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We address the problem of blind identification of a convolutive Multiple-Input Multiple-Output (MIMO) system with more
inputs than outputs, and in particular, the 3-input 2-output case. We assume that the inputs are temporally white, non-Gaussian
distributed, and spatially independent. Solutions for the scalar MIMO case, within scaling and permutation ambiguities, have
been proposed in the past, based on the canonical decomposition of tensors constructed from higher-order cross-cumulants
of the system output. In this paper, we look at the problem in the frequency domain, where, for each frequency we construct a
number of tensors based on cross-polyspectra of the output. These tensors lead to the system frequency response within frequency
dependent scaling and permutation ambiguities. We propose ways to resolve these ambiguities, and show that it is possible to
obtain the system response within a scalar and a linear phase.
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1. INTRODUCTION

The goal of blind r-input n-output (n × r) system identifi-
cation is to identify an unknown system H(z), driven by r
unobservable inputs, based on the n system outputs. Blind
identification of a Multiple-Input Multiple-Output (MIMO)
system is of great importance in many applications, such as
speech enhancement in the presence of competing speak-
ers, digital multiuser/multiaccess communications systems,
biomedical engineering [1, 2, 3, 4, 5].

Most of the literature on n × r MIMO problems refers to
the case of n ≥ r. In that case, system identification can lead
to recovery of the inputs via deconvolution. Here we con-
sider the case of more inputs than outputs, that is, n < r. In
such a scenario, recovery of the input is generally not possi-
ble, except in cases where some a priori information about
the inputs is available, such as the finite alphabet property
[6, 7]. Very few results exist for the convolutive MIMO prob-
lem with more inputs than outputs. In [8], the identifiability
of a Moving Average (MA) system with possibly more inputs

than outputs has been studied. A special case of a blind 2 × 3
convolutive system, where the cross-channels are simple de-
lay elements, has been studied in [9]. The delays were esti-
mated via a polyspectra based method.

The scalar 2 × 3 MIMO case has been approached in
[6, 10], based on the canonical decomposition of tensors,
which were constructed from higher-order cross-cumulants
of the system output. That approach yields the system within
scaling and permutation ambiguities.

In this paper, we address the blind identification of 2 × 3
convolutive systems.We look at the problem in the frequency
domain, where, for each frequency we construct a number
of tensors based on cross-polyspectra of the system output.
Based on these tensors, the problem at each frequency can be
formulated as that of scalar MIMO, thus the method of [10]
can be applied to yield the system frequency response within
scalar and column permutation ambiguities. The latter ambi-
guities, however, now vary between different frequencies. We
exploit the information that is available in the polyspectra
domain to resolve these ambiguities, and recover the MIMO
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system frequency response within a scalar and linear phase
ambiguities.

2. EXISTING RESULTS ON THE SCALARMIMO CASE

In [6, 10] a solution for the 3-input 2-output scalar MIMO
problem has been proposed within scaling and permutation
ambiguities. The following system was considered:

x = Hs, (1)

where x =
[
x1(t) x2(t)

]T
is 2×1 vector representing the out-

put signals; H is the instantaneous mixing matrix of dimen-

sions 2×3; s = [
s1(t) s2(t) s3(t)

]T
is 3×1 vector representing

the input signals and t denotes discerte time. The signals in
(1) satisfy the following assumptions:

(A1) si(t), i = 1, 2, 3, are zero-mean, stationary, white, non-
Gaussian distributed and independent of each other,
with finite cumulants up to fourth-order;

(A2) the si(·)’s have unit variance, for i = 1, 2, 3.

