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We take a capacity view of a number of different space-time coding (STC) schemes. While the Shannon capacity of multiple-
input multiple-output (MIMO) channels has been known for a number of years now, the attainment of these capacities remains a
challenging issue in many cases. The introduction of space-time coding schemes in the last 2—3 years has, however, begun paving
the way towards the attainment of the promised capacities. In this work we attempt to describe what are the attainable information
rates of certain STC schemes, by quantifying their inherent capacity penalties. The obtained results, which are validated for a
number of typical cases, cast some interesting light on the merits and tradeoffs of different techniques. Further, they point to
future work needed in bridging the gap between the theoretically expected capacities and the performance of practical systems.
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1. INTRODUCTION

The combined use of antenna arrays and sophisticated
multiple-input multiple-output (MIMO) transceiver tech-
niques has boosted the anticipated spectral efficiencies of
wireless links in the last five years or so. The MIMO channel
capacity expressions derived in [1] indicate that the spectral
efficiencies of MIMO channels can grow approximately lin-
early with the (minimum of the) number of antennas avail-
able on each side of the link.

Similar to the case of single-input single-output (SISO)
channels, the attainment of the theoretically promised ca-
pacities in practice, has to rely on strong encoding/decoding
techniques. In the SISO case, it took about fifty years to
approach closely (with the advent of Turbo codes [2]) the
channel capacities predicted by Shannon [3]. In the MIMO
case, an initial (the so-called D-BLAST) architectural super-
structure was proposed in [1] that is theoretically capable
of achieving the channel capacity. The quest for practical
capacity-approaching STC techniques is however ongoing.
Interestingly, it seems that some existing STC techniques
[4, 5], already allow to approach closely the channel capac-
ities in a number of cases [6, 7]. These quite rapid advance-
ments are of course not unrelated to the mature state of SISO
encoding/decoding techniques. At the same time, there still

exist many cases of interest, where more research is needed
in order to approach the capacities of MIMO systems in
practice.

In this paper, we will attempt to quantify the perfor-
mance of certain STC techniques, in terms of their “at-
tainable” capacities. By “attainable capacities” we mean the
capacities achieved by different techniques with the use
of progressively stronger known (typically SISO) encod-
ing/decoding techniques. In other words, we will quantify the
irreducible capacity penalties inherent in certain STCs, due to
the way they process signals at the transmitter, as well as at
the receiver. Our general framework targets STC techniques
which, when viewed end-to-end, can be broken down to a
number of SISO problems. This will allow the evaluation of
attainable capacities by quantifying the spectral efficiency of
each component SISO channel. We then present a number of
STC techniques that fit well within our framework and de-
rive their capacities. The evaluation of these capacities helps
not only compare some of the existing techniques, but also
to identify cases where further research is needed.

The remainder of the paper is organized as follows. In
Section 2, we provide our working assumptions, as well as
some background on the topic. In Section 3, we define the
notion of decomposable STCs, as well as some other rele-
vant features of such codes. In Section 4, we focus on a num-
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FIGURE 1: A generic (M, N) multiple antenna system.

ber of recently developed STC techniques for multiple-input
single-output (MISO) channels, and show what are their
attainable capacities. In Section 5, we present similar results
for MIMO systems. In Section 6, we show some numerical
results for outage capacities of MIMO Rayleigh-faded chan-
nels in a number of cases of interest. Finally, in Section 7 we
present our conclusions, as well as some directions for future
work.

2. BACKGROUND AND ASSUMPTIONS

Figure 1 shows a generic architecture of a wireless system
with M transmitter and N receiver antennas. Such a system
will be denoted in the remainder of the paper as (M, N). The
continuous-time input stream b(t) is assumed to be carrying
the original primitive data stream {b(i)} that is to be com-
municated to the receiver. The input stream is then processed
by the shown DEMUX/ENCODE/STM unit, whose output
is an ensemble of M parallel data streams, each one of which
is separately upconverted and transmitted over the MIMO
channel.

The DEMUX/ENCODE/STM unit includes the follow-
ing operations:

(1) demultiplexing;
(2) encoding;
(3) spatial multiplexing.

These operations may be ordered differently and can be done
in a more or less joint fashion. For example, the original
bit stream may be encoded first as a whole, and then de-
multiplexed onto the M antennas. Alternatively, {b(i)} may
be first demultiplexed onto a number of sub-streams, each
one of which is afterwards separately encoded independently.
Either way, the encoded/demultiplexed sub-streams are then
mapped through the so-called spatial multiplexer onto the
M antennas for transmission. This mapping may be a sim-
ple 1-1 streaming of each encoded sub-stream on each an-
tenna (such as in the original so-called V-BLAST transmis-
sion mentioned in [8]), or a more complex spatial map-
ping. At the receiver, after the signals are received with an
antenna array, they are first converted to baseband. Then,
they are processed in space and time (STP), decoded, and re-
multiplexed in the STP/DECODE/REMUX unit (again the
order of these operations may be arbitrary). These opera-
tions attempt to recover as reliably as possible a replica of
the original primitive bit stream {b(i)}. For the purposes of
this paper, temporal interleaving is not explicitly accounted
for, but it can be easily accomodated.

