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Recent work in the development of diversity transformations for wireless systems has produced a theoretical framework for space-
time block codes. Such codes are beneficial in that they may be easily concatenated with interleaved d trellis codes and yet still
may be decoded separately. In this paper, a theoretical framework is provided for the generation of spatial block codes of arbi-
trary dimensionality through the use of orthonormal polynomial sets. While these codes cannot maximize theoretical diversity
performance for given dimensionality, they still provide performance improvements over the single-antenna case. In particular,
their application to closed-loop transmit diversity systems is proposed, as the bandwidth necessary for feedback using these types
of codes is fixed regardless of the number of antennas used. Simulation data is provided demonstrating these types of codes’ per-
formance under this implementation as compared not only to the single-antenna case but also to the two-antenna code derived

from the Radon-Hurwitz construction.
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1. INTRODUCTION

In wireless communications systems, fading transmission
channels are problematic due to the fact that fading chan-
nels are nonstationary, and therefore the design of effective
channel codes based on assumed channel statistics becomes
difficult. As a result, diversity is essential for addressing the
problem of fading in wireless channels. Diversity essentially
entails receiving several replicas of the same signal over in-
dependently fading channels [1]. Diversity may take many
approaches. For instance, frequency diversity methods em-
ploy transmission of multiple symbol replicas over multi-
ple carriers, each of the carriers separated in frequency by
a sufficiently large amount to ensure independent fading.
This approach is accompanied with the additional cost of in-
creased complexity at the transmitter and receiver, along with
the fact that it may be difficult to implement in bandwidth-
limited systems (such as common public wireless systems
that must conform to electromagnetic compatibility require-
ments). Temporal diversity entails transmission of signal
replicas in different time slots, each slot sufficiently spaced
in time to ensure independent fading. This approach suffers
from reduced throughput due to multiple transmissions of
the same symbol over time. Another instance of temporal di-
versity may be achieved in multipath channels where the sig-
nal bandwidth is larger than the coherence time of the chan-
nel; in this case the multipaths are resolvable and may be re-
covered by a rake receiver.

However, flat fading channels are troublesome for
bandwidth-limited systems where neither frequency nor
temporal diversity is possible. In such conditions, antenna
diversity is a concept that has gained much interest. Trans-
mission of signal replicas over multiple antennas using sep-
arable waveforms essentially results in a received signal that
may be demodulated with a rake receiver. Usually, to achieve
such diversity, a spatial separation of at least ten wavelengths
between antennas is required to ensure independent-fading
conditions for signals associated with each antenna.

While antenna diversity is a desirable alternative for pub-
lic wireless systems, the actual requirements for achieving
optimal diversity over such systems have recently been the
subject of several studies. The two questions at hand are

(1) can coding over multiple antennas have benefits over
simple diversity schemes, where multiple copies of the
same signal are transmitted over multiple antennas at
discrete instances in time? In other words, can a space-
time code be designed?

(2) If so, how do we optimally code to achieve the full ben-
efits of diversity in these systems?

There have been several approaches to answer both of
these questions. For instance, in [2] (which is an extension
of the authors’ earlier work in [3]), the authors provide a
criterion for block code design for transmitter diversity sys-
tems and demonstrate their benefits when proper channel
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estimation is possible through the use of pilot-symbol as-
sisted modulation. This work has been addressed from a
slightly different viewpoint in [4], wherein the authors con-
struct generalized orthogonal space-time block codes based
on the Radon-Hurwitz construction for unitary matrices of
indeterminates. The performance data for these codes are
given in [5].

Other approaches have been taken with respect to trans-
mitter code design where trellis coding is incorporated. For
instance, in [6] the authors derive several space-time trel-
lis codes, which were found with respect to the product cri-
terion, wherein the minimum of the product of distances
between all distinct code word pairs is maximized assum-
ing that the rank of the code word difference matrices are
maximized. In [7], the authors provide a criterion for the
design of space-time trellis codes by forming a search cri-
terion different from [6] based on the assumption that op-
timal codes will satisfy the same criterion for their distance
spectra as traditional trellis codes used in the single antenna
case.

In [8], the author derives a criterion for space-time code
design based on the Euclidean distance between all possible
code word pairs. This criterion is different from the product
distance used in [6, 7], but is shown to be a true metric.

In this paper, a general design methodology is pre-
sented for spatial block codes based on orthogonal designs.
The reason why these codes are referred to as spatial block
codes rather than space-time block codes is that, as will be
shown, these codes primarily involve spatial processing but
not temporal processing. Although the new design method-
ology does not satisfy design criteria for diversity maxi-
mization, they can be shown to be useful in closed-loop
transmit diversity application. Simulation results are pro-
vided to verify the benefits of these codes in closed-loop
scenarios.

This paper is organized as follows. Section 2 provides an
overview of the design criteria for space-time block codes.
Section 3 presents a general framework for construction of
spatial block codes from unitary transform matrices and in-
troduces an application of these codes to closed-loop trans-
mit diversity systems. Section 4 provides simulation results
using the proposed codes. Section 5 includes a discussion on
the significance of the results and directions for future work.

