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The emerging need for high data rate wireless services has raised considerable interest in space-time coding. In this work, we
propose a systematic code construction method that jointly considers diversity advantage and coding advantage for an arbitrary
number of transmit antennas and any memoryless constellation. Our approach is to directly assign channel symbols to transmit
antennas at different states by exploiting the properties of the state transitions in the trellis. The code construction problem is
reduced to a combinatorial optimization problem and a computationally efficient suboptimal solution is proposed. The flexibil-
ity of the method is demonstrated by designing space-time trellis codes for QPSK, 8PSK, 16PSK, asymmetric QPSK and 4ASK
constellations. Space-time code construction for a large number of transmit antennas (6, 8, and 10) is also considered. The simu-
lations show that our design procedure results in codes that outperform the ones constructed by previously existing methods. The
achievable performance gain is governed by the distance structure of the chosen constellation.
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1. INTRODUCTION

In wireless communications, the transmitted signal under-
goes severe distortion due to multipath fading and interfer-
ence from other users. The design of communication systems
that offer reliable transmission at high data rates is a chal-
lenging task in such circumstances. To combat the adverse ef-
fects of the radio signal propagation environment, several di-
versity techniques have been developed [1]. These techniques
offer increased protection against the channel-induced dis-
tortion by providing multiple versions of the transmitted sig-
nal to the receiver.

Time diversity, for example, represents redundancy in the
time domain. A form of time diversity, channel coding com-
bined with interleaving, adds redundancy with a certain al-
gebraic structure that can be exploited to detect and cor-
rect transmission errors [2]. Another widely used diversity
technique is spatial diversity, which adds redundancy in the
spatial domain. By building a system with multiple transmit
and/or receive antennas andmaking use of the larger number
of signal propagation paths between the transmitter and the
receiver, the quality of the wireless link can also be improved
[1].

Information-theoretic works [3, 4, 5, 6, 7] have shown
that the capacity of fading channels is substantially increased
when using multiple transmit and/or receive antennas. The
results of [6] for the quasi-static, flat Rayleigh fading chan-
nel model can be summarized as follows. If the channel gains
between the transmit and receive antennas are assumed to be
known at the receiver side, the channel capacity is approxi-
mately proportional to theminimum of the number of trans-
mit and receive antennas.

Space-time (ST) trellis codes have been proposed as a
means to exploit the potential for capacity increase in multi-
antenna systems. The performance criteria were derived in
[8, 9], characterizing the ST codes with two quantities: the di-
versity advantage, which describes the asymptotic error rate
decrease as a function of the signal-to-noise ratio (SNR), and
the coding advantage, which determines the vertical shift of
the error performance curve. In [9], the authors proposed
design rules for two transmit antennas to achieve the maxi-
mum diversity advantage. They also derived a lower bound
on the complexity of the encoder and the decoder for the
desired diversity advantage and data throughput. This lower
bound states that in order to achieve a diversity advantage of
K and transmit one B-ary source symbol per state transition,
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the encoder and the decoder must have at least Nmin = BK−1

states.
The repetition coded delay diversity scheme described

in [10] was the first systematic design rule for an arbitrary
number of transmit antennas. Using this method, ST codes
achieving full diversity advantage can be designed for arbi-
trary constellations and encoders withNmin states. This work
also introduced the idea of zero symmetry to constrain com-
puter search for ST codes with more than two antennas.

In [11], the design problem was transformed into the bi-
nary domain. The code design was based on the finite field
counterpart of the ST code performance criteria for full spa-
tial diversity. The authors proposed code design procedures
for an arbitrary number of transmit antennas and an arbi-
trary number of states, but only for BPSK and QPSK constel-
lations. Moreover, the design methods in [10, 11] for full di-
versity advantage uniquely determine the ST codes, not leav-
ing room to improve the coding advantage.

In this paper, we propose a systematic design method
based on an alternative approach: we exploit the structure
of the trellis to design ST codes that provide full diversity ad-
vantage for an arbitrary number of transmit antennas, ar-
bitrary number of encoder states (as long as it satisfies the
lower bound) and arbitrary memoryless constellations. Our
method can be treated as a generalization of the results of
[9, 10]. The design rules for full diversity advantage do not
specify the ST codes completely, offering the possibility to
further optimize for coding advantage.

Moreover, we develop a code design procedure that ben-
efits from this possibility for the important special case of en-
coders with Nmin states. Based on the design rules for diver-
sity advantage, we reduce the code construction problem to a
combinatorial optimization problem and propose a compu-
tationally efficient suboptimal solution. It seems that this is
the first work that considers systematic code design for both
diversity advantage and coding advantage.

The rest of the paper is organized as follows. Section 2
introduces the mathematical model of the communication
system. The performance criteria for ST trellis codes are also
described in this section. The code construction method will
be developed in Sections 3 and 4. Section 5 describes specific
ST code construction examples, and the simulation results
demonstrating the performance of these codes are provided
in Section 6. Finally, we draw some conclusions in Section 7.

2. SYSTEMMODEL AND PERFORMANCE CRITERIA

In this section, the mathematical model of the wireless com-
munication system under study is described. The notation
used throughout this paper is introduced. Then, we summa-
rize the relevant results of the previous works and briefly re-
state the performance criteria derived in [8, 9]. These criteria
serve as a basis for the development of our systematic design
procedure.