Define

c40i jkl = CUM
{
xi(t), x j(t), xk(t), xl(t)

}
,

c31i jkl = CUM
{
xi(t), x j(t), xk(t), x

∗
l (t)

}
,

c30i jk = CUM
{
xi(t), x j(t), xk(t)

}
,

(2)

where CUM{·} represents the cross cumulant of signals, that
is,

CUM
{
xi(t), x j(t), xk(t), xl(t)

}
= E

{
xi(t)xj(t)xk(t)xl(t)

}
−E{xi(t)xj(t)}E{xk(t)xl(t)}
−E{xi(t)xk(t)}E{xj(t)xl(t)}
−E{xi(t)xl(t)}E{xj(t)xk(t)},

CUM
{
xi(t), x j(t), xk(t)

}
= E

{
xi(t)xj(t)xk(t)

}
.

(3)

Let �40, �31, and �30 be tensors with elements {c40i jkl, 1 ≤
i, j, k, l ≤ 2}, {c31i jkl , 1 ≤ i, j, k, l ≤ 2}, {c30i jk, 1 ≤ i, j, k ≤ 2},
respectively.

LetHp denote the pth column of the mixing matrixH . It
holds that

�40 =
3∑
p=1

γ40sp Hp ◦Hp ◦Hp ◦Hp, (4)

�31 =
3∑
p=1

γ31sp Hp ◦Hp ◦Hp ◦H∗
p, (5)

�30 =
3∑
p=1

γ30sp Hp ◦Hp ◦Hp, (6)

where

γ40sp = CUM
{
sp(t), sp(t), sp(t), sp(t)

}
,

γ31sp = CUM
{
sp(t), sp(t), sp(t), s∗p(t)

}
,

γ30sp = CUM
{
sp(t), sp(t), sp(t)

}
,

(7)

and “◦” denotes the tensor outer product [10].
Equations (4), (5), and (6) are referred to as “canoni-

cal decomposition” of �40, �31, and �30. They are decom-
positions in a minimal sum of rank-1 terms [10]. Thus, the
problem of estimating the matrix H is that of decomposing
�40, �31, and �30 in a minimal number of rank-1 terms, in
which each rank-1 term is the contribution of one source sig-
nal. For higher-order tensors, as opposed tomatrices (second
order arrays), the number of rank-1 terms is not bounded
by the dimension of the column nor the row space. This
enables the identification of systems with more inputs than
outputs.

In the sequel, we outline the process of obtaining the de-
composition of the above tensors [11]. Consider the cumu-
lant based matrix equation




c401111 c402111 c402211 c402221
c401112 c401122 c401222 c402222
c30111 c30112 c30122 c30222
c311111 c312111 c312211 c312221
c311112 c311122 c311222 c312222



G∗ = 0, (8)

whereG is a 4×1 vector. This system of linear equations has to
be solved in a least-square sense for a nontrivial G∗. Assum-
ing that G∗ has unit norm, the solution can be found as the
right singular vector of the coefficient matrix in (8), corre-
sponding to the smallest singular value.We view the elements
of G as the coefficients of a polynomial, and let r1, r2, r3,
be the three roots of this polynomial. Also, we define H̆
as

H̆ �
[
r1 r2 r3
1 1 1

]
. (9)

It was shown that H̆ is an estimate of the mixing matrix H
up to an unknown column scaling and permutation, that is,

H̆Λe jΦP = H, (10)

where Λ is a diagonal matrix representing the real and pos-
itive column scaling, e jΦ is also a diagonal matrix repre-
senting the phase ambiguity of each column, while P is a
permutation matrix representing the column permutation.
These ambiguities are acceptable for the instantaneous mix-
ture case.

3. THE PROPOSED APPROACH FOR THE 2 × 3
CONVOLUTIVEMIMO CASE

Consider the case of convolutive mixtures. The MIMO sys-
tem output is given by
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x(t) =
L−1∑
l=0

h(l)s(t − l), (11)

where s(t) is the 3 × 1 input vector containing mutually in-
dependent entries with unit variance and non-Gaussian dis-
tribution, h(l) is the 2 × 3 impulse response matrix with ele-
ments {hi j(l)}, i = 1, 2, j = 1, 2, 3, x(t) is the 2 × 1 vector of
observations, and t denotes discrete time.