2. SPACE-TIME BLOCK CODES: DESIGN CRITERIA

In this section, the criterion for optimal space-time block
codes are derived and presented. This criterion has been de-
rived and presented in previous work (e.g., [2, 6]). Given a
space-time block code designed for L antennas for duration
of K epochs, the transmitted code words may be defined by
a K X L matrix D

dtl dtz Ce dtL
dt1+1 dt2+1 e dtL+1
b= . . . . O

1 2 L
dt+K—1 dt+K—1 ) dz+K—1

where the matrix entries d! represent the modulation symbol
transmitted over the ith antenna at time ¢ (¢ being in multi-
ples of the symbol duration). Given a single-antenna receiver,
the received signal may be represented as

L
x(£) = > dic'(t) + n(t), (2)

i=1

where ¢/(¢) is the complex channel gain at time ¢ of the signal
transmitted from the ith antenna and 5;(t) is the associated
Gaussian noise. If it is assumed that the channel estimate,
corresponding to the channel as seen from each antenna, is
separable at the receiver (by means of orthogonal waveform
coding, for instance) and that the complex channel gain and
noise for each antenna remain constant over K epochs, then
the signal corresponding to the entire code matrix received
over the K-epoch duration of the space-time code may be
represented as

x(t) = D(£)e(t) + n(1), (3)

where the vector x(t) is a K X 1 observation vector, D(t) is the
K X L code word matrix, and c(t) is the L X 1 channel gain
vector defined as

c(t) = [c1(t), c2(t), ..., cr(B)], (4)

and n(¢) is the K X 1 noise vector defined as
n(t) = [n(t),n(t+1),...,n(t+ K - 1)]. (5)

Given the received signal vector x(t) and assuming perfect
channel estimation at the receiver, the maximum a posteriori
detector is given as

D(1) = max p(D, | ¢(1), x(1)), (6)

where S is the set of all possible codematrices, D(¢) is the de-
tected codematrix, and p(arg) is the probability density func-
tion of arg. If it is assumed that each Gaussian noise sample is
independent, zero-mean with variance ¢2, then the pdf used
in (6) may be found as

(D, | c(t),x())

— (27102) K2~ (126)(x()-Dye(0) (x()-Dye(t),

(7)

Using (7), the probability of decoding error may be found
as

A~

Perror = P(D(t) =D, | D(t) = D/3)
= P{p(Dq | c(t),x(t)) > p(Dg | c(t),x(t))}

= P{In(p(Dy | c(t),x(1))) <In (p(Dg | c(t),x(1)))}.
(8)
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The relationship of (8) may be simplified to

Perror = P{(X(t) - Dac(t))H(x(t) - D“C(t))
9)
< (x(t) = Dpe()" (x(t) - Dpe(t)) .

Noting that in the original expression in (7), it was assumed
that if D(¢) = Dg, then x(t) = Dgc(t) + n(t). Therefore, the
error probability may be simplified to

Perror = P{ZRC [nH(t) (Dﬂ - Da)C(l’)]
(10)
> cf1(#)(Dg — Da)" (D — Da)e(t) .

Observing (10), it is clear that the probability of error
decreases as the term on the right-hand side of the inequality
increases. Noting that (Dg — D) is a K X L matrix, it may
be decomposed using singular value decomposition. As a re-
sult, (Dg — Dy) is equivalent to VHEIW, where Visa K x K
unitary matrix, W is an L X L unitary matrix, and X is a
K x L matrix whose diagonal entries are the singular val-
ues in order of value of (Dg — D) (i.e., the eigenvalues of
(Dg — Do) (Dg — Dy)). Therefore, the following equation
may be derived:

¢!'(#)(D ~ Da)" (Dg ~ Do)e(1)
= A (HVIEWWH sH V(1) (11)
= () VEZZHV(1).
If we assume that ¥ has the structure diag[Ai,A,,...,
A, 0,...], where Ax denotes the kth nonzero eigenvalue of

(Dg - D))" (Dg — D), then taking into account the unitarity
of V, then (11) may be further simplified as

H(1)(Dg — Dy)" (D — Da)elt)

= c(HVEZEHV(1)
(12)

HzzHe(t)

r

= > M.

i=1

Quite clearly, the larger the rank of the L X L matrix
(Dg — D)H (Dg — Dy), the lower the decision error prob-
ability. If this matrix is full rank, then the maximum gains
from diversity are achieved. However, this criterion is gen-
eral, and it would be of interest for code design to find a nar-
rower criterion. This may be accomplished by examining of
cf(1)(Dg — D) (Dg — Dy)c(t) in the mean sense. Firstly,
it is assumed that the transmitted symbol energy from each
antenna is E,. Since the channel itself does not create or de-
stroy energy, the mean energy from the complex channel gain
coefficients as seen at the receiver should be E{c?(t)} = E..