The way in which we will view MIMO systems through-
out the paper is the following. The specific way in which
the operations at the transmitter and the receiver mentioned
above take place, imposes a number of constraints to the
problem of achieving the MIMO capacity. We refer to the
system that results after the imposition of these constraints
as an architectural “STC super-structure.” Each STC super-
structure then admits a whole class of specific STCs, by ap-
plying different types of temporal error-correction codes.
Our goal will be to identify what are the capacity penalties
inherent to these STC super-structures, due to the imposi-
tion of constraints on both the transmitter and the receiver.
Said differently, we will attempt to quantify the Shannon ca-
pacities that are attainable in each case.

Now we define the notation and assumptions that will
be used throughout the rest of the paper. After error correc-
tion coding, interleaving, and demultiplexing (irrespective of
the order into which these operations occur), the original bit
stream {b(i)} is converted to a number, say Q, of encoded
sub-streams, denoted as {b;(k)},..., {bqg(k)}. Note that the
number of encoded sub-streams Q will most often equal the
number of transmitter antennas M, however this may not
always be the case. Finally, the Q sub-streams are mapped
through a spatial multiplexing operation, as shown in
Figure 1, to the M sub-streams that are transmitted from the
M antennas. We denote the sub-stream transmitted from the
mth antenna by {s,,(k)}. We assume that the physical chan-
nel between the mth transmitter and the nth receiver antenna
is flat-faded in frequency, it can be hence represented, at
baseband, through the complex scalar hy,,,,. The baseband re-
ceived signal at the receiver antenna array is then represented
by the following familiar (narrow-band) mixing model:

x(k) = Hs(k) + n(k), (1)

where the involved quantities are defined as follows:

o s(k):=[s;(k) -+ sp(k)]T is the M x 1 vector snapshot
of transmitted sub-streams, each assumed of equal
variance 02;

e His the N x M channel matrix;

e x(k) is the N x 1 vector of received signal snapshots;

e n(k) is the N x 1 vector of additive noise samples, as-
sumed i.i.d. and mutually independent, each of vari-
ance o2.

We also denote by the superscripts *, T, t the complex con-
jugate, transpose, and Hermitian transpose, respectively, of
a scalar or matrix. The open-loop Shannon capacity of the
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(M, N) flat-faded channel is given (see [1]) by the now fa-
miliar (so-called “log-det”) formula:

C = log, {det <1N N ]%HHT>} bps/Hzl,  (2)

where p = Mo?/02. This formula assumes the transmitter
is constrained to communicate using i.i.d. random processes
of equal power from each of the M antennas. Later we will
refine the context to fully accommodate an open loop chan-
nel outage mode. As mentioned above, the capacity in (2)
can be only achieved with the use of strong encoding (STC)
techniques. In the remainder of the paper, we will attempt to
quantify how much of this capacity is allowed to be attained
within certain STC super-structures.

3. FEATURES OF STC ARCHITECTURAL
SUPER-STRUCTURES

When viewing (1), the only visible imposed constraints are
the equality between the powers of each sub-stream, the in-
dependent equal-power noise, and the flat channel charac-
teristic. The absence of additional constraints would allow,
in theory, the attainable capacity of the (M, N) system to be
given by (2). The imposition of further constraints though,
reflecting operations at both the transmitter and the receiver,
may reduce the capacity in (2). We call this (potentially) re-
duced capacity the constrained capacity of a given architec-
tural super-structure.

At the receiver, the received encoded vector signal x(k)
is processed in order to produce attempted replicas of
the Q encoded sub-streams. These replicas, denoted as
{di(k)},...,{dq(k)}, are then driven to the (joint or dis-
joint) decoder/de-interleaver, which will attempt to recover
the original uncoded sub-streams, and eventually, the origi-
nal primitive bit stream. Leaving out the encoding/decoding
stages, we can take an end-to-end view that relates the en-
coded sub-streams at the transmitter {b,(k)},..., {bo(k)}
to their processed attempted (soft) replicas at the receiver
{di(k)},..., {do(k)}. Quite often, these relate in a linear
fashion, that is, according to the following model:

d(k) = Fb(k) + v(k), (3)

where F is a square (Q x Q) matrix and all vectors in (3) are
of dimension Q x 1. We will refer to STC super-structures
that admit the end-to-end representation in (3) as end-to-
end linear. Further, depending on the specific structure and
attributes of the mixing matrix F and the noise impairment
v(k), we can define some extra attributes. Before describ-
ing these attributes, we define, for convenience, a noise-pre-
whitened version of model (3). Denoting by Ry the covari-
ance matrix of v(k) (i.e., Ry = E(v(k)vf(k))), assumed full
rank, an equivalent representation of (3) is

d'(k) = Fb(k) +v'(k), (4)

where d'(k) = ©;'d(k), F = ®,'F, v/(k) = ®;'v(k),and R, =
E(v(k)vi(k)) = CDV<DI,. Note that the new noise impairment

v'(k) is “spatially” white, that is, E(v'(k)vT(k)) = I. We are
now ready to define a number of useful properties of end-to-
end linear STC super-structures.

Decomposability

We call an end-to-end linear STC super-structure fully de-
composable, when the matrix F’ in (4) is diagonal (possibly
after a rearrangement of its entries). In this case, the orig-
inal M x N problem has reduced into Q spatially single-
dimensional problems.

Partial decomposability

We call, similarly, an end-to-end linear STC super-structure
partially decomposable, when the matrix F' in (4) is block-
diagonal (again after a possible rearrangement of entries). In
other words, instead of a coupled Qx Q problem, we are faced
with a number of decoupled lower-dimension problems.