In addition to assumptions (A1) and (A2) introduced for
the scalar MIMO case, we further assume the following:

(A3) there exist a nonempty subset of ω’s, denoted by ω∗,
and a nonempty subset of the indices 1, . . . , n, denoted
by l∗, so that for l ∈ l∗ and ω ∈ ω∗, the lth row of
the matrix H(ω) has elements with magnitudes that
are mutually different.

At first look, an extension of the scalar MIMO case to the
convolutive case would appear feasible by observing that, in
the frequency domain, it holds that

x(ω) = H(ω)s(ω), (12)

where x(ω), s(ω), and H(ω) are the Discrete-Time Fourier
transform of x(t), s(t), and h(l), respectively. Thus, (12) is
similar to (1) for a fixed ω.

To extend the idea of [10] to this case, one would need
to estimate the cross cumulants of xi(ω1), xj(ω2), . . . . Al-
though cumulants of Fourier transforms has been considered
in [12], there is a problem right there. According to Brillinger
[13, Theorem 4.3.2 on page 93],

CUM
{
xi
(
ω1

)
, x j

(
ω2

)
, xk

(
ω3

)
, xl

(
ω4

)}
= 0

if ω1 + ω2 + ω3 + ω4 �= 2πK,
(13)

where K is an integer. Thus, C40 and C30 would be identically
zero. When considering discrete Fourier transforms the cu-
mulants will not be zero, but they will be very small and thus
sensitive to estimation errors.

In the following, we propose an approach that does not
involve cumulants of x(ω). We define a set of tensors based
on cross-polyspectra of the system output, which lead to ex-
pressions similar to those of (4) and (5).

First, we define three types of the fourth-order cross cu-
mulants of the received signals [14]:

c40i jkl
(
τ1, τ2, τ3

)
� CUM

{
xi(t), x j

(
t + τ1

)
, xk

(
t + τ2

)
, xl

(
t + τ3

)}
=

3∑
p=1

γ40sp

L−1∑
t=0

hip(t)hjp
(
t + τ1

)
hkp

(
t + τ2

)
hlp

(
t + τ3

)
,

c31i jkl
(
τ1, τ2, τ3

)
� CUM

{
x∗i (t), x j

(
t + τ1

)
, xk

(
t + τ2

)
, xl

(
t + τ3

)}
=

3∑
p=1

γ31sp

L−1∑
t=0

h∗ip(t)hjp
(
t + τ1

)
hkp

(
t + τ2

)
hlp

(
t + τ3

)
,

c22i jkl
(
τ1, τ2, τ3

)
� CUM

{
x∗i (t), x j

(
t + τ1

)
, x∗k

(
t + τ2

)
, xl

(
t + τ3

)}
=

3∑
p=1

γ22sp

L−1∑
t=0

h∗ip(t)hjp
(
t + τ1

)
h∗kp

(
t + τ2

)
hlp

(
t + τ3

)
,

(14)

where

γ40sp = CUM{sp(t), sp(t), sp(t), sp(t)},
γ31sp = CUM{s∗p(t), sp(t), sp(t), sp(t)},
γ22sp = CUM{s∗p(t), sp(t), s∗p(t), sp(t)}

(15)

are the three types of the fourth-order cumulants of
sp(·), respectively. The corresponding fourth-order cross-
polyspectra, defined as the Fourier transform of c40i jkl(τ1, τ2,

τ3), c31i jkl(τ1, τ2, τ3), and c22i jkl(τ1, τ2, τ3), equals [14]:

C40
i jkl

(
ω1, ω2, ω3

)
=

3∑
p=1

γ40sp Hip
( − ω1 − ω2 − ω3

)
×Hjp

(
ω1

)
Hkp

(
ω2

)
Hlp

(
ω3

)
, (16)

C31
i jkl(ω1, ω2, ω3) =

3∑
p=1

γ31sp H
∗
ip

(
ω1 + ω2 + ω3

)
×Hjp

(
ω1

)
Hkp

(
ω2

)
Hlp

(
ω3

)
, (17)

C22
i jkl

(
ω1, ω2, ω3

)
=

3∑
p=1

γ22sp H
∗
ip

(
ω1 + ω2 + ω3

)
×Hjp

(
ω1

)
H∗

kp

( − ω2
)
Hlp

(
ω3

)
.

