trellis based ST
codes were derived in [1, 2]. In this approach, multiple trans-
mit antennas and error correction coding are combined with
higher level modulation schemes. An ST encoder takes as in-
put a block of b binary data, and maps them into nr mod-
ulation symbols from a signal set of 2% points. Each output
modulation symbol feeds a separate transmit antenna. The
symbols from nr antennas are transmitted simultaneously in
one symbol interval. The scheme gives a maximum spectral
efficiency of bbits/s/Hz which is equal to the spectral effi-
ciency of the reference uncoded systems.

The receiver uses a maximum likelihood decoding algo-
rithm to recover the transmitted information. Space-time
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trellis coded modulation (STTC) can achieve a substantial
improvement in performance, benefiting from both diversity
and coding gains. However, when the number of transmit
antennas gets larger, the complexity of the receiver structure
and the code construction becomes prohibitive. In [1], feed-
forward STTCs with two transmit antennas were designed.
In 3], a set of improved feedforward 4PSK STTCs relative to
the codes in [1] were proposed.

Recently, a new set of design criteria for STTCs for slow
and fast fading channels were proposed [4, 5]. These criteria
are applicable to multiple-input multiple-output (MIMO)
channels with a high diversity order. When the diversity or-
der, defined as the product of the minimum rank of the dis-
tance matrices and the number of receive antennas, is small,
the rank and the determinant criteria, proposed in [1], are
valid. However, for high diversity orders, (larger than 3), the
minimum trace of the codeword distance matrix, or equiva-
lently the minimum squared Euclidean distance, dominates
the code performance and its minimum value should be
maximized in code design. Motivated by this design crite-
rion, in this paper we design recursive STTCs and demon-
strate that they are superior to feedforward STTCs reported
in [1, 3]. Furthermore, we construct an ST turbo trellis mod-
ulation (TCM) scheme with the new recursive STTCs as
constituent codes. The recursive structure of the constituent
codes enables the full benefit of interleaver gain and itera-
tive decoding. The proposed ST turbo TCM scheme is based
on a parallel concatenation of two constituent STTCs and al-
ternate puncturing of parity symbols, analogous to a turbo
TCM scheme reported in [6]. The ST turbo trellis encoder
consists of two identical recursive STTCs linked by an inter-
leaver and followed by an MPSK signal mapper. The iterative
decoder operates on the constituent code trellis and gener-
ates soft symbol estimates by a log-MAP algorithm [7, 8].

Independent of the work of this paper, a similar design
was done in [9], based on a recursive code obtained by con-
verting the feedforward STTC reported in [1] into a recur-
sive code. In [10], a turbo code is serially concatenated with
a space-time block code. In [11], the concept of recursive
STTCs is first suggested and the serial and parallel concate-
nation structures with recursive STTCs as component codes
are proposed. In [10, 11], full diversity is guaranteed but full
rate is not achieved. In [12], a novel serial concatenation of
STTC with interleaver and rate 1 simple recursive inner code
is proposed.

One of the key issues with turbo codes is decoding algo-
rithm convergence. We discuss the decoder convergence of
the proposed ST turbo TCM scheme and evaluate the de-
coding thresholds, expressed as the minimum Ej;/Nj ratio for
which the code can converge. Furthermore, we estimate that
the proposed ST turbo TCM codes are less than 3 dB away
from the MIMO theoretical channel capacity limit [13].

2. STTCSYSTEM MODEL

The system under consideration employs a recursive STTC
with nr transmit and ng receive antennas. While the trans-

mitter has no knowledge about the channel, it is assumed
that the receiver can recover the channel state informa-
tion perfectly. Information bits are encoded into nr streams
of MPSK symbols by the ST encoder. A space-time sym-
bol x; at time t consists of nr MPSK symbols, and can be
written as x; = (x},x%,...,x;7). At any given time ¢, an
MPSK symbol x! is transmitted through the ith antenna,
i=12,...,nr.

At the receiver, each antenna receives a noisy superposi-
tion of nr transmitted symbols which have been subjected to
independent fading. After matched filtering, assuming ideal

timing information, the received signal r/ at the jth receive
antenna at time ¢ can be expressed as

. nr ) .
rl = VE 3 hij(0xi+ n, ()
i=1

where h; () models the complex fading gain from transmit
antenna i to receive antenna j at time ¢, i = 1,2,...,nr,
j =1,2,...,ng, and E; is the energy per symbol. On a fast
fading channel, we assume that the fading coefficients change
independently from symbol to symbol. On a slow fading
channel, we assume that the fading coefficients remain the
same over a frame and change independently from frame to
frame. When the fading coefficients remain the same over
more than one symbol but less than a frame, the channel un-
dergoes a block fading. Regardless of the fade rate, the fad-
ing gains are modelled as independent samples of a complex
Gaussian random variable with a zero mean and a variance
of 0.5 per dimension. The noise n at the jth receive an-
tenna at time ¢ is modeled as an independent sample of a
zero mean complex Gaussian random variable with a noise
spectral density of Np.