Therefore, the following equations may be derived:

E{c(t)(Dg - Do) (Dg — Dy)c(t) | Dp, D, f

= E{i?t?c%(t)}
i=1

;E{A%c?(t)} (13)

S ERE[G(0)
i-1
= iE{Af}ES.

i=1

In [8], the author proposes that E{c/ (t)(Dg—Dq)" (Dg—
D.)c(t) | Dg, Dy} may be bounded using the Cauchy-
Schwartz inequality assuming that the singular values of (Dg—

D,) are deterministic. As a result, the relationship in (13) may
be bounded as

E{c(£)(Dg — Do) (Dg — Da)c(t) | Dy, Do}

> E{AE,
i=1

r (14)
= > NE,
i=1

< (glﬁ)\/@

Therefore, if (Dg — Da)H(Dﬁ — D,) is a diagonal ma-
trix with all entries of the diagonal being equal, the bound
of (14) becomes tight. However, even the singular values of
(Dg—D,) are in fact not deterministic in the mean-sense, due
to the fact that for all given code words these values are func-
tions of the mean code word differences. Therefore, given a
set of code word symbols which may be transmitted, one may
use the distribution of all possible code word symbol differ-
ences to form an expression for E{c’(¢)(Dg — Do) (Dg —
D,)c(f)}. It is clear that if (Dg — D,)¥ (Dg — D) is diagonal
and all entries along the diagonal are nonzero, then the maxi-
mum gain from diversity is achieved. In this case, the singular
values of (Dg — D) are functions of the symbol differences
between the code words.

3. SPATIAL BLOCK CODE DESIGN FROM UNITARY
TRANSFORM MATRICES: A GENERAL DESIGN
FRAMEWORK

As established in Section 2, the desired criterion for space-
time block code design is to find codes whose difference
matrices satisfy the condition that there exists the maxi-
mum number of singular values associated with these matri-
ces. One such construct, as discussed in [4], is the Radon-
Hurwitz unitary matrix construction. A set of k unitary
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matrices { By} of size L X L is part of the Radon-Hurwitz fam-
ily if the following three rules hold:

BB, =1,
Bl =-B, 1<i<k, (15)
B,‘Bj = *BjBi, 1< 1,] <k

In [9], the author presented a code that corresponded to
a special case of the Radon-Hurwitz family

b = [—(2)* (ssf>*] (10

where {s;} are the set of symbols to be transmitted over
the K time epochs of the code (in this case, K = 2). The
code in (16) is an example of a rate 1 code, where the num-
ber of symbols transmitted is equal to the number of time
epochs required for the code. Such codes are desirable for
bandwidth-limited systems. In [4], the authors show that for
the Radon-Hurwitz family of code constructs, rate 1 designs
exist for real constellations only for L = K = 2, 4, and 8.
The authors conclude that real orthogonal designs therefore
exist only for these dimensions. The singular values for the
code word difference matrix (Dg — D,) can be shown to be
(see [4])

L
N = s —spl’ Vi (17)
=1

In (17), [Sa1 Saz - - Sa] is the first row of D, and
[sp1 sp2 - -+ spr] is the first row of Dg. Since it is assumed
that D, differs from Dg in at least one position, all the sin-
gular values of the code word difference matrix are nonzero,
thatis, r = Lin (13). As a result, the relationship of (13) may
be found as

E{c()(Dg - Da)" (Dg - Da)e(t) | Dy, Do}

= rE/\%ES
Zl {A7} (18)

L
=ESLZ |Sa1 —551|2
I=1

However, given an L X L unitary matrix U whose ele-
ments are denoted by Uj;, then by forming a diagonal matrix
G = diag[si, s2, ..., 5], a code word matrix may be formed
as D(t) = GU. This matrix will be unitary assuming that
the symbol constellation points have equal magnitude, and un-
der this assumption the singular values of the code word
difference matrix (Dg — Dg) are simply [[s, — sp1 12, |Se2 —
sg2|% ..., [sax — spx |*]. This type of design was demonstrated
in [2] for a specific code, but taking into account the fact that
unitary matrices may be constructed from sets of orthonor-
mal polynomials, a general method for designing block codes
based on unitary matrices may be specified. As a result, the
relationship in (13) for this type of code, herein denoted as

a simple orthogonal code, becomes

E{c(t)(Dg - Do)" (Dg — Dy)c(t) | Dp, Dy }

L
= I:ZIE{/\IZ}ES (19)

.
ESZ | 5ai —Sﬁi|2.
i=1

Comparing (18) to (19), it can be seen that at best, the
performance of the simple orthogonal code can match that
of the Radon-Hurwitz code for any given code word pair.
This is due to the fact that although the first column of
D, and that of Dg are distinct, they may differ in at least
one position. Therefore, to analyze the diversity gain of a
simple orthogonal code, we must analyze it in the mean-
sense. This would mean that we should look at the aver-
age rank of (Dg — D,X)H(Dﬁ — D,) rather than the rank of
(Dg — Da)H(Dﬁ — D, ) for a particular code word pair. This
would be determined by the average number of positions in
which the first column of D,, and that of D differ for all pos-
sible distinct code word pairs (D, Dg).