(18)

Taking ω1 = ω2 = ω3 = ω in (16) and (17), we get, re-
spectively,

C40
i jkl(ω,ω, ω) =

3∑
p=1

γ40sp Hip(−3ω)Hjp(ω)Hkp(ω)Hlp(ω),

C31
i jkl(ω,ω, ω) =

3∑
p=1

γ31sp H
∗
ip(3ω)Hjp(ω)Hkp(ω)Hlp(ω).

(19)

These two equations enable us to construct two tensors
�1

31, with elements C40
jkli(ω,ω, ω), and �2

31, with elements

C31
jkli(ω,ω, ω), where j, k, l, i = 1, 2. We can show that these

two tensors correspond to the tensorC31 in the instantaneous
case, that is,

�1
31(ω) =

3∑
p=1

γ40sp Hp(ω) ◦Hp(ω) ◦Hp(ω) ◦Hp(−3ω),

�2
31(ω) =

3∑
p=1

γ31sp Hp(ω) ◦Hp(ω) ◦Hp(ω) ◦H∗
p(3ω),

(20)

where Hp(ω) denotes the pth column of H(ω). For system
with real impulse response h(n), the two tensors are identical
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since H∗
p(3ω) = Hp(−3ω). On the other hand, for complex

systems, the two tensors are nonidentical. This observation
implies that we need to treat the real and complex cases sep-
arately.

The complex system case

From the two tensors �1
31(ω) and �2

31(ω) we can derive four
independent equations, to be used in the estimation of the
polynomial G as defined in (8):



C40
1111(ω,ω,ω) C40

2111(ω,ω,ω) C40
2211(ω,ω,ω) C40

2221(ω,ω,ω)

C40
1112(ω,ω,ω) C40

1122(ω,ω,ω) C40
1222(ω,ω,ω) C40

2222(ω,ω,ω)

C31
1111(ω,ω,ω) C31

2111(ω,ω,ω) C31
2211(ω,ω,ω) C31

2221(ω,ω,ω)

C31
1112(ω,ω,ω) C31

1122(ω,ω,ω) C31
1222(ω,ω,ω) C31

2222(ω,ω,ω)




·G∗(ω) = 0.
(21)

Note for the convolutiveMIMO system, theG is a function of
frequency ω. The above equation provides enough equations
for the unique estimation of the polynomial G(ω).

The real system case

For a real system, �1
31(ω) and �2

31(ω) are identical, thus we
only have two independent linear equations to be used in the
estimation of the polynomial G(ω):

[
C40
1111(ω,ω,ω) C40

2111(ω,ω,ω) C40
2211(ω,ω,ω) C40

2221(ω,ω,ω)

C40
1112(ω,ω,ω) C40

1122(ω,ω,ω) C40
1222(ω,ω,ω) C40

2222(ω,ω,ω)

]

·G∗(ω) = 0.
(22)

This leaves one complex degree of freedom in the solution.
There is no easy way to get another equation like in �1

31(ω),
nor to get an equivalent of tensor �40 as in the instanta-
neous case. However, here we propose a tensor �22, which
can provide enough information to reach the solution. Tak-
ing ω1 = ω2 = −ω3 = ω in (18), we get

C22
i jkl(ω,ω,−ω) =

3∑
p=1

γ22sp H
∗
ip(ω)Hjp(ω)H∗

kp(−ω)Hlp(−ω).