3. PERFORMANCE ANALYSIS AND CODE
DESIGN CRITERIA

A memory v recursive MPSK STTC can be described in
terms of its 2¥-state trellis. At time ¢ = 0 the trellis is at the
zero state. Given a particular input, the state of the trellis at
any given time is indicated by the content of the v memory
taps. At time ¢, there are M branches leaving each state s,
i €{0,1,...,2" = 1}, each of which corresponds to an in-
coming input j, j € {0,1,...,M — 1}, and is labeled with
nt MPSK symbols. These MPSK symbols are the encoder
output to be transmitted simultaneously through »r trans-
mit antennas when the previous state is s and the input is
j. At the decoder, the received sequence is decoded using a
maximum likelihood decoding algorithm based on the M-
ary trellis.

Following the derivation in [5], consider an ny x nr
codeword distance matrix A(x,%x) = B(x, %) - BH(x, %) be-
tween two codewords x = (Xx1,Xp,...,Xp...,X;) and X =
(X1, %2, ..., %, ..., %) of length I. The matrix B¥ denotes the
Hermitian of a matrix B, and B(x, %) is a codeword difference
matrix, defined as
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For the purpose of our analysis, define r as the minimum
rank of the matrix A(x, ) over all possible codeword pairs,
and 0y, the minimum symbol Hamming distance, is defined
as

8y = min lv(x %), (3)

taken over all codeword pairs, where v(x, X) denotes the set
of time instances t € {1, 2,..., 1}, such that ||x; — %;|| # 0.

3.1. Performance on slow fading channels

The pairwise error probability P(x, X) is the probability that
the decoder selects as its estimate the sequence X when the
transmitted sequence was in fact x. When r-ng > 4, on a slow
fading channel, the pairwise error probability can be upper
bounded as [5]

1 nR Z;T=1 A nR Ztl Ai
P : ) < = i i=
(x%) < 5 exp < 1280° 807

(4)

0 VAR( S Af - 802 3 Ai)
802\/2?:1%‘2

where A;,i=1,2,...,r, are nonzero eigenvalues of the matrix
A(x, %), 02 is the noise variance, and Q(-) is the complemen-
tary error function.

By using inequality Q(x) < (1/2)e "2 for x > 0, at high
signal-to-noise ratios the upper bound in (4) can be further
approximated as

P(x,X) < exp <— %Zr;/\,-) (5)
i=1

From (5), it can be seen that, in order to minimize the er-
ror probability, the minimum sum of all eigenvalues of the
matrix A(x, %) among all codeword pairs should be maxi-
mized. For a square matrix, the sum of the eigenvalues is
equal to the sum of all elements on the main diagonal which
is called the trace of the matrix. The performance is domi-
nated by the minimum trace which is equivalent to the min-
imum Euclidean distance over all codewords.

When r - ng < 4, however, the upper bound on the pair-
wise error probability at high signal-to-noise ratios can be
expressed as

P(x, %) < ( Lo (6)

H?:l /\i)nR’

which suggests that to achieve the best performance the
minimum rank and the minimum product of all nonzero
eigenvalues of A(x, X) should be maximized. If full rank is

achievable, it is equivalent to maximizing the minimum de-
terminant of A(x, X), as first proposed in [1].

3.2. Performance on fast fading channels

Provided that 8y - ng > 4 [5], the pairwise error probability
on fast Rayleigh fading channels can be upper bounded by

nrds, 0 ViR (D* - 80%dz)
802/ D4 ’

ﬂRD4

1
P(x,%) < = -
(x,%) < 5 exp <12804 802

(7)
where d? is the accumulated squared Euclidean distance be-
tween two space-time symbol sequences, given by

=3 lx-% (8)

tev(x,X)

while D* is given by

D4 = Z ”Xt —)A(t||4. (9)

tev(x,X)

By using an approximation of the Q(-) function, at high
signal-to-noise ratios the upper bound in (7) can be further
approximated as

N nR
P(x,X) <exp ( - @dé>
1 nr
<exp (- g 33| -4P).

t=1 i=1

(10)

From (10), we can conclude that the pairwise error prob-
ability is dominated by the squared Euclidean distance d.