Balance

We call an end-to-end linear STC super-structure fully bal-
anced, when each of the Q sub-streams in (4) experiences
the same amount of interference from the other Q — 1 sub-
streams as any other sub-stream.

Partial balance

We call an end-to-end linear STC super-structure partially
balanced, when, the Q sub-streams can be arranged in groups
of sub-streams of dimension lower than Q, such that each
group experiences the same amount of interference from the
other groups as any other group of sub-streams.

The features defined above, as well as some other that will
be discussed later, will help us classify different STC super-
structures, regarding their ability to attain their respective
capacities. More precisely, they affect the way in which er-
ror correction coding can be embedded in them, so as to
approach these capacities. We will now see how some of
these properties and features are reflected into some particu-
lar STC super-structures.

4. (M,1)SYSTEMS

In this section, we consider some representative STC super-
structures that were developed for cases of multiple-input
single-output (M, 1) systems. Due to the fact that MISO
antenna systems provide diversity-type gains, which are, at
most, logarithmic in M, (as opposed to the linear capacity in-
crease of true MIMO systems), they are usually called “trans-
mit diversity systems.” The few techniques that will be shown
are examples that fit well within the framework defined in
Section 3, and as such, allow for an analytical evaluation of
their theoretical constrained capacities. Before proceeding,
we mention the open-loop capacity of flat-faded (M, 1) sys-
tem, which is given by

- P < 2
cAfr;ff‘zlog2<1+M%|hm|> (5)
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which is obtained by substituting, in (2), N = 1 and H =
(A - hul.

4.1. (2,1) systems: the Alamouti scheme

An ingenious transmit diversity scheme for the (2, 1) case was
introduced a few years ago by Alamouti [4], and remains to
date the most popular scheme for (2, 1) systems. We denote
by S the 2 x 2 matrix whose (i, j) element is the encoded sig-
nal going out of the jth antenna at odd (i = 1) or even (i = 2)
time periods (the length of each time period equals the du-
ration of one encoded symbol). In other words, one could
think of the vertical dimension of S as representing “time”
and of its horizontal dimension as representing “space.” The
Alamouti scheme transmits the following signal every two
encoded symbol periods:

(6)

bi(k) bk
S(k) = [s1(k) sa(K)] = [ (k) bl )].

by (k) —bi(k)

Notice that in this case, Q = M = 2. Notice also that the
spatial multiplexing is done according to a block scheme, the
block length being equal to L = 2 time periods. Having as-
sumed, as noted earlier, the channel to be flat in frequency,
the (2, 1) channel is characterized through H = [h; h;]. The
baseband signal arriving at the single receiver antenna at two
consecutive time instants can be expressed as

r(k) = (hi(bi(k)er + b3 (k)e2)

7
+ hy (by(k)er — bi(k)cy)) +n(k), @)

where ¢/ = [1 ] 0], ¢I = [0 | 1].! After sub-sampling at

the receiver and complex-conjugating the second output, we
obtain

di(k) = ClTl‘(k) = (hlbl(k) + hzbz(k)) + vy (k),
dy(k) = cJr* (k) = (- h3bi (k) hby(k)) + va(k),

where v,,(k) = cIn(k), m = 1, 2. Equation (8) can be equiva-
lently written as

hy hz] [bl(k)

d(k) = I:_hz " bz(k)] +v(k) =Hb(k) +v(k), (9)

where vT (k) = [vi(k) v,(k)] and H s a unitary matrix. After
match-filtering to H, we obtain

d'(k) = H'd(k)

_ [ ]? + |ha | 0
0 || + o]

] b(k) + v/ (k), (10

where v'(k) remains spatially white. Comparing to (3), it is
clear that this (2, 1) system is

1By suitably redefining ¢; and c,, the scheme can be modified for use
with direct-sequence CDMA systems, where it is referred to as space-time
spreading (STS) [9].

(1) fully decomposable to two (1, 1) systems;
(2) fully balanced.

The total constrained capacity of the system equals the sum
of the capacities of the two SISO systems (recall that each
SISO system operates at half the original information rate):

cty=tog, (1+ 5 (J P+ ml’)).

Note that, by contrasting (11) to (5), we see that
Cs) = Cop. (12)
This result is summarized in the following theorem.

Theorem 1. The (2, 1) Alamouti transmit diversity scheme has
a constrained capacity equal to the (2, 1) open-loop channel ca-

pacity.?

Moreover, since each component of v/(k) is a stationary
noise process, the capacity of each (1,1) system is attain-
able through conventional (i.e., spatially single-dimensional)
state-of-the-art encoding techniques. For example, each of
the two sub-streams can be encoded independently with a
Turbo code, which is suitable for the classical additive white
Gaussian noise channel (with stationary noise).

4.2. A(4,1)scheme

The nice property of the full log-det capacity being attain-
able in the (2, 1) case does not unfortunately hold in general
for (M, 1) systems with M > 2 (see, e.g., [10, 11]). However,
some schemes have been developed recently for special cases.
In the following, we describe a scheme that we recently de-
rived for the (4, 1) case (see [12]) and evaluate its capacity
constrained on different receiver processing options.