(23)
For the real system case, we have

C22
i jkl(ω,ω,−ω) =

3∑
p=1

γ22sp H
∗
ip(ω)Hjp(ω)Hkp(ω)H

∗
lp(ω). (24)

This enables us to construct a tensor �22 based on the cross-
polyspectra C22

i jkl(ω,ω,−ω). Then, for the tensor �22 it holds

that

�22(ω) =
3∑
p=1

γ22sp Hp(ω) ◦H∗
p(ω) ◦Hp(ω) ◦H∗

p(ω). (25)

The tensor �22 can be utilized following the approaches

proposed in [6, 15]. The idea in [6] is to start an exhaus-
tive search, such that the structure of �22 is also taken
into account. For each possible solution of (22), the corre-
sponding values of {Hp(ω)}(1≤p≤3) and of the rank-1 tensors
{Hp(ω) ◦ H∗

p(ω) ◦ Hp(ω) ◦ H∗
p(ω)}(1≤p≤3) are computed. At

that point, the “goodness” of the approximation by a sum of
rank-1 tensors in (25) is assessed, and the global optimum is
sought. Each step amounts to computing the roots of a poly-
nomial of degree 3 (computation of {Hp(ω)}(1≤p≤3)) and ver-
ifying how close a vector in a real 35-dimensional space is to
a subspace spanned by three other vectors (checking (25)).
In [15], an alternating least squares (ALS) method was pro-
posed to simultaneously solve the equations based on the two
tensors; here one alternates between the computation of the
roots of a polynomial of degree 3 and 2, respectively. Note
here that the proposed method fails to estimate the system
transfer function H(ω) at frequency ω = 0 and ω = π, be-
cause the tensors �1

31 and �22 are identical at these two fre-
quencies. Since discrete frequencies will be used in the im-
plementation, one possible remedy is to obtain the system
transfer function H(ω) at these two frequencies by interpo-
lation using the estimate in surrounding frequencies. Simu-
lations examples show that the interpolation method works
well with Finite Input Response (FIR) systems.

Based on the above methodology, we can get the estimate
of H(ω), that is, H̆(ω), up to some ambiguities as stated in
(10). These ambiguities are acceptable for the instantaneous
mixture case, but not for the convolutive mixture case. As in
the latter case the ambiguities are frequency dependent, one
cannot combine the estimates of H(ω) at different frequen-
cies to get a final estimation. We next propose some steps to
solve this problem.

4. DEALINGWITH FREQUENCY DEPENDENT
AMBIGUITIES

The solution H̆(ω) is related to H(ω) as

H̆(ω)Λ(ω)e jΦ(ω)P(ω) = H(ω), (26)

where Λ(ω) is a diagonal matrix representing the frequency
dependent real and positive scaling ambiguity; e jΦ(ω) is the
diagonal matrix representing the frequency dependent phase
ambiguity; P(ω) is a permutation matrix representing the
frequency dependent column permutation ambiguity.

Estimation ofΛ(ω)

Based on assumption (A2), it holds that

PX(ω) = H(ω)H(ω)H

= H̆(ω)
∣∣Λ(ω)∣∣2H̆(ω)H

=
3∑

p=1

∣∣λp(ω)∣∣2H̆p(ω)H̆p(ω)H,

(27)

where PX(ω) is the cross power spectrum matrix of the re-
ceived signal x(t), thus can be estimated; H̆p(ω) is the pth
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column of H̆(ω); and λp(ω) is the pth diagonal element of
Λ(ω).

In matrix equation (27) we have three unknowns, that
is, {|λp(ω)|2, p = 1, 2, 3} and four linear equations of which
three are independent. Thus, |Λ(ω)| can be obtained as the
solution of these equations.

Now that the scaling has been estimated, let H̃(ω) �
H̆(ω)Λ(ω). It holds that

H̃(ω)e jΦ(ω)P(ω) = H(ω). (28)

Resolving frequency dependent permutation
ambiguity P(ω)

Resolving frequency dependent column permutation ambi-
guity, P(ω), amounts to reducing it to a constant permuta-
tion matrix P. This can be achieved as follows.