When 8y - ng < 4, the upper bound on the pairwise error
probability at high signal-to-noise ratios becomes

o 1 —Ou-ng
P(x%)< JT [x—%|l R(@)

tev(x,X) (1 1)

B 1o\ o
P\ 82 ’

where dlz, is the product of the squared Euclidean distances
between two space-time symbol sequences, given by

=TT lx-%” (12)

tev(x,X)

When r - ng > 4 and 8y - ng > 4, the design criteria for
STTC on slow and fast fading channels are identical. The de-
sign criteria in this case can be formulated as

e Maximize the minimum Euclidean distance over all
codewords.

Therefore, provided that r - ng > 4 and 8y - ng > 4, we
can construct a set of recursive STTCs which best satisfy the
design criterion and perform well on both types of fading
channels, and can be directly used as constituent codes in a
parallel concatenation structure.
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FiGure 1: Feedforward STTC encoder.

4. CONSTRUCTION OF RECURSIVE SPACE-TIME
TRELLIS CODES

4.1. Code structure

In this section, the structure of systematic and nonsystematic
recursive STTC is explained. A feedforward STTC encoder
for 4PSK and two antennas with a memory order of v = 2v is
shown in Figure 1. If the sequence ¢! = (¢}, cl,c),....¢c},...)
is the binary input stream to the upper row of shift registers,
in a polynomial form it can be represented as

c!(D)=cy+ciD+c)D* +---+¢c/D'+---.  (13)
Similarly, the binary input sequence
czz(cé,cf,cg,...,cg,...) (14)
to the lower row of shift registers can be written as
(D)= +dD+ED* + -+ D+ (15)

The feedforward generator polynomial for the upper row of
shift registers and transmit antenna i, where i € {1, 2}, can
be written as

G’i(D):af)+a"lD+~~-+ailDV‘. (16)

Similarly, the feedforward generator polynomial for the
lower row of shift registers and transmit antenna i, where
i € {1,2} can be written as

Gy(D) = by +biD+---+ b}, D". (17)

The encoded symbol sequence transmitted from antenna i is
given by

s'(D) = ¢"(D)G{(D) + ¢*(D)G,(D) mod 4. (18)

Equivalently, the relationship in (18) can be written in the
following form:

(19)

s'(D) = [¢"(D) ¢X(D)] [Gll (D)].

G;(D)

(s}, s2)

F1GURE 2: Recursive STTC encoder.

The feedforward generator matrix from (19),

G! (D)
GD)=] ! , 20
(D) [G;(D)] (20)

can be converted into an equivalent recursive matrix by di-
viding it by a binary polynomial q(D) of a degree equal to
or less than v;. However, if q(D) is chosen to be a primitive
polynomial, the resulting recursive code should have a high
minimum distance. The generator polynomial for antenna i
can be represented as

G(D)
i q(D)
G'(D)=| . ; (21)
G, (D)
q(D)
where
q(D) =qo+ @D + ¢ D* +--- + q, D" (22)
A systematic recursive STTC can be obtained by setting
1 2
G (D) = H (23)

which means that the output of the first antenna is obtained
by directly mapping the input sequences ¢! and ¢? into a
4PSK sequence. A diagram of a recursive 4PSK STTC encoder
with two transmit antennas is shown in Figure 2.

A recursive 8PSK STTC, can be generated by a similar
procedure by converting a feedforward 8PSK STTC gener-
ator matrix with polynomial entries into an equivalent re-
cursive generator matrix with rational entries. The spectral
efficiency in this case is 3 bits/s/Hz.



Space-Time Turbo Trellis Coded Modulation for Wireless Data Communications 463
TaBLE 1: Recursive 4PSK STTC for slow and fast fading channels, bandwidth efficiency 2 bits/s/Hz.
v (ap, a5) (a}, a7) (a3, a3) (by, b5) (b}, b7) (b3, b3) (b3, b3) d;
2 (0,2) (1,2) — (2,3) (2,0) — — 10.0
3 (2,2) (2,1) — (2,0) (1,2) (0,2) — 12.0
4 (1,2) (1,3) (3,2) (2,0) (2,2) (2,0 — 16.0
5 (0,2) (2,3) (1,2) (2,2) (1,2) (2,3) (2,0 16.0
TaBLE 2: Recursive 8PSK STTC for slow and fast fading channels, bandwidth efficiency 3 bits/s/Hz.
v (ap, ag) (aj,a}) (by, b5) (b}, b)) (by, b3) (dy, d5) (d}, d}) (d}, d3) d; d; [1]
3 2,1) (3,4) (4,6) (2,0) — (0,4) (4,0) — 7.172 4.0
4 (2,4) (3.7) (4,0) (6,6) — (7,2) (0,7) (4,4) 8.0 6.0
5 (0,4) (4,4) 0,2) (2,3) (2,2) (3,0) (2,2) (3,7) 8.586 8.0

4.2. Algebraic structure of recursive space-time
trellis codes

For a 4PSK recursive STTC, the output symbols s} and s?
from Figure 2 can be expressed algebraically as

Z t]lajl Z f]z ]2 mod 4,

]1— ]2—

2 2 12
Z i]la]1+ch—jzbj2 mod 4,

j2=0

(24)

where v = v; + vy, a}i, bjl.i,ai, bjz.i €{0,1,2,3} and i € {1,2}.