The original information sequence b(i) is first demul-
tiplexed into four sub-streams b,,(k) (m = 1,...,4). The
4-dimensional transmitted signal is now organized in blocks
of L = 4 (encoded) symbol periods, it is hence represented by
a4 x 4 matrix S, which is arranged as follows:

by by by by
by ~by by b
= , 1
S b; by b1 b, (13)

by by b b

where we have dropped the time index k for convenience.
The channel matrix is again assumed flat-faded, it can be
hence represented by H = [hy hy hy hs]. The received sig-
nal will then be given by

h
hy
hs
hy

r=S +n=Sh+n, (14)

2This result has been previously reported in [6, 7].
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where r = [x(1) x(2) x(3) x(4)]T contains 4-symbol snap-
shots at the received signal. By complex-conjugating the sec-
ond and the fourth entry of r in (14), we obtain

r(1) hy hy hs hy b
R PR B SR N T
= = s 1
il NS ol IV S o I P I
rwl Lr - wowl e

where n’ is similarly obtained from n by complex-
conjugating its second and fourth entry. The received signal
is hence written as

r =Hb+n/ (16)

where now H is defined as

hi hy hy hy
_|-h B Ry B
H= -hs hy h -h (17)

—hy k3 hy R

We now perform matched filtering with respect to H

y 0a O
+.0 0 Yy 0 -a Tt/
rnf = H'r = b+Hn:A4b+nmf: (18)
-« 0y 0
0 a0 vy
where

4
y=h'h= Y |h.|’,  a=2jlm(hihs + Hihy).  (19)
m=1

The parameter o expresses some residual interference inher-
ent in this (4, 1) technique, and is in general nonzero. Note
both the particular sparse structure of the matrix Ay, as well
as the fact that y is real and « is imaginary. These result in A4
being in general full rank (det(A) = (y* + ¢?)?). Comparing
(18) to (3), we observe that this (4, 1) scheme is:

(1) partially decomposable to two uncoupled (2,2) sys-
tems;
(2) fully balanced.

Namely, by grouping the entries of rr in two pairs, we obtain

[Tmf,l] =A2 Fbl:l + [”mf,l] ,
"mf,3 _173 Nmf,3
(20)
[:mm] _A, 24] N [I’lmf,4]’
'mf,2 102 Nmf,2
where
[ o
A=Y ) (21)

(we note in passing that A; = A;). The two (2,2) signal

models above share the same 2x2 channel matrix A, and have
identically distributed, but statistically independent, 2 x 1 ad-
ditive noise vectors. In order to facilitate the capacity eval-
uation of this scheme, we present at this point the noise-
prewhitened version of (20):

r B by ny
H - [b] ' H ’ 22

A«
Tk A

where

A (23)

with A, = ATA and where n| and #} are i.i.d. and mutually
independent Gaussian variables of variance o2 each. Again,
an identical signal model to (22) holds for the pair {by4, b, }.
Similar to y and a in (21), A and x in (23) are real and imagi-
nary, respectively. Similarly, the nonzero value of  represents
mutual interference between the two sub-streams (if « = 0,
thenA = ,/y and x = 0).

Maximum allowable Shannon capacity

We first compute the Shannon capacity constrained only
upon transmitter processing. By considering the two 2 x 2
models that describe the post-matched-filtering signals ac-
cording to (22), we deduce that the maximum achievable
capacity of a (4, 1) system within the space-time spreading
scheme (13) is given by

constr,max 1 PT
Cyl t =3 log, det <12 + 202 AAT>, (24)

where Pr = 40} is the total average transmitted power from

the antenna array (05 is the variance of each b;). Since AAT =
A,, this gives

1
Cﬁnstr,max =3 log, det <Iz + %)Az), (25)

where p = Pr/o? (all bandwidth-related normalizations
have been taken into account, so that (25) represents the
total capacity of the system). If the interference caused
by the quantity « vanished, the expression in (25) would
reduce to

opt Py
C¥ = log, (1 + T> (26)
which is the open-loop capacity of the (4,1) flat-faded
system. However, for &« # 0, Cf;’lnm’max falls short of

C.

" As mentioned in Section 3, the constrained capaci-
ties that correspond to each scheme depend not only on
the constraints imposed at the transmitter, but also on
those caused by receiver processing. In the following, we
will describe a number of options for receiver process-
ing, which will each correspond to a different constrained

capacity.
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4.2.1 Linear receiver processing o2 -
Wiia = <A4A1 + 0—3H*H> : (32)
b

We observe from (20) that, in order to demodulate the
transmitted sub-streams in a joint fashion, 2 input/2 output
multiuser detection (MUD) is required. In this section, we
present candidate receivers that perform linear MUD on each
pair of matched filter outputs.

Zero-forcing processing

A straightforward way of mitigating the interference in the
desired signal b due to « in (18), is to use a decorrelating
(zero forcing—ZF) receiver. Mathematically, the ZF receiver
operates on the matched-filter outputs as follows:

rzr = A T = b+ A} Dy (27)

Due to the decoupling expressed in (20), the ZF operation
decouples too, as follows

[VZF,l] _ A;l [me,l] _ [bl] +A;1 [nmf,l] i
TZE3 T'mf,3 b3 Nmf,3

[VZF,4] _ A;l [me4] ] +A_ [nmf,4] .