Based on the definition of cross-polyspectra in (18), we
construct a polyspectra matrixC22

l1l2
(ω1, ω2, ω3) whose (i, j)th

element equals C22
l1i jl2

(ω1, ω2, ω3), then we can rewrite (18) in

matrix form as follows:

C22
l1l2

(
ω1, ω2, ω3

)
=H

(
ω1

)
Λ2

(
ω1, ω2, ω3

)
HH( − ω2

)
, (29)

where

Λ2(ω1, ω2, ω3)=Diag
(
. . . , γ22sp H

∗
l1 p
(ω1+ω2+ω3)Hl2 p(ω3), . . .

)
.

(30)
Then it holds that

C22
ll

(
ω,−ω,ω3

)

= H(ω)



γ22s1 |Hl1(ω3)|2

. . .
γ22s3 |Hl3(ω3)|2


H(ω)H

=
3∑
p=1

γ22sp
∣∣Hlp

(
ω3

)∣∣2Hp(ω)Hp(ω)H.

(31)

Based on assumption (A3), it holds that

C22
ll

(
ω,−ω,ω3

)
=

3∑
p=1

γ22sp
∣∣Hlp

(
ω3

)∣∣2H̃P(p)(ω)H̃P(p)(ω)H,

(32)
where P(p) represents the unknown column permutation.
By solving (32), we get an estimate of the γ22sp |Hlp(ω3)|2 in

some permuted order, where each γ22sp |Hlp(ω3)|2, p = 1, 2, 3,

is associated with a column vector H̃P(p)(ω). By sorting the
columns of H̃p(ω) according to a predefined order of the es-
timated γ22sp |Hlp(ω3)|2, which is the same for all ω’s, we can
achieve a constant permutation. Up to this point, we have
the estimate H̄(ω) of the system transfer function with only
phase ambiguity and constant permutation, that is,

H̄(ω)e jΦ(ω)P = H(ω). (33)

Resolving phase ambiguity e jΦ(ω)

Equation (33) would suffice for the identification of mini-
mum phase systems only. For nonminimum phase systems
the phase ambiguity can be resolved as follows.

The recovery of Φ(ω) is also based on the special struc-
ture of (29). Combining (29) and (33), we get

C22
l1l2

(
ω,−ω − α, ω3

)
= H(ω)Λ2

(
ω,−ω − α, ω3

)
HH(ω + α)

= H̄(ω)e jΦ(ω)PΛ2
(
ω,−ω − α, ω3

)
PTe− jΦ(ω+α)H̄H(ω + α).

(34)

Define

e jΨ(ω) � e jΦ(ω)PΛ2
(
ω,−ω − α, ω3

)
PTe− jΦ(ω+α), (35)

which is a diagonal matrix. Since C22
l1l2
(ω,−ω − α, ω3) can be

estimated, and H̄(ω) and H̄H(ω + α) are known at this stage,
e jΨ(ω) can be estimated based on the following equation:

C22
l1l2

(
ω,−ω − α, ω3

)
= H̄(ω)e jΨ(ω)H̄H(ω + α) (36)

in the same way as we did for solving the frequency depen-
dent scaling and permutation. Based on (35), we can get a
recursive equation of the unknown phase ambiguityΦ(ω) as
follows:

Φ(ω + α) −Φ(ω) = Θ −Ψ(ω), (37)

where Θ is

Θ = Diag
(
. . . ,Θii, . . .

)
= arg

{
PΛ2

(
ω,−ω−α, ω3

)
PT}. (38)

Note that for fixed l1, l2, α, and ω3, Λ2(ω,−ω − α, ω3) is in-
dependent of ω. Equation (37) can be solved as in [16, 17],
to obtain Φ(ω) up to a linear phase and constant phase am-
biguity, which, respectively, correspond to a time delay and
a complex scaling of the columns of the system impulse re-
sponse matrix. Both of the latter ambiguities are acceptable
for blind system identification.