Given a symbol alphabet of dimensionality M, the set of
all possible code words that make up the first column of the
code word matrix derived from a simple orthogonal code of

dimension L x L is MF. Given that there are (A';L) distinct
code word pairs, the average rank (i.e., E{r}, where r is the
number of singular values of (Dg — D )H (Dg — D) for any

code word pair (Dy, Dg)) is

L L
. i= lA‘
E{r} = > ipi = 2 T
i=1 ( 2 )
where A; is the number of code word pairs differing in 7 posi-
tions and p; is the probability that any two code words differ
in 7 positions,

(20)

Ai

MLY®
(%)
Finding the general form for A; is cumbersome; however,

we may derive an upper bound for E{r} based on the value
of Ay. This value may be shown to be

pi = (21)

M-2
Ap= > MUUM-DE-iM - DETL (22)
i=0

Given this value, we can find the value of p;. In addition,
since p; = 0,
L L-1
dSpi=l=p+> pi=l=p =< (1-p) Vi<i<lL
i=1 i=1

(23)
Therefore, the maximum value of E{r} based on the value of
Ar may be derived as
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L
E{r} = > ip;
i=1
L-1

=LpL+ D ipi
i=1

L-1

<Lpr+> i(l-pp)

i=1

<Lpr+(L—-1)(1-pr).

(24)

Substituting in for pr, (24) may be expressed as

A
M—L) : (25)

(%)

where the first term on the right-hand side of the inequality
represents the likelihood that a code word pair differs in all
L positions, while the second term represents the likelihood
that a code word pair differs in at most (L — 1) positions.

Similarly, a lower bound may be derived for E{r}. We
may first derive the number of code word pairs that differ
in only one position

LA,
E{r} = L +(@L-1) (1—
(")

2

M-2
Ay=LMEY Y (M -1) - (26)

i=0
Therefore, the lower bound is

E{r} = p1+2(1-p1)

:E{r}zﬁiu(l—ﬁi). (@7)
() (%)
In (27), the first term on the right-hand side of the inequal-
ity represents the probability of a code word pair differing
in only one position, and the second term represented the
probability of a code word pair differing in at least two posi-
tions. The derivations of A; and Aj are explained further in
the appendix.

As an example, consider a 3-antenna code using QPSK
symbols. In this case, M = 4 and L = 3. Using (25) and (27),
the following bounds are derived:

1.86 < E{r} < 2.43. (28)

To see how meaningful these bounds are, a simulation was
run under one-path Rayleigh fading conditions at a velocity
of 1 km/h using a 19.2 kbit/s transmission rate (2 bits/QPSK,
symbol) and a carrier frequency of 1960 MHz. The demodu-
lated bit error rate (BER) as a function of QPSK symbol, SNR
was compared between three-transmission methods: no di-
versity, use of the 2 X 2 Radon-Hurwitz code as in (16), and
a 3-antenna orthogonal code based on the discrete Fourier
transform (DFT) matrix (see (45)). The results are depicted
in Figure 1. The simple orthogonal code provided nearly the
same performance as the 2-antenna Radon-Hurwitz code,
which has diversity order 2. The bounds given in (28) pre-
dict a mean diversity order near 2 as well.

0.18

0.16
0.14f
0.12f

0.1k

0.08F ™

Bit error rate

0.061 RN
0.04+ T~

0.02F Tl o

0 | | | | | [Tt y
0 2 4 6 8 10 12 14

SNR (dB)

— Single path
— 3-antenna DFT
-~ 2-antenna Radon-Hurwitz

F1GURE 1: Performance of simple orthogonal code.

Now that a general description of simple orthogonal spa-
tial block codes has been presented, a general method for de-
riving these codes may be formulated starting with a general
method for deriving U, the unitary transformation matrix.

3.1. The Gauss-Jacobi procedure for unitary transform
matrix derivation

A set of real polynomials {Px(x)}, each of degree k, is said
to be orthonormal with respect to the weighting function
{p(x)} over the support space Q, if

kmmammmw=%, (29)

where § is the Dirac delta operator. In order to ensure or-
thogonality, the polynomials Px(x) of degree greater than
zero must satisfy [10]

JQ Pr(x)x"p(x)dx =0, 0=<m<k. (30)

The Lagrange interpolating polynomial for a set of n dis-
crete sample points f (xx) of a function f(x) is defined as

< w(x)
where w(x) = (x — x1)(x — x) -+ - (x — x,) and ' (xx)

is the polynomial given by (xx — x1) - - - (% — xx—1) (% —
Xk+1) + + - (0 — xp). If f(x) is a polynomial of degree less than
n, then F,(x) = f(x). Otherwise, we can form the interpola-
tory polynomial F,(x) and represent f(x) as

f(x) = Fu(x) + r(x), (32)

where r(x) is a remainder polynomial. Integrating f(x) over
Q with respect to p(x), and assuming that the remainder
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polynomial r(x) is negligible, we obtain

[ Feap@dx = 3 Aef (s, (53)
k=1

where

w(x)

A= ) P (34)

The right-hand side of (33) is commonly referred to as
a quadrature formula, and leads to two known theorems (the
proofs may be found in [11]). The first theorem is that the
quadrature formula in (33) is interpolatory if and only if it is
exact for all possible polynomials { f(x)} of degree less than
or equal to n — 1. The second theorem is that the quadrature
formula in (33) is exact for all polynomials of degree less than
or equal to 2n — 1, if and only if (i) the quadrature formula
in (33) is interpolatory and (ii) for all polynomials Q(x) of
degree less than #,

L} ©(x)Q(x) p(x)dx = 0. (35)