TZE2 T'mf,2 Nmf,2
Note that (28) is equivalent to (27). The ZF receiver detects
the four sub-streams by further processing the zero-forcing
outputs, that is, the entries of the vector rzp given in (27).

Each of the four zero-forcing outputs can be seen as the out-
put of the following AWGN channel:

rzei=bit+nze;, i=1,...,4 (29)

where nzp; is an i.i.d. Gaussian noise independent of b;, of
variance that can be found to equal yo2/(y* + a?). At this
point, the system has been reduced to a fully decomposed,
fully balanced system. Hence, its capacity is given by

2 2
C7F 1og, <1 N (%)) [bps/Hz],  (30)

where we recall that p = Py/0}, = 40;/0;. Notice that the four
sub-streams have equal capacities, and that the total capacity
of the system equals four times that of any given sub-stream.

MMSE processing

A better compromise between signal recovery and noise am-
plification (and hence better performance) can be achieved
with minimum mean squared error (MMSE) processing.
This is achieved by the 4 x 4 setting Wys 4 which minimizes
the MMSE criterion:

rnm || MS4l'mf—b||2. (31)

The minimization of (31) yields the Wiener solution

Hence, the post-MMSE-processed signal delivered to the
detector is given by

-1
2
rys = Al <A4AZ + %HTH> Tonf

b

) -1
= Al <A4AZ + %m) Ton.
b

Similar to the ZF case, the MMSE solution in (33) is, similar
to (28), decomposable as follows:?

[T’MS,l] Al <A2AT > [
MS,3

™S, 0'2
(e 5) [
MS,2 ah

In this case too, an equation similar to (29) can be written,
wherein each sub-stream is detected at the output of a (1, 1)
system and AWGN noise. The additive noise will contain now
contributions from one other sub-stream, it has however the
same variance for all four sub-streams. So again, the system
has been fully decomposed to four (1, 1) systems in a fully
balanced way. It is then straightforward to compute the ca-
pacity of the MMSE receiver, which is given by

(33)

T'mf,1
"'mf,3

i)
1wl

mf,1
"'mf,3 MS,2

34)

wiow
CMMSE 10g2 < - 1 L - >) (35)
qu)Wl +4/p(W1 AzW])
where
+
[V] [y] (0] Wass»
(36)
where WM52 is given in (34).

4.2.2 Maximum likelihood MUD

We now focus on the prewhitened signal model (22), which
we repeat here for convenience:

r B by n}
H - [b] ' H | e

Keeping in mind that the noise vector [#| n}]" is jointly

Gaussian with covariance matrix 621, the maximum likeli-
hood (ML) multiuser detector for (37) solves the following
optimization problem:

3As expected, as p — oo, the solution W;A
-1
= 47"

52 in (34) converges to the ZF

solution WZF )
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2
» (38)

min
(b1,bs ) esixsd

K
r3 b3
where o is the alphabet shared by all the encoded sub-
streams.

Equation (38) is a typical maximum likelihood MUD
problem (see [13]). Typically, in order to avoid an exhaus-
tive multi-dimensional search, the encoding imparts a spe-
cial structure (such as with convolutional codes). Then the
use of dynamic programming techniques such as the Viterbi
Algorithm (VA) provides an important saving in complexity.

We are now ready to assess the capacity of the proposed
(4,1) super-structure, constrained on ML reception. Con-
sider a pair of transmitted sequences {b,}, {3}, to be en-
coded in a spatially balanced way (either independently or
jointly). Then, because of the symmetrical structure of the
channel matrix A in (37), the communication system is per-
fectly balanced (it is understood that the encoding of each
sequence at the transmitter is done without knowledge of
the channel instantiations). A spatially two-dimensional ver-
sion of Shannon’s classical random coding procedure then
applies. We start with a primitive (maxentropic) indepen-
dent bit stream, and demultiplex it into its even and odd
sub-streams, by and bs, respectively. The encoded sequence
is assigned half of its bits (b;) from the first sub-stream (first
dimension), and the other half (b3) from the second sub-
stream (second dimension). Then, due to the perfect bal-
ance between the two dimensions, the system’s capacity is
achieved when each of the two sub-streams achieves its own
(half of the full) capacity. This requires, however, joint opti-
mal (minimum distance) detection of the two sub-streams,
as per (38).

In conclusion, the Shannon capacity which is achieved
through ML detection (in the limit of infinitely long random
codes) is given by (25), which we repeat here for convenience

Cf = 3 log, det <12 n %)Az). (39)

As will be shown later, this capacity is very close to the full
(4, 1) capacity Cj'*. Notice that in the ML case, even though
it is fully balanced, the system has been only partially decom-
posed in two 2 x 2 systems.

4.3. Nonfullrate (4,1) codes

We now describe some easily derived constrained capacities
of some other, less optimal, but quite simple, (M, 1) schemes.