Finally, we obtain a solution Ĥ(ω) up to a constant per-
mutation, complex scaling and linear phase ambiguity, that
is,

Ĥ(ω)e jMw−Φ(0)P = H(ω), (39)

whereM is a 3×3 diagonal matrix with integer elements that
represents the linear phase ambiguity,Φ(0) represents the re-
maining constant phase ambiguity or the complex scaling.

As a summary, the computation of Ĥ(ω) is carried out in
the following steps:

(S1) estimate the cross-power spectrum matrix PX(ω) of
the received signal vector x(t);

(S2) estimate the fourth-order cross-polyspectra slices
C40
i jkl(ω,ω, ω), C

31
i jkl(ω,ω, ω), and C22

i jkl(ω,ω,−ω) of the
received signal vector x(t) using the indirect class
method [14]. Then construct the matrix equation (21)
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for complex system. For real system, construct matrix
equation (22) and use the method proposed in [6]
or [15] to estimate the roots of the polynomials con-
structed by the columns of H(ω) at each discrete fre-
quency ω. At this stage we get the estimate H̆(ω);

(S3) solve for the frequency dependent scaling based on
the estimated cross-power spectrum matrix PX(ω) by
solving (27). This step yields H̃(ω);

(S4) solve for the frequency dependent permutation
ambiguity using the cross-polyspectra matrix
C22
ll (ω,−ω,ω3) in (32), to obtain H̄(ω);

(S5) compute the phase ambiguity using (37) (see [16, 17]
for more details). At this stage, we have the estimate
Ĥ(ω) of the system transfer function up to a constant
permutation, complex scaling, and linear phase ambi-
guity;

(S6) estimate the time domain impulse responseH(l) using
inverse Fourier transform of Ĥ(ω).

5. SIMULATION RESULTS

In this section, we provide two simulation examples to
demonstrate the feasibility of the proposed algorithm. Mat-
lab code for the simulation example can be found at
http://www.ece.drexel.edu/CSPL/.

To demonstrate the feasibility of the approach, we first
provide an example based on true cumulants, rather than cu-
mulant estimates and true power spectrum matrix.

Example 1. The impulse response matrix H(l) is taken to be
a 2 × 3 nonminimum phase system with transfer function

H11(z) = 1 − 0.6879z−1 − 0.8976z−2 − 0.6126z−3 − 0.1318z−4,

H12(z) = 1 − 0.7137z−1 − 1.5079z−2 + 1.6471z−3 − 1.2443z−4,

H13(z) = 1 + 2.1911z−1 + 1.7313z−2 − 0.1818z−3 − 0.2214z−4,

H21(z) = 1 − 1.0191z−1 − 1.5532z−2 + 1.5117z−3 − 0.7217z−4,

H22(z) = 1 + 2.2149z−1 + 1.0828z−2 − 1.1731z−3 − 0.8069z−4,

H23(z) = 1 − 1.5537z−1 − 0.0363z−2 + 0.5847z−3 + 0.5093z−4.
(40)

The length of the DFT used in the computation of the
cross-power spectrum and fourth-order cross-polyspectra
was taken to be F = 128. Figure 1 shows the absolute value
of the estimated roots of the polynomials constructed by the
columns ofH(ω) at each discrete frequency. As it can be seen
in Figure 1, the estimation is good atmost frequencies, except
at frequencies 0 and π, where errors occur in the estimation
of roots. These errors occur due to the failure of the proposed
method as mentioned in Section 4.