Assuming a set of orthonormal polynomials Pk (x) over
support space (), a discrete unitary transform matrix can
now be constructed. Assume that the polynomials Px(x) are
arranged in order of increasing degree, that is, deg(P;(x)) <
deg(P,(x)) < - - - < deg(Px(x)) < - --.Ifan N X N unitary
matrix is desired, it can be generated by first taking the dis-
cretization points xi as the roots of Py (x). If we form w(x)
from these points, we know that Py (x) is directly propor-
tional to w(x) and therefore, any polynomials orthogonal to
Pn1(x) will also be orthogonal to w(x). We also know that
if we define f(x) in (33) as the product of Py (x) and the
arbitrary polynomial d(x) of degree less than N, then f(x) is
a polynomial of degree less than or equal to (2N — 1) and

N
jQ Py (x)d(x)p()dx = 0= S APyei (c)d(x), (36)
k=1

since Py11(xx) = 0 for all k and since we can always find Ay
such that (33) is exact. Therefore, all polynomials of degree
less than » are orthogonal to w(x) and thus by the second
theorem, previously mentioned, (33) is exact for all polyno-
mials of degree less than 2N — 1. Thus, by the orthonormality
condition of the polynomials Px(x), we conclude that

N
Lz Pi(x)Pj(x)p(x)dx = 8;j = > AxPr(xk)Pj(xk)  (37)
k=1

for 4, j less than (N + 1). Therefore, if the (i, k) entry of an
N X N matrix is formed by the value P;(xx), we can find A
such that this matrix is unitary, that is, all the row vectors are
mutually orthonormal.

To that end, we first consider the Christoffel-Darboux
identity [11], which is defined as follows: given a set of or-
thonormal polynomials {P,(x)}, each of order n, with the

nth-order term {P,(x)} in each being of the form a,x", it
can be shown that

an
An+1

(x = 1) Pi(x)Py(t) = -

s=0

[Pn+1(x)Pn(t) - Pn(x)PnJrl(t)]'

(38)
In (38), if we set t to be the roots of P, (x), that is, x, then it
can be shown that

n—1
Z P.(x)Ps(xx) = ,ﬂw' (39)
s=0

An+1 X = Xk
Multiplying both sides by p(x) and integrating over (3, we get

Pu(x) dx.

1=- —n
X — X

G p o (x0) jﬂp(x) (40)

An+1
The result in (40) follows from the fact that the quantity
Py(xx) o Ps(x)p(x)dx equals 0 for s > 0, as a result of the
orthogonality condition in (30), and equals 1 for s = 0, as a
result of the orthonormality of Py(x). We note that the inte-
gral on the right-hand side of (40) is similar to the definition
of Ay in (34), from which it follows that

an 1

P
, ans1 P (%) P (%)

(41)

If we refer to the desired N X N unitary matrix as U, we
can define the elements of U as

Uz‘j . \/Epi(x]‘). (42)

It should be noted that the theory presented here is not di-
rectly applicable to complex orthonormal polynomials. This
will be discussed in more detail in Section 3.2.

3.2. Sample orthogonal designs

Returning to the code construct D(t) = GU, where G =
diag[s1, s2,...,sr] and U is a unitary matrix, several codes
may be derived, which satisfy the rank criterion for the code
word difference matrix. We primarily concentrate on the 3x3
case, as this is the lowest order where Radon-Hurwitz codes
do not exist. For instance, the discrete Fourier transform ma-
trix of dimension L X L is derived from the rule

e—j2ﬂ(l—1)(m—1)/L
VL ’

where [ is the row index ranging from 0 to (L — 1) and m is
the column index also ranging from 0 to (L — 1). Thus, re-
turning to the terminology presented in Section 3.1, the set of
orthonormal polynomials for the DFT matrix are simply de-
scribed by {P,(x = e /2"/1)} = {x"} = {e /2""L} where n
is the order of the polynomial, and the normalization factors
are simply A; = 1/L. Clearly, since the polynomial set is fully
described by a complex exponential, roots of zero do not ex-
ist for any of these polynomials in the conventional case. This
means that much of the analysis presented in Section 3.1 is
not directly applicable to the DFT. However, we may find the

F, = (43)
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so-called roots of unity for these polynomials; it can be shown
that for the Lth degree complex polynomial x* that there are
exactly L roots of unity for these complex exponentials [12].
These roots of unity may be found ati = {0,1,...,L — 1}.
These values will satisfy, for any k, [ < L,

L-1 L-1

D i) (Pi(xe)) ™ = > e 2mmrl = §(1—m).  (44)

r=0 r=0

In the 3 X 3 case, this relationship generates the transform
matrix

1 1 1
V333
1 efj27r/3 efj47r/3
Fsxs = NN N (45)
1 e—j47r/3 e—an/3
V3 V3 3

This matrix is a transpose of the one presented in [2, Section
IV.A]. This type of simple orthogonal code will be denoted
as distance preserving. This means that at any given instant
in time, for two distinct code words Dy = {s41,..., Sqz} and
Dg = {sp1,...,spL}, the expected value of |s,; — s;;,»l2 does not
change for 1 < i < L. Since the DFT-derived simple orthog-
onal code involves only phase shifts and any symbol trans-
mitted at any instant in time over any antenna has a constant
magnitude, this code is in fact distance preserving.
Although the DFT matrix is well known, the fact that a
complex phase shift needs to be performed may not be desir-
able. As a result, real-number transformations may be used.
For instance, the discrete cosine transform, which is derived
from the roots of the Tchebychev polynomials {P,(x)} =
cos(n cos™!(x)), yields only real matrix entries. The general
form for the discrete cosine transform (DCT) matrix is