(1) STS(3,1)—3/4 rate: in [9] it was shown that a (3, 1)
scheme can be designed, which achieves the full (3, 1) capac-
ity, but at the price of a 25% loss of rate. This scheme uses
block multiplexing, in a fashion similar to the above schemes
of Section 4. It multiplexes Q = 3 sub-streams on 3 antennas,
over L = 4 symbol periods. It results, however, in a fully-
decomposable, fully-balanced, 3 x 3 system with stationary
noise. Its constrained capacity is given by

3 W |2+ |y | + ks |
o= g (14 P Y,

(2) STS(4, 1)—real: it was also mentioned in [9] and
elsewhere, that a fully decomposable and fully balanced
extension of the Alamouti (2, 1) scheme for real inputs can
be used for a (4, 1) system. In the case of complex inputs, it
is possible to use the same scheme if we sacrifice 50% of the
rate, that is by signaling half of the time on each complex di-
mension. The capacity of this scheme equals half of the (4, 1)
open-loop capacity:

1 e
C41—real = chilx (41)

4.4. (M, 1) hopping

A very simple alternative that can be used for any integer
M is based on the idea of cycling a single encoded stream
over the four transmit antennas. In this case, the data stream
is first encoded as a single stream {b(k)}. The encoded se-
quence {b(k)} is then demultiplexed into M sub-sequences,
{b1(k)},..., {bu(k)}. The mth subsequence is transmitted
from the mth antenna (m = 1,..., M). In other words, the
M antennas take turns in transmitting (at full power) the
M sub-streams of the single encoded data sequence. This
scheme is fully balanced and fully decomposable, however
its noise impairment is not stationary. Its capacity is easily
found to be given by the average capacity of the M full-power
(1,1) sub-channels, that is,

op_ 1 &
Coit = 2 leogz (1+plhnl?). (42)

It is important to emphasize that a peculiarity of this
simple approach is that the encoded sequence is effectively
transmitted through a channel whose SNR is periodic. Con-
ventional encoding techniques do not perform in general
satisfactorily with such periodic channels. Special codes that
can cope with such channels are required in order to be able
to approach the capacity in (42). These codes are a current
research topic [14].

Discussion

Other approaches for the (M, 1) case have appeared in the
recent literature. An exhaustive listing of all of them would
be however beyond the scope of this paper. We should note
further that the benefit of open-loop (M, 1) systems becomes
increasingly limited as M grows. Keeping the total transmit
power from all the antennas constant, assuming that E|h,,|* =
1 and letting M to grow towards infinity, the (M, 1) open-
loop capacity in (5) tends to the following asymptote:

Coo,1 = log, (1 + p). (43)

It is clear from (43) that we cannot keep increasing the ca-
pacity of an open-loop (M, 1) open-loop system by sim-
ply increasing the number of transmitter antennas. The use
of more antennas at the receiver becomes necessary when
higher capacities are sought.
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5. (M,N)SYSTEMS

In this section, we analyze some STC architectural super-
structures for the case of N > 1 receiver antennas.

5.1. Combined transmit/receive diversity systems

Given a certain (M, 1) system, one straightforward way to de-
sign an (M, N) system is to simply:

e transmit as in the (M, 1) system,

e receive on each antenna as in the (M, 1) system,
e combine optimally the N receiver antenna outputs.

The capacity quantification of these transmit/receive di-
versity systems is straightforward. The M x N (assumed
flat) channel is represented through the N x M channel
matrix

hll th
H=|: - |=[h - hy]. (44)

th hNM

We first compute an upper bound for the capacity of such an
(M, N) transmit/receive diversity system. With optimal ra-
tio combining, and assuming that each (M, 1) system takes
no interference hit, the input/output relationship takes the
form

M
d(k) = < Zlhnm|2>b(k) +n(k) (45)
m=1

n=1

corresponding to the capacity

M
C]t\f}f]“aleogz <1+%ZZ|hﬂm|2>' (46)

m=1 n=1

It is clear that, when the attainable capacity of the corre-
sponding (M, 1) schemes is away from the (M, 1) log-det ca-
pacity, the upper bound in (46) will not be attained either.
Notice further that, the expression in (46) is strictly smaller
than the (M, N) log-det capacity in (2) for N > 1.

Examples

To give some examples, the capacity of a (2, N) system that
uses the Alamouti (2, 1) super-structure is

N
C?J\]:log2 <1+§Z(|hn,1|2+ |hn,2|2>>; (47)
n=1

that is, as expected, the upper bound in (46) is attained by
the Alamouti scheme in the (2, N) case.

It is also straightforward to compute the maximum at-
tainable capacity of a (4, N) system that uses the (4,1)
scheme of Section 4.2, which is given by

Cfl‘fll\L, = %log2 det <Iz + %AZ,,A;rn), (48)

where

A
Ao =| ¢ (49)
Ay

and A,, is defined, similar to (23) for the nth receiver antenna.

5.2. V-BLAST

A quite simple, from the transmitter’s point of view, STC
super-structure was proposed in [8], and is widely referred-
to as “V-BLAST” In this architecture, {(bi)} is first demul-
tiplexed into M sub-streams, which are then encoded inde-
pendently and mapped each on a different antenna:

sm(k) = b (k). (50)

In other words, the original bit stream is converted into
a vertical vector of encoded sub-streams (whence the term
“vertical” BLAST) which are then streamed to the antennas
through a 1-1 mapping. In [8], it was proposed to process
the received signal with the use of a successive interference
canceller. After determining the order into which the M sub-
streams will be detected, the V-BLAST receiver operates ac-
cording to the following generic 3-stage scheme, which is fol-
lowed in a successive fashion for each sub-stream:

(1) project away from the remaining interfering sub-
streams;

(2) detect (after de-coding, de-interleaving, and slicing)
the sub-stream;

(3) cancel the effect of the detected sub-stream from sub-
sequent sub-streams.