Figure 2 shows the computed frequency domain magni-
tude estimation after the frequency dependent scaling and
permutation ambiguity have been recovered by the proposed
approach. We can see that there are errors at certain frequen-
cies due to errors in the estimation of the roots. Simulations
show that after the interpolation of the system estimate at

0 1 2 3

time t

4 5 6
0

5

10

15

0 1 2 3 4 5 6

|H31(ω)/H32(ω)|

0

0.5

1
1.5

2

0 1 2 3

|H21(ω)/H22(ω)|

4 5 6

|H11(ω)/H12(ω)|

0

1
2
3
4

Figure 1: The absolute value of the estimated roots of the polyno-
mials constructed by the columns of H̆(ω) (true: dotted line; esti-
mation: solid line). DFT length F = 128.

the frequencies 0 and π, the magnitude estimation will be al-
most perfect. Figure 3 shows the phase estimation result us-
ing the proposed approach. Since the phase is estimated by a
recursive equation (see (37)), the errors at frequencies 0 and
π tend to accumulate. However, simulations showed that the
phase estimate can be improved greatly if the interpolated
version of the system estimate is used.

The time-domain impulse response h(l) was estimated
by taking the inverse Fourier transform of the estimated
channel frequency domain response Ĥ(ω). Since we do not
know the channel order L in advance, we can use an overes-
timated channel order Le to truncate the estimated impulse
response using the inverse Fourier transform. In this exper-
iment, the extended channel order was taken to be Le = 11.
For comparison purpose, proper alignment and scaling with
the true impulse response was performed. Figure 4 shows the
estimated channel response estimation.

Numerical simulations also showed that the proposed
methods work well with complex MIMO systems with 3-
input 2-output given true cumulants. When it comes to ap-
plying the same approach to cumulant estimates, the result is
rather sensitive to estimation errors. Errors aremainly caused
by the rooting step in obtaining an initial estimate H̆(ω). The
reason is that the algorithm in [6] which we used to get the
initial estimate, is rather sensitive to cumulant estimation er-
rors and has local minima. Unfortunately, no better method
exists at this time.

In the following, an example using cumulant estimates is
given.

Example 2. The impulse response matrix H(l) is taken to be

http://www.ece.drexel.edu/CSPL/
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Figure 2: Frequency domain magnitude estimation (true: dotted line; estimation: solid line). DFT length F = 128.
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Figure 3: Frequency domain phase estimation (true: dotted line; estimation: solid line). DFT length F = 128.
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Figure 4: Impulse response estimation of extended channel order (true: dotted line and circle; estimation: solid line and star). True channel
order L = 5, extended channel order Le = 11.
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Figure 5: Impulse response estimation of extended channel order (true: dotted line and circle; estimation: solid line and star). True channel
order L = 2, extended channel order Le = 5.
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a 2 × 3 nonminimum phase system with transfer function

H(z) =
[
1 − 1.3537z−1 1 + 1.9149z−1 0.4 − 1.8000z−1

0.5 + 0.3000z−1 1 − 0.7137z−1 1 + 0.4611z−1

]
.

(41)

The inputs {s j(k)}, j = 1, 2, 3, were mutually indepen-
dent, zero-mean i.i.d. signals, single-side exponentially dis-
tributed, with length T = 8192. The cross power spec-
trummatrix P̂x(ω) was estimated using the Blackman-Tukey
method [18]. The polyspectra slices used in the algorithm
were estimated via the indirect class method [14], and
the sample cross-cumulant sequence was windowed by the
Kaiser window with parameter 6 [14]. The DFT length in the
computation of the cross-power spectrum and fourth-order
cross-polyspectra was taken to be F = 64.

The extended channel order was taken to be Le = 5.
Proper alignment and scaling with the true impulse response
was also performed for comparison purpose. Figure 5 shows
the estimated channel response estimation.

6. CONCLUSION

We proposed a polyspectra based frequency domain method
to show the feasibility of MIMO system identification with
more inputs than outputs. The method proposed in [6] and
[10] for the instantaneous case was extended to the convo-
lutive case, and the frequency dependent ambiguities related
with frequency domain method were resolved using power
spectrum and polyspectra matrices. The method was shown
to work well when true cumulant were provided, while it was
in general sensitive when cumulant estimates were used. No
comparisons were provided because no other methods exist
for the same problem.
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