Consider a wireless communication system with K trans-
mit and L receive antennas (the transmit antennas are in-
dexed by k, k ∈ {0, 1, . . . , K − 1}, and the receive antennas
are indexed by l, l ∈ {0, 1, . . . , L − 1}). The input bit stream

is divided into bs bit long blocks, forming B-ary (B = 2bs)
source symbols. The ST encoder works as a finite state ma-
chine with N states: it takes the current bs bit long source
symbol, bt (bt ∈ {0, 1, . . . , B − 1}) at discrete time t (t =
0, 1, 2, 3, . . . ), and governed by this input and the current
state, St (St ∈ {0, 1, . . . , N − 1}), it moves to the next state,
St+1. During this state transition, the encoder outputs K B-
ary channel symbol indices, one for each transmit antenna.
We denote by ik(St, bt) the channel symbol index for trans-
mit antenna k, generated during the state transition from St
when the current input source symbol is bt . We also use the
channel symbol index vector, defined as

i
(
St, bt

)
=
[
i0
(
St, bt

)
, i1

(
St, bt

)
, . . . , iK−1(St, bt)]T . (1)

These channel symbol indices select one of the B differ-
ent waveforms for each antenna, and the selected wave-
forms are transmitted simultaneously through the transmit
antennas. In the sequel, c(i) will be the complex baseband
vector-space representation of the ith passband waveform
(i ∈ {0, 1, . . . , B − 1}). c(i) will also be referred to as the ith
constellation point or channel symbol. All the constellations
are assumed to be normalized so that the average energy of
the constellation is unity (if the channel symbols are equally
likely). c(ik(St, bt)) will denote the constellation point out-
put by antenna k when the current state is St and the current
input is bt . The vector of channel symbols is given by

c
(
St, bt

)
=
[
c
(
i0
(
St, bt

))
, c
(
i1
(
St, bt

))
, . . . , c

(
iK−1(St, bt))]T .

(2)

The transmission medium is assumed to be flat (fre-
quency nonselective), quasi-static, Rayleigh fading chan-
nel. The quasi-static property means that the channel re-
mains constant over a certain time, called frame period,
and changes independently from one frame to the other. αkl
will represent the path gain from transmit antenna k to re-
ceive antenna l. These path gains are modeled as indepen-
dent, complex, zero mean, circularly symmetric Gaussian
random variables with unit variance. Furthermore, some ad-
ditional assumptions are made to facilitate the analysis. First,
the receiver has knowledge of the αkl propagation coeffi-
cients. Second, the receiver is perfectly synchronized with the
transmitter.

Based on the above assumptions, after down-conversion,
matched filtering and sampling, the received signal at receive
antenna l, at discrete time t can be expressed as [9]

rlt =
K−1∑
k=0

√
E0
K
αklc

(
ik
(
St, bt

))
+ zlt = slt + zlt, (3)

where E0 is the total average transmission energy per trans-
mitted source symbol (each transmit antenna transmits the
channel symbols with E0/K average transmit energy), slt and
zlt stand for the received signal and noise components, re-
spectively, and zlt’s are independent, complex, zero mean, cir-
cularly symmetric Gaussian random variables with variance
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N0. Consequently, the average SNR per source symbol at re-
ceive antenna l becomes

SNRl =
E
[∣∣slt∣∣2]

E
[∣∣zlt∣∣2] =

E0
N0

. (4)

Assume that the previously described transmitter sends
T (T > K) B-ary source symbols to the receiver. The ST en-
coder, while encoding the data, goes through the following
sequence of states:

S0
b0−−−→ S1

b1−−−→ S2
b2−−−→ · · · bT−2−−−−→ ST−1

bT−1−−−−→ ST. (5)

In words, the encoder starts in S0, takes the first input bs-
tuple, b0, moves to S1, and so on. As a result of this state
transition sequence, the encoder produces the channel sym-
bol vector sequence

c
(
S0, b0

)
, c
(
S1, b1

)
, . . . , c

(
ST−1, bT−1

)
. (6)

The above vector sequence can be arranged into a K ×T ma-
trix, C:

C =
[
c
(
S0, b0

)
, c
(
S1, b1

)
, . . . , c

(
ST−1, bT−1

)]
. (7)

The decoder, due to decoding errors, goes through a dif-
ferent sequence of states,

S′0
b′0−−−→ S′1

b′1−−−→ S′2
b′2−−−→ · · · b′T−2−−−−→ S′T−1

b′T−1−−−−→ S′T , (8)

producing the erroneously decoded source symbol sequence
{b′t} and the K × T channel symbol matrix C′:

C′ =
[
c
(
S′0, b

′
0

)
, c
(
S′1, b

′
1

)
, . . . , c

(
S′T−1, b

′
T−1

)]
. (9)

We can define D, the channel symbol difference matrix
as D = C − C′, and a K × K matrix A as A = DDH . Let A
(and D) be of rankm. Since A is Hermitian and nonnegative
definite, its eigenvalues are real and nonnegative. Let λ1 ≥
λ2 ≥ · · · ≥ λm be the nonzero eigenvalues of A. Given the
earlier described channel model, it can be shown [9] that the
probability that the decoder erroneously decodes C′ if C was
sent can be upper bounded as

P
(
C′|C) ≤

(
m∏
i=1

λi

)−L(
E0

4KN0

)−mL

. (10)

The performance criteria [8, 9] were derived to minimize
P(C′|C) for a given E0 and N0:

(1)Design for full spatial diversity (rank criterion): thema-
trix Dmust be of full row rank for any distinct C and C′ ma-
trices. (Then we havem = K .) In this case, a diversity advan-
tage of KL has been achieved.

(2) Design for coding advantage (determinant criterion):
the minimum determinant of A taken over all distinct C and
C′ matrices must be as large as possible. If the minimum
determinant is γ, then a coding advantage of K

√
γ has been

achieved.

Note that the above