Mathematically, these operations can be described as follows
for the k,,th sub-stream:

2k, (k) = Wi x"(k),
2k, (k) = dec(z, (k)), (51)
x"*1 (k) = x" (k) - enc(2,, (k)) hk

where x!(k) = x(k), {ki,...,km} is a reordering of the
set {1,..., M} that determines the order in which the sub-
streams will be detected, dec(-) represents the decoding
plus detection operation, and enc(-) represents the encoding
operation. Finally, Wy, represents the N x 1 vector that op-
erates on x”(k) in order to project away from sub-streams
{km+1, ..., kn}. The operations in (51) are performed suc-
cessively for m = 1,..., M, after the ordering {ki,..., kyu}
has been determined.

We now discern between the following two cases for
this linear operation, since they affect significantly the con-
strained capacity of the system.

Zero-forcing projection

In this case, at the mth stage, W,:r nulls perfectly the interfer-
ence from all the remaining (undetected) sub-streams. These
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are the sub-streams with indices {ky+1, ..., kp}. This nulling N i M !
is represented mathematically as Winnse, = | HeHe + ;IN hy,, (59)

wi o H=[0 -

ZB Ky L = 010 - 0] =0, (52)

where the unique nonzero element of the 1 x M vector &, is
in its k,,th position. As a result, the end-to-end model for the
k,,th output is

dy,, (k) = by, (k) + W}

nk), m=1,...,M, (53)

Fkm

where n(k)=[n (k) ---

ing

T. . .
ny (k)] is the receiver noise. Defin-

d(k) = [di, (k) - di,(K)]",

’ (54)
b(k) = [bk, (k) -+ by, (K)]",
equation (53) can be written in matrix form as
d(k) = b(k) + W}n(k), (55)

where Wzp = [Wzgk, --- Wzgk,]. From (55), it is obvious
that the ZF version of the V-BLAST super-structure is a fully
decomposable, however not fully balanced system, due to the
generally different square norms of the different columns of
Wyzk.

Regarding the capacity of the end-to-end system, it is im-
portant to emphasize that we have assumed that each sub-
stream is independently encoded, and that the transmitter
has no way of knowing which is the highest rate for each an-
tenna. As a result, it can only transmit from all antennas the
same rate. Hence, the capacity will equal M times the small-
est of the M decomposed channel capacities:

OnF=Mx min_{log, (1+pzrk,)} (56)
me(l,..,M}

where py,, is the output SNR of the ky,th sub-stream:

p

_ (57)
M| W ||

PZFky =

It should finally be noted that the capacity in (56) can
be optimized by choosing an optimal ordering for the set

{ki,...,kpu} (see [8]).

MMSE projection

In this case, at the mth stage, an optimal compromise be-
tween linear interference mitigation of the undetected sub-
streams and noise amplification is sought. This is achieved
through the following MMSE criterion:

2

. +
%?E”dkm - W} Hg, ||, (58)

where Hy,, is derived from H by deleting its columns corre-
sponding to indices {ki, ..., k-1 }. This gives for Wy :

where hy, is the k,,th column of H. This end-to-end system
has now been fully decomposed into M (1, 1) systems, how-
ever, it is not generally balanced. Its capacity is hence com-
puted again through the minimum of the M 1 x 1 capacities
(assuming Gaussian signaling for each sub-stream), and is
given by a formula similar to (56):

C}G}‘\}MMSE =M x B min_{log, (1+pmmsek, )}, (60)

e(1,...M)
where now
wi H ||°
_— ¥ e e | o

M||Wanisek, || /p + S, |l WMMSE,l”z.

Again, the capacity in (60) can be maximized through opti-
mal ordering.

5.3. Other (M, N) schemes

Similar to the (M, 1) case, several other schemes have been
proposed in the literature for the general (M, N) case. For
example, it was suggested in [15] to use a block space-time
multiplexing whose mixing coefficients are derived numer-
ically according to a maximum average capacity criterion.
Another approach in [16] uses Turbo codes in the follow-
ing way: the original sub-stream is first demultiplexed into
M sub-streams, which are separately encoded each with a
block code. Then, the M encoded outputs are space-time in-
terleaved in a random fashion, mapped onto constellation
symbols, and sent out of the M antennas. At the receiver, the
M sub-streams are separated through an iterative interfer-
ence canceller, which uses MMSE for the linear (soft) part,
and subtracts decisions made after (joint) de-interleaving
and (separate) decoding of each interfering sub-stream in the
cancellation part.

These approaches have demonstrated encouraging per-
formance in terms of bit/frame error rate at the receiver.
However, their inherent capacity penalties are still unknown,
due mainly to their apparent luck of structure and other
properties such as the ones discussed above. The quantifi-
cation of the capacity penalties of these and other emerging
STC super-structures remains an interesting open question.

6. NUMERICAL RESULTS

We will now show some representative capacity plots for the
STC architectures that were mentioned above. In all cases,
we will use the analytical expressions derived in the paper.
We will run these expressions over an ensemble of (M, N)
random Rayleigh-faded channel matrices (each entry of the
matrix is chosen independently from any other entry from
a complex i.i.d. Gaussian distribution of unit variance). We
will then plot outage capacities, that is, we will pick out of the
computed capacity cdf a point according to a typical outage
percentage (such as 10%, which is typical in wireless com-
munications).
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FIGURE 2: Outage capacities and bounds of (M,1) and (M, ?2)
schemes.

In Figure 2, we show the 10% outage capacities for sev-
eral (M, 1) cases, as well as for the (2,2) case. In the (2, 1)
case, the plotted capacity corresponds to both the Alamouti
scheme and to the maximum open-loop capacity, as indi-
cated by (12). For the other (M, 1) cases, we plot the capac-
ity upper bounds corresponding to (5), and we use (43) for
the asymptotic (oo, 1) case. We also use (46) with N = 2 for
the capacity of a (2,2) combined Alamouti/receive diversity
scheme, and the log-det expression (2) for the (2,2) maxi-
mum open-loop capacity. We observe that, at p = 10 dB, the
(2, 1) system almost doubles the capacity of the (1, 1) system!
However, as noted earlier, increasing the number of transmit
antennas in the (M, 1) case offers diminishing returns. It is
also worth noting that the (2, 2) combined transmit/receiver
diversity scheme is capable of attaining a quite significant
fraction (particularly at low SNR’s) of the maximum (2, 2)
open-loop capacity. Finally, it is also interesting to note that
a (2, 2) system achieves about the same capacity as a (oo, 1)
system, which conveys again the message of the high value of
adding extra antennas at the receiver.

In Figure 3, we show the capacities of the (4, 1) scheme of
Section 4.2 when used in conjunction with the different pro-
posed receiver architectures (ZF, MMSE, and ML). It is no-
ticeable that the ML structure approaches closely the chan-
nel’s (4, 1) open-loop capacity. Moreover, we observe that at
low SNR’s, the linear MMSE solution is also very close to the
open-loop capacity. Table 1 shows some of these results at
chosen SNR points.

Figure 4 shows a comparison of some of the (M, 1) sys-
tems mentioned in Section 4, including non-full rate variants
of the Alamouti (STS) scheme. We observe that the non-full
rate schemes fall well behind the (2, 1) scheme in terms of

5
p [dB]
—+— 4 x 1 open-loop capacity
—— 4 x 1 proposed ML
—©— 4 x 1 proposed MMSE
—*— 4 x 1 proposed ZF

FIGURE 3: Outage capacities of the (4, 1) scheme of Section 4.2 com-
pared to the (4, 1) open-loop capacity.

TasLE 1: Indicative outage capacities of the proposed (4, 1) scheme
versus the (4, 1) open-loop capacity.

p [dB] ZF MMSE ML OPT
-10 0.038 0.056 0.057 0.057
0 0.344 0.469 0.480 0.491

10 1.886 1.990 2212 2.339

20 4.805 4.825 5.155 5.379

outage capacity. Moreover, the (2, 1) scheme is increasingly
close to the (4, 1) open-loop capacity at low SNR’s. Similarly,
in Figure 5, we show comparative plots of the capacity of the
(4, 1) hopping scheme mentiond in Section 4.2, (see (42)).

In Figure 6, we show the capacities of some combined
transmit/receive diversity schemes for different (4, N) cases.
The circles represent the combined (4, N) systems corre-
sponding to the (4, 1) scheme of Section 4.2, in conjunction
with optimal receiver diversity. When read from the bot-
tom up, these four curves correspond to N = 1,2, 3,4, re-
spectively. Similarly, the crosses represent the corresponding
open loop (4, N) capacities. Notice that the proposed (4, 1)
scheme is very close to the open-loop capacity, however the
gap gets increasingly larger as N grows from 1 to 4. In the
(4, 2) case however, the scheme still performs very well at low
SNR’s.

Finally, in Figure 7, we show a capacity cdf, at 10 dB SNR,
of the ZF and MMSE V-BLAST architectures described in
Section 5.2 for the (4,4) case. Notice that, at this SNR, the
MMSE architecture is able of attaining about 70% of the to-
tal open-loop capacity at 10% outage. However, the ZF ar-
chitecture performs poorly, and is even outperformed by a
(1,4) maximal ratio combining system at outages smaller
than 20%! The situation is more severe for lower SNR’s such
as 0 dB, as shown in Figure 8. Now the V-BLAST MMSE
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FIGURE 4: 10% outage capacities compared to other open-loop al-
ternatives.
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FIGURE 6: Outage capacities of the (4,1) scheme described in
Section 4.2, when used with up to four receiver antennas.
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FIGURE 5: Outage capacity of a hopping scheme.

architecture attains only about 50% of the (4, 4) open-loop
capacity, whereas the ZF architecture is outperformed by the
(1, 4) system across the board.

7. CONCLUSIONS

We have presented a framework for analyzing space-time
coding architectures in terms of Shannon capacity. We de-
fined a number of attributes of such schemes that allow
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F1GURE 7: Outage capacity distribution of a V-BLAST MMSE archi-
tecture at 10 dB SNR.

for the computation of their inherent capacity penalties,
which we have computed analytically for a few representative
examples. Our theoretically derived expressions were also
numerically validated by a number of computer simulations
that compare the considered architectures in terms of outage
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FIGURE 8: Outage capacity distribution of a V-BLAST MMSE archi-
tecture at 0 dB SNR.

capacity. We believe that these results provide some useful
intuition regarding the performance trade-offs of different
techniques. Future work will be targeted in analyzing other
promising STC schemes, as well as in determining new ar-
chitectures of higher capacity potential.
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