1

== l = 0)
VL
Cipy = (46)
\/ECOS M l > 0
L 2L ’ '
The 3 X 3 matrix associated with the DCT is
1l 1 1
V3 V33
1 1
Gxs = | 2 0 - 2| (47)
1ooj2 1
V6 3 V6

This matrix is not distance preserving, and as a result, the
instantaneous code word symbol differences will be different
from codes derived from the DFT. Assuming a QPSK con-
stellation, an average code symbol difference may be derived,
assuming perfect synchronization, however. Due to the fact
that the matrix is unitary, the mean code word difference will
be equivalent to the block code derived from the DFT. How-
ever, this does not imply how diversity will affect the perfor-
mance of this code when other elements of a typical digital

communications system are considered (e.g., trellis coding,
interleaving). This particular matrix may also not be desir-
able, due to the fact that one of the entries is zero; this results
in large peak-to-average ratios for the transmitted data. An-
other possible transform matrix is based on the discrete La-
guerre transform [10], which is based on the Laguerre poly-
nomials. Due to the fact that this transform is not a sinu-
soidal transform, no general closed form solution exists for
this transform. The 3 X 3 discrete Laguerre transform is given
below (rounded to 4 digits):

0.8433  0.5277 0.1019
Lixs = | —0.4927 0.6831 0.5392 . (48)
0.2149 —0.5049 0.8360

This matrix, which avoids the complex phase rotation of
the DFT matrix, yet does not suffer from the same power-
balancing problems from which DCT-derived matrix does.
However, both of these codes are not distance preserving.
Many other codes based on unitary transform matrices
exist. Considering that all these codes have identical perfor-
mance in terms of diversity, the code chosen would be based
on not just raw symbol error rate but other criteria as well.

3.3. Enhancing diversity of simple orthogonal codes

Although (24) places an upper bound on the maximum di-
versity achievable by simple orthogonal codes as defined in
this section, we may enhance the diversity performance of
the code by implementing the code in a closed-loop trans-
mit diversity method. Closed-loop transmit diversity meth-
ods are methods that rely on feedback so that using a com-
plex weighting of each of the symbols to be transmitted from
each antenna, a coherent combination is possible at the re-
ceiver. Essentially, this approach is used to pre-equalize the
channel prior to transmission. In contrast, transmit diversity
methods such as the Radon-Hurwitz space-time block code
of (16), which do not require receiver feedback, are also clas-
sified as open loop.

One of the first approaches to this problem was provided
in [13], where the authors proposed transmitting training
sequences to several users in the network. These sequences
are transmitted over L antennas. If we assume that the chan-
nel, as seen by a single user k with respect to L antenna el-
ements at time £, may be represented by the channel vector
ai(t) = [ak1(t)ara () - - - ak ()], where ay;(¢) is the complex
channel response for antenna i with respect to user k at time
t, then the transmitter can make use of this information to
scale each antenna input accordingly so that a coherent com-
bination of the signals from each antenna is possible at the
receiver. Thus, if the receiver estimates the channel from each
antenna as ax(¢t) = [ar (H)ar(t) - - - axr(t)], then these esti-
mates may be relayed to the transmitter. Thus, if we assume
that the signal d(¢) is transmitted from each antenna at time
t, the received signal after scaling would be

r(t)=ag (Dan (t) + af, (Dara(t) + - - - +afy (Darc(t) + n(t),
(49)
where n(#) is an additive Gaussian noise term. Clearly, if
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ari(t) =~ ari(t) then the received SNR is maximized. This
approach has been narrowed to include quantized relative
phase feedback in [14]. This approach has also been ad-
dressed for two antennas in CDMA systems in [15].

However, the amount of coding given to the feedback in-
formation and the latency of the feedback information be-
come critical to performance of these systems. As a result,
these systems tend to actually degrade performance with re-
spect to space-time block coded systems such as the 2 x 2
Radon-Hurwitz transformation at high mobile speeds. For
instance, in [16] the authors present a theoretical framework
for the performance of closed-loop transmit diversity and
demonstrate how the performance degrades at high Doppler
with respect to the Radon-Hurwitz code as a result of feed-
back latency. More specifically, in [17] the authors show a
severe degradation in performance of a 2-antenna closed-
loop method versus a 2-antenna Radon-Hurwitz transfor-
mation at speeds of 30 km/h or greater at 2 GHz carrier fre-
quency in a CDMA system. Moreover, with respect to one-
path Rayleigh fading conditions in a CDMA system, results
presented in [15] actually demonstrated worse performance
for closed-loop transmit diversity methods with respect to
not using any diversity methods at all at speeds of 100 km/h
under certain high SNR conditions due to the additional
degradation provided by fast power control.

In addition, closed-loop systems require increased band-
width for feedback information as the number of antennas
increase. Balancing this need with the need for reliability on
the feedback information could result in suboptimal perfor-
mance for a large number of antennas.