The new variable ¢! is defined as

=c+ Z q] e _j; mod 2, (25)

ji=1

where i € {0, 1}.

The encoder for an 8PSK recursive STTC is implemented
as a feedforward shift register with a memory order of v. The
encoder output can be expressed as

1 1
Z Ct- ]la]l Z Ct- ]zsz Z mod 8,
J1=0 j2=0 j3=0
(26)
Vi
2 _ 2
En —th ]lajl Zc[ L b, th s mod 8§,
= sz ]3—

where v = v; + v, + v3, a}x_, b}i, djl.i, a;_, b]zi, d]?i e {01,...,7}

and i € {1,2,3}. The new variable ¢ is defined as ¢ = ¢} +
Vi i Al

Zj,:l 956, mod 2.

4.3. A hybrid design of robust recursive STTC

In this section, we consider design of recursive STTCs which
can deliver data transmission with bandwidth efficiency of

2 and 3 bits/s/Hz. Unlike previously reported feedforward
STTC in [1, 3], these recursive codes can be used directly
as constituent codes in ST turbo TCM schemes to deliver
data transmission at the same rates but at much lower sig-
nal to noise ratios than the reference uncoded systems with
the same spectral efficiency. In a cellular system, a lower
transmission power means lower interference to neighbor-
ing cells, thus allowing a frequency band to be reused more
frequently. Section 3 discusses the design criteria for recur-
sive STTCs on slow and fast fading channels. In reality, how-
ever, the fade rate falls somewhere between these two ex-
tremes. Therefore, it would be desirable to obtain a set of
codes which satisfy the design criteria for both extreme con-
ditions. It is expected that such codes will perform well
in a wide variety of fading conditions. In [1], such codes
are termed smart and greedy space-time codes because the
encoder does not need to know the channel but can take
advantage of the benefits offered by both the multiple trans-
mit/receive antennas and the possible temporal channel vari-
ations.

We have stated previously that when r - ng > 4 and
Oy - nr > 4, the design criteria for recursive STTCs on
slow and fast fading channels coincide. Under these condi-
tions, the error probability is minimized when the minimum
squared Euclidean distance, dé, of the code is maximized.
Therefore, with the code structure given in Section 4.1 and
assuming that at least two receive antennas, (ng > 2), are
available to the system, we find a set of coefficients a b’

for recursive 4PSK STTCs, and a' o jk’ d;k for recursive 8PSK

STTCs for a given memory order which maximizes dz.
Tables 1 and 2 list recursive 4PSK and 8PSK STTCs, re-
spectively, with two transmit antennas which best satisfy the
design criterion on slow and fast fading channels, provided
that ng > 2. Each code in both tables have the minimum rank
r = 2 and the minimum symbol Hamming distance dy > 2,
satisfying the condition on the design criterion. These codes
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FIGURE 3: Performance comparison of the 8-state and 32-state re-
cursive 4PSK STTCs on slow fading channels, bandwidth efficiency
2 bits/s/Hz.

were obtained through an exhaustive computer search. These
codes were initially constructed in a feedforward form in [4].
A further investigation shows that these codes maintain their
superiority in terms of their squared Euclidean distance, and
thus their performance, when they are converted into a feed-
back recursive form as discussed in Section 4.1. Both tables
list the squared Euclidean distance of each code and that of
its counterparts of the same memory order reported in [1, 3].
For any given memory order, the new recursive STTC has the
largest d7, indicative of a superior performance on slow and
fast fading channels for a large product rng.

5. PERFORMANCE OF RECURSIVE STTC

In this section, we compare the performance of the new re-
cursive STTCs with previously known feedforward STTCs on
slow and fast fading channels. The performance is measured
in terms of the frame error rate as a function of E,/N, the
ratio between the energy per information bit to the noise
at each receive antenna. Each frame consists of 130 MPSK
symbol transmissions from each transmit antenna. Figure 3
shows the performance of the new 8-state and 32-state 4PSK
recursive STTCs in comparison with feedforward STTCs of
the same memory order proposed in [1, 3] with four re-
ceive antennas on slow fading channels. The 8-state STTCs in
[1, 3] achieve virtually the same performance, while the new
8-state recursive STTC offers a 0.5 dB gain over the other two
STTCs at a frame error rate (FER) of 103, The new recur-
sive 32-state STTC offers a 0.5 dB gain over the feedforward
STTC in [1] at the same frame error rate.

Figure 4 shows the performance of the new 16 and 32-
state 4PSK recursive STTCs with two receive antennas on
fast fading channels. The performance curves show consis-
tently lower error rates of the new recursive STTC over the

1E-03

Ey/Ny (dB)

—— 16-st STTC in [1]
—»— 16-st STTC in [2]
—»— new recursive 16-st STTC

—a— 32-st STTC [1]
—s— new recursive 32-st STTC

FIGURE 4: Performance comparison of the 16-state and 32-state
4PSK STTCs on a fast fading channel, bandwidth efficiency
2 bits/s/Hz.

feedforward STTC for the same memory order, previously
proposed in [1, 3]. When FER = 10~® the new recursive 16-
state 4PSK STTC offers a 2 dB and a 0.8 dB gain over feedfor-
ward STTCs in [1, 3], respectively. The new recursive 32-state
4PSK outperforms feedforward STTC of the same memory
order in [1] by 0.5dB at FER = 1073,

All figures we have shown in this section confirm that
the new recursive STTC outperforms feedforward STTC of
the same memory order previously proposed in [1, 3], both
on slow and fast fading channels. Note however, that the re-
cursive structure STTC by itself does not have any advan-
tage over feedforward STTC. As stated in Section 4, recur-
sive STTCs in Tables 1 and 2 were originally constructed in
feedforward form. Figure 5 shows the performance of the
16-state 4PSK STTC in feedforward and recursive forms on
quasi-static fading channels. The frame error rate perfor-
mance of the code in both forms is identical.

6. SPACE-TIME TURBO TCM

Having designed and constructed a set of recursive STTCs
with a superior performance on slow and fast fading chan-
nels, we would like to use them in a parallel concatenation
to further reduce bit errors by taking advantage of inter-
leaver gain and iterative decoding. Figure 6 shows the en-
coder structure of a ST turbo TCM with two transmit an-
tennas, consisting of two recursive STTC encoders in the up-
per and lower branches, and linked by a pairwise interleaver
and a symbol deinterleaver [6]. Each encoder operates on a
message block of L groups of b information bits, where L
is the interleaver size. The message sequence ¢ is given by
c=(c,¢...,C,..., L), where ¢ is a group of b informa-
tion at time ¢, given by ¢; = (¢0, €115 - - -» Ctb-1)-

The upper recursive STTC encoder in Figure 6 maps the
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FiGURE 6: ST turbo TCM encoder.

input sequence into two streams of L MPSK symbols, x|,
x}, where x| = (x| ,x},,...,x},),i € {1,2} and M = 2".
Prior to encoding by the lower encoder, the information bits
are interleaved by a pairwise symbol interleaver. The pair-
wise symbol interleaver operates on groups of b bits in-
stead of on single bits. The interleaver maps even positions
to even positions, and odd ones to odd ones. The inter-
leaver ensures that the ordering of b information bits ar-
riving at the interleaver at any time instant ¢ remains un-
changed. The lower encoder also produces two streams of
L MPSK symbols. Each stream is deinterleaved, resulting
in x} and x3, where x, = (x;,l,x;z,...,x;l), i € {1,2).
Deinterleaving at this stage ensures that the b information
bits determining the output symbols of the upper and lower

encoders at any given time instant are identical. Assum-
ing that L is even, the first stream of symbols generated by
the upper and lower encoders, x} and x%, are alternately
punctured into X' = (x] |, X5, X 3,%) 45+ > x},L_l, xiL) and
transmitted through the first transmit antenna. The sec-
ond stream of symbols generated by the upper and lower
encoders, x? and x3, are alternately punctured into x> =
(X X35 X1 3, X3 4., X1, X3 ;) and transmitted through

the second transmit antenna.

7. DECODING ALGORITHM

The decoding process of ST turbo TCM is very similar to that
of binary turbo codes except that the symbol probability is
used as the extrinsic information instead of the bit proba-
bility. The MAP decoding algorithm for nonbinary trellises
is called symbol-by-symbol MAP algorithm. Since the ex-
trinsic information can become either too large or too small
and causes computational overflows, a log-MAP algorithm is
used instead of MAP. With alog-MAP decoder, the logarithm
of probabilities is computed and passed to the next decoding
stage.

The log-MAP decoder computes the log-likelihood ratio
of each group of information bits ¢; = i. The soft output
A(c; = i) is given by

Pr{c; = i|r}

Pr{c; = Olr}

Z:(m)eBi -1 (Z')Vi(l') D) (27)
S pere -1 (1) ye (1 DB’

A(c, = 1) =log

= log

where i is the set of the information groups, i €
{0,1,2,...,2%—1}, ris the received sequence, and the proba-
bilities a (1), B:(I), and y¢(I) can be computed as in the MAP
algorithm [8]. The symbol i with the largest log-likelihood
ratio in (27) is chosen as the hard decision output.
Regardless of whether the component code is systematic
or not, it is not possible to separate the systematic component
from the nonsystematic one in the received signal. This is due
to the fact that the received signal at a particular receive an-
tenna contains a joint signal transmitted from all antennas.
This prohibits the separation of the contribution from the
first antenna, which, as we assume, transmits the systematic
symbol, from the rest of it. Therefore, in contrast to binary
turbo decoders, a soft output of turbo TCM decoders can
only be split into two terms. They are the a priori informa-
tion generated by the other decoder and the extrinsic infor-
mation generated by all coded digits. The extrinsic informa-
tion will be exchanged between the two component decoders.
It is worth noting that for symbol-by-symbol MAP de-
coding, each component decoder should avoid using the
same information twice in each iteration. In turbo TCM,
each decoder alternately receives the noisy output of its own
encoder and that of the other encoder. That is, the coded
symbols in every second received signal belong to the other
encoder and need to be treated as punctured. For example,
consider the first decoder. For every odd received signal, the
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Ficure 7: FER performance comparison between a 16-state 4PSK
STTC and a 16-state 4PSK ST turbo TCM with interleaver size of
1024, bandwidth efficiency 2 bits/s/Hz on fast fading channels.

decoding operation proceeds as for the binary turbo codes
when the decoder receives the symbol generated by its own
encoder. However, for every even received signal, the de-
coder receives the punctured symbol which is generated by
the other encoder. The decoder in this case ignores this sym-
bol by setting the branch transition metric to zero. The only
input at this step in the trellis is the a priori component ob-
tained from the other decoder.

8. STTURBO TCM PERFORMANCE

This section evaluates the performance of ST turbo TCM
scheme on fast and block fading channels. In each case, it is
assumed that the receiver has two receive antennas. Figure 7
shows the (FER) performance comparison between the 16-
state recursive 4PSK STTC in Table 1 and a 16-state 4PSK ST
turbo TCM. The 16-state recursive 4PSK STTC is the con-
stituent code in the ST turbo TCM configuration. The per-
formance curves show that the ST turbo TCM configuration
offers a tremendous improvement. At a frame error rate of
1073, with ten iterations and an interleaver size of 1024, it
achieves a gain of more than 7 dB relative to STTC. At the
same frame error rate, it achieves more than 2 dB gain com-
pared to ST turbo TCM with the constituent code of the same
memory order, proposed in [9]. The bandwidth efficiency in
all cases is 2 bits/s/Hz.

Figure 8 shows the performance of the 4-state 4PSK ST
turbo TCM on quasi-static fading channels. The number of
iterations is 10 and the interleaver size is 130. The curves
show that at FER=10"2 the ST turbo TCM offers 8.8 dB and
8.0 dB gain over the recursive STTC for the fading block size
of 100 and 200, respectively.

Figure 9 shows the FER performance of the new 32-state
8PSK ST turbo TCM in comparison with that of the 32-state

E,/Ny (dB)
— 4-state 4-PSK ST turbo TCM, 10 iterations
— 4-state 4-PSK STTC

F1Gure 8: FER performance of a 4-state 4PSK STTC and a 4-state ST
Turbo TCM, bandwidth efficiency 2 bits/s/Hz on quasi-static fading
channels.
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—+ 32-st 8-PSK STTC, L = 1024
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—— new 32-st ST turbo TCM , L = 1024, 10 iterations

Ficure 9: FER performance comparison between a 32-state 8PSK
STTC and a 32-state 8PSK ST Turbo TCM with bandwidth effi-
ciency 3 bits/s/Hz on fast fading channels.

8PSK STTC. In this case, with ten iterations the new 32-state
8PSK ST turbo TCM offers more than 7 dB gain at FER=10"2,
compared to the 32-state recursive 8PSK STTC in Table 2.
When the number of iteration is reduced from ten to six, the
performance is degraded by about 0.3 dB.

Figure 10 shows the effects of increasing the number
of transmit and receive antennas on the performance of
the 16-state 4PSK ST turbo TCM on fast fading channels.
Following an algebraic description of a recursive 4PSK STTC
in Section 4.2, the constituent recursive 4PSK STTC with
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FiGure 10: Effects of various numbers of transmit and receive an-
tennas on the FER performance of the 16-state 4PSK ST turbo TCM,
bandwidth efficiency 2 bits/s/Hz on fast fading channels.

three transmit antennas is given as

x)=(01,21)-¢
+(3,2,1)-&,+(2,0,2)-¢ (28)

(!> xt, & +(1,3,2)- &,

+(2,2,0)-¢,+(2,0,2)-¢,, mod 4.
Similarly, the constituent recursive 4PSK STTC with four
transmit antennas is given as
9= (1,2,1,1)- &

(x}, xt, x}, x &) +(1,3,2,2)- &),

+(3,2,1,3)-&,+(2,0,2,2)- ¢

+(2,2,0,0)- ¢, +(2,0,2,2)-¢ , mod 4,
(29)

where in both cases ¢, k € {0, 1} is defined in (25). The per-
formance curves show that increasing the number of trans-
mit antenna from two to three brings about 0.7 dB gain at
FER = 1073, while increasing the number of transmit anten-
nas from three to four results in a negligible gain. The incre-
mental gain resulting from increasing the number of trans-
mit antennas stays relatively the same when the number of
receive antennas increases from two to four.

The performance curves of Figures 7, 8, and 9 suggest
that the parallel concatenation of STTC outperforms recur-
sive STTC scheme. One may argue, however, that the com-
parison is less than fair since ST turbo TCM can take ad-
vantage of interleaver gain and iterative decoding. Thus, a
fairer comparison should consider the performance of ST
turbo TCM with other known turbo TCM schemes such as
that proposed by Robertson [6, 14]. Figure 11 shows the FER
performance comparison between the new 16-state 4PSK ST
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IE-01 oo\ ieemeeeedeneees :

Frame error rate

1B-02 Lo f b N

1E-03 ; ; ; ; : : :

Ey/Ny (dB)

—+ 16-st STTC, L = 1024
- 16-st turbo TCM in [5], L = 1024, 10 iterations
-+ new 16-st ST turbo TCM , L = 1024, 10 iterations

Figure 11: FER performance comparison between the 16-state
4PSK ST turbo TCM and a 16-state 8PSK turbo TCM, bandwidth
efficiency 2 bits/s/Hz on fast fading channels.

turbo TCM and a 16-state turbo TCM scheme from [6]. Note
that although the turbo TCM scheme uses only one transmit
antenna while the ST turbo TCM scheme uses two, the to-
tal transmit power remains the same. Two receive antennas
are used in both cases. With the same interleaver size of 1024
and ten iterations, the ST turbo TCM offers a 2.5 dB gain at a
frame error rate of 1072, The bandwidth efficiency in all cases
is 2 bits/s/Hz. Note that to achieve the same bandwidth effi-
ciency, the scheme by Robertson et al. has to use 8PSK signal
set.

Figure 12 shows the performance of 4-state ST turbo
TCM and 4-state STTC on quasi-static fading channels with
two transmit and two receive antennas. At FER = 1073, the
ST turbo TCM offers more than 1.5dB improvement. The
frame size is 130 symbols.

8.1. System capacity

Telatar investigated and derived the formula for the capac-
ity of multiantenna Gaussian channels with or without fad-
ing in [13]. Assuming independent Rayleigh fading and in-
dependent noise at different receive antennas, the capacity of
the channel with nt transmit and np receive antennas under
power constraint P equals [13]

. n—-m n—-m —/1
fo log <1+ - )Z (k+n_ P e a,
(30)

where o2 is the noise variance per dimension, m =
min{ng, nr}, n = max{ng, nr}, and L; are the associated La-
guerre polynomials [15].

Using this formula, we plotted the theoretical capac-
ity of a MIMO independent Rayleigh fading channel when
(nr, ng) = (2,2) and (2, 4). Figure 13 shows the spectral effi-
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ciency of STTC and ST turbo TCM with various constituent
codes when the bit error rate (BER) is 10, They are com-
pared with theoretical MIMO channel capacity, expressed
in (30). The figure shows that the 16-state 4PSK ST turbo
TCM, with an interleaver size of 1024 and 10 decoder itera-
tions when (nr, ng) = (2,2) and (2, 4), is 2.4 dB away from
the channel capacity. The 32-state 8PSK ST turbo TCM with
the same interleaver size and the same number of iterations
is 1.65 dB away from the channel capacity. The 16-state 4PSK
STTC when (nr, ng) = (2,2), on the other hand, is 8.86 dB
away from the channel capacity, or 6.46 dB worse than the
16-state 4PSK ST turbo TCM. Note that these capacity fig-
ures are indicative of the performance on fast fading chan-
nels. For slow fading channels, the outage probability calcu-
lations should be applied.

In Figure 14, the performance of 16-state ST turbo TCM
with four transmit and receive antennas on quasi-static
Rayleigh fading channel is presented. For comparison, the
outage probability for 2 bits/s/Hz, which is a lower bound
for FER on quasi-static fading channels, is also included. The
performance curves show that the 16-state ST turbo TCM is
1.5 dB away from the outage capacity at the FER of 1073,

8.2. Decoder convergence

We analyze the convergence of ST turbo TCM decoder by ap-
proximating the density functions of the extrinsic informa-
tion message as a Gaussian distribution, and calculating the
mean and variance in the Gaussian density evolution. This
technique was used to analyze turbo codes [16] and to ob-
tain an E;/N, threshold on low density parity check (LDPC)
codes[17]. A threshold is the smallest E;/N, value beyond
which an iterative decoder converges and the bit error rate
goes to zero as the number of iterations increases.

Assuming perfect interleaving, each extrinsic informa-

E/Np (dB)
—— Capacity with 2T, 2R
— Capacity with 2T, 4R

FIGURE 13: The system capacity when (nr, ng) = (2,4) and (2, 2).
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FIGURE 14: The outage capacity when (nr, ng) = (4, 4).

tion message is independent and identically Gaussian dis-
tributed with mean y; and variance o7 at end of the ith it-
eration. The mean and the variance at each iteration can be
determined through simulations. The SNR; of the extrinsic
information at the ith iteration is defined as

2
SNR; = £, (31)
0i

For a parallel concatenation code, the decoder convergence
can be determined by plotting the output SNR versus the in-
put SNR of the first decoder and the input SNR versus the
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Figure 15: Convergence and iterative decoding threshold of ST
turbo TCM decoder when recursive 16-state STTC in [9] is used
as the constituent code.

SNR out

SNR in

—— First decoder, E,/Ny = —0.5dB
—— Second decoder, E,/Ny = -0.5dB

FiGure 16: Convergence of ST turbo TCM decoder when the new
recursive 16-state 4PSK STTC is used as the constituent code.

output SNR of the second decoder. If the two curves intersect
with each other, the decoder does not converge. The thresh-
old is the value of E;,/Ny at which the two curves just touch.

Figure 15 shows the input/output SNR curves of ST
turbo TCM scheme with a 16-state 4PSK STTC in [9] as the
constituent code. Note that SNR in denotes the SNR of the
extrinsic information at the input of a decoder, and SNR out
denotes the SNR of the extrinsic information at the output of
a decoder. The curves were generated when E,/Ny = —0.5dB.
The figure shows the two curves just touch. This implies that
the threshold is —0.5 dB.

Figure 16 shows the input/output SNR curves of ST

TABLE 3: E;/N, thresholds of various 4PSK STTC constituent codes.

y New recursive STTC Recursive STTC in [9]
3 -0.90dB -0.65dB

4 -0.80dB -0.50dB

5 0.55dB 0.40dB

turbo TCM scheme with the new 16-state 4PSK STTC as the
constituent code when E;/Ny = —0.5dB. The figure shows
a tunnel between the two curves through which the itera-
tive decoding progresses. This figure suggests that the thresh-
old is less than —0.5dB. A further investigation shows that
the threshold for this code is —0.8 dB. This shows that ST
turbo TCM with the new 16-state 4PSK STTC as the con-
stituent code is more optimized than that with the 16-state
QPSK STTC in [9] as the constituent code, because it con-
verges more quickly at a lower operating E,/Ny. Further-
more, Table 3 compares the E,/N; thresholds between the
new recursive 4PSK STTC with that proposed in [9] when
being used as constituent codes in a parallel concatenation
structure. The entries show that for a given memory order,
the new recursive STTC converges more rapidly. The entries
of Table 3 suggests that increasing the memory order does
not necessarily result in a lower threshold. A similar phe-
nomenon has been observed with binary turbo codes, for
which a lower memory code has a lower threshold. This can
be explained as follows. Firstly, codes with larger memory
have longer paths in the trellis and when the noise is large
at low operating SNRs the decoder is more likely to diverge
as the number of iterations increases. Secondly, codes with
larger memory have more nearest neighbor codewords, re-
sulting in larger error coefficients. Consequently, at low oper-
ating SNRy, it is harder for the decoder to choose the correct
codeword.

9. CONCLUSIONS

This paper considers the design of a space-time turbo trel-
lis coded modulation scheme. The structure of recursive
STTC is presented and new recursive STTCs which best sat-
isfy the design criterion on slow and fast fading channels
are proposed. These recursive STTCs outperform previously
known feedforward STTC. Moreover, they can be used di-
rectly as constituent codes in a parallel concatenation struc-
ture, benefiting from interleaver gain and iterative decod-
ing. This structure offers significant performance improve-
ment compared to the traditional STTC scheme on fast and
block fading channels. The new ST turbo TCM is less sen-
sitive to any change in the fading rate compared to previ-
ously known codes, and falls within 3 dB from the theoretical
MIMO channel capacity.
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