However, the use of simple orthogonal block codes could
be used to address these problems in a closed-loop imple-
mentation. Assume that we have a block of K transforma-
tions to choose from for modulating the input data matrix
into the transmit antenna array. If each of these L x L block
transformations can be grouped as T = [T} T, --- Tg],
then knowing the channel estimates from each antenna,
the receiver may make a prediction of the best available
transform and feed this information back to the transmit-
ter. Since the transforms may be generated for arbitrary
dimensionality (as shown in Section 3), the feedback re-
quires log, K bits for an arbitrary number of antennas. As-
suming that the estimated channel vector is still ax(t) =
[ak1(t) ara(t) - -+ are(t)] and that this channel estimate
remains relatively constant over the L time epochs of the
block code, then the receiver transform selection T(t) for
feedback that maximizes SNR would be

T(t) = rTrilg%(HTia{(t)H. (50)

This transform selection may be sent to the transmitter for
application in the ensuing data sequence.

Each data sequence to which a transform is applied
should include a means of error detection, for example, a
cyclic redundancy check (CRC). This is necessary due to the
fact that the feedback of the transform selection may not be
implemented due to feedback error. However, using an error
detection mechanism such as a CRC, the receiver may decode

the received data sequence using multiple hypotheses testing,
with up to K hypotheses. A simple decoding algorithm at the
receiver may be attained:

(1) determine appropriate transform for the next data se-
quence and relay selection to transmitter;

(2) for the next received data sequence, apply selected
transform and decode. If CRC passes, return to step
(1) for next data sequence;

(3) if CRC fails, sequentially apply each of the other K — 1
possible transforms to the received data and decode.
If a CRC passes for a transform, return to step (1) for
next data sequence;

(4) classify the received data sequence as an erasure. Re-
turn to step (1) for next data sequence.

The drawback of this type of method is that using CRCs
for short data sequences could severely impact throughput.
As a result, this type of feedback mechanism would in prac-
tice perform relatively slowly with respect to channel condi-
tions. On the other hand, this method is not as sensitive to
feedback errors as the method described in [15] due to the
use of multiple hypotheses testing. More importantly, how-
ever, this method will still provide diversity gains at fast fad-
ing conditions, despite the fact that the feedback mechanism
is highly inaccurate in these types of channel conditions. This
is due to the fact that these simple orthogonal block codes
provide at least the diversity order given in (27). Therefore,
for instance, a 3-antenna code for a QPSK constellation will
always provide mean diversity order of nearly 2, regardless of
feedback error.

4. EXAMPLE: QPSK SYSTEM

The 3 x 3 block codes presented in Section 3.2 were simu-
lated in a simple QPSK system under single-path Rayleigh
fading conditions [18]. It was not merely of interest to de-
termine the benefit of the proposed codes versus no diver-
sity, but also to measure the difference in performance be-
tween the dual and triple antenna cases. For the closed-loop
method, codes used were based on the DFT, DCT, and dis-
crete Laguerre transform (DLT) as described in Section 3.2.
In addition, the conjugate transposes of these matrices were
also used for the closed-loop method. For comparison, the
2 X 2 Radon-Hurwitz code and 2 X 2 closed-loop method
results were provided, in addition to ideal triple-diversity re-
sults. It should be noted that only two transforms were used
for the 2-antenna closed-loop method, the DLT and the DFT.
This is due to the fact that the 2 X 2 DCT transform is iden-
tical to the 2 x 2 DFT.

The system under consideration was a QPSK system that
mapped two bits to each constellation point. It is assumed
that pilot signals from different antennas arrive at the receiver
simultaneously and are separated using orthogonal wave-
form modulation; for simulation purposes, however, perfect
channel knowledge at the receiver was assumed. If the signals
from different antennas did not arrive simultaneously, then
self-interference would occur due to imperfect suppression
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3-antenna new

F1GURE 2: 1 km/h results.

of other antenna signals when demodulating the signal from
a particular antenna.

An information source at 12.8 kbit/s was assumed. This
source was passed into a rate 1/3, constraint length 9, con-
volutional encoder, and block interleaved. The interleaved
data was then modulated using a QPSK constellation. No
power control was assumed. The carrier frequency assumed
was 1960 MHz. Under such conditions, the diversity perfor-
mance for different space-time block coding methods may
be isolated for evaluation. The metric for performance, how-
ever, was BER after decoding. 192000-bit simulations were
run for each given code, velocity, and QPSK symbol SNR.
The results for 1 km/h, 10 km/h, and 100 km/h are shown in
Figures 2, 3, and 4. In these figures, single path results are
provided, and the proposed closed-loop method results for
two and three antennas are designated as 2-antenna new and
3-antenna new. In addition, perfect closed-loop transmit di-
versity results are provided that emulate closed-loop trans-
mit diversity with no feedback delay or error. The results for
2 and 3 antennas are designated as 2-antenna perfect CL and
3-antenna perfect CL, respectively.

The simulation results show benefits not only to space-
time block coding but also to increasing from two anten-
nas (Radon-Hurwitz) to three (using the proposed method)
in certain situations, particularly at low SNR (as much as
4 dB performance improvement at 1 km/h velocity). The new
closed-loop methods did start to degrade in the 3-antenna
case versus the Radon-Hurwitz block code at high veloci-
ties and high SNR, but this is most likely due to the limited
set of transform choices. At high speeds, the 3-antenna code
not only performed well with respect to the Radon-Hurwitz
at low SNR, but also provided very little degradation (less

10 Velocity 10 km/h

10"}

Bit error rate

10? \ \ \ \ \ \ \ \ \
-0 -9 -8 -7 -6 -5 -4 -3 -2 -1 0
QPSK symbol SNR (dB)

— One path

-- 2-antenna perfect CL

--- 3-antenna perfect CL

--- Radon-Hurwitz

- 2-antenna new
3-antenna new

F1GURE 3: 10 km/h results.

10° Velocity 100 km/h
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— One path
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F1GURE 4: 100 km/h results.

than 0.5dB) at high SNR. Therefore, the proposed method
shows promise in increasing the crossover Doppler frequency
[16], that is, the Doppler frequency at which an open-loop
method such as the Radon-Huwitz transform outperforms a
closed-loop method. This is a result of the proposed method
reverting back to the performance bounds described by the
mean diversity performance derived in (28). The 2-antenna
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closed-loop method did not provide quite the gains of the
3-antenna closed-loop method, but this was also most likely
due to an even more limited transform set size than the 3-
antenna case (once again, due to the fact that many of the
transform kernels used provide the exact same transform
matrix in the 2 X 2 case).

5. CONCLUSIONS

A general framework for deriving space-time block codes was
presented. This framework involves starting with sets of or-
thonormal polynomials and deriving unitary transform ma-
trices from these sets. These transform matrices may in turn
be used to generate orthogonal spatial block codes. Simu-
lation results in a closed-loop deployment show benefit for
this approach to code generation as opposed to the approach
presented in [4] under certain scenarios, as these codes may
be defined for arbitrary dimensions and their usage in the
proposed closed-loop framework did not result in a signifi-
cant degradation in performance at high velocities. However,
since these codes do not maximize diversity in the mean-
sense for a given dimensionality, further analysis should be
performed on methods for increasing the diversity of these
codes in typical wireless environments.

APPENDIX
CODE WORD PAIR DIFFERENCE PROBABILITY

Assume a diversity transformation of rate 1 using L anten-
nas, and a symbol constellation set of cardinality M. Each
possible code word may be represented as a base-M number
consisting of L digits. All possible code words may be listed
as follows:

L-2
———
0 0---0 0
L-2
———
0 0---0 1
L;Z
——
0 0 -0 (M—-1)
L-2
———
0 0---1 0
5 ' (A1)
———
1 0---0 0
LLZ
f_lﬁ
1 0---0 (M—1)
L-2
f_lﬁ
1 0 ---1 0
1

M=1) M—1) --- (M—1) (M—1).

If we examine only the code words designated by the nu-
merals

——
00 --- 0 O0through0 0 0 M-1),

it can be seen that there are > *(M — 1) — i code word pairs
that differ in only one position. Similarly, if we examine only
the code words designated by the numerals

L-2 L-2

——r—
00 --- 1 Othrough0 0 1 (M-1),

it can be seen that there are still Zf\iaz (M — 1) — i code word
pairs that differ in only one position. In fact, if we examine
the code words designated by the numerals

L-2 L-2
So 1 si—2 0throughsy s sy (M—1)
for arbitrary symbols so, s1,...,S.-2, then the same num-
ber of code word pairs differing in one position remains as
SM2(M—1)—i. As a result, there are ML~ M 2(M—1) —i
code word pairs that only differ in the last position. This rela-
tionship also holds true for code word pairs differing only in
the second-to-last position, and so on for all remaining L — 2
positions. As a result, the total number of code word pairs
differing in only one positionis A; = LML~1 SM (M —~1)—i.

The next case to be examined is the number of code
word pairs that differ in all L positions. For instance,
take the code words defined by {0 s - S.—2 Sp-1}, that
is, code words which have 0 for the first digit. For any
given value of {0 s; - sp-> Sp—1}, there exist (M — 1)t
code word pairs which differ from {0 s; © SL—2 SL-1}
in L positions. Since there are ML~! possible values for
{0 s - Sp—2 Sp—1}, there exist MI"I(M — 1) code
word pairs that differ in L positions for all possible val-
ues of {0 s1 - sp—2 S;—1}. Now examine the code words
defined by {1 s - Sp—2 si—1}, that is, code words
which have 1 for the first digit. For any given value of
{1 s - Sp—2 Si—1}, there exist (M — 1)* code word pairs
that differ in all L positions. Among these code words, (M —
1)E=! have 0 as the first digit. If we assume that these code
word pairs were already accounted for when we examined
code words of the structure {0 s; - S1—2 Si-1}, then
for all possible values of {1 s - sp—2 sp—1} there exist
MET(M — 1)F — (M — 1)!71] additional code word pairs
that differ in all L positions. Using this reasoning, we can
say that, for a given i (0 < i < M), for all possible values of
{i s - Sp-2 SL-1}, there exist ML (M — 1)E — i(M —
1)I=1]. As a result, the total number of code word pairs dif-
fering in L positions is

M-2
Ap= > MMM - DE—i(M - 1)1,
i=0

(A.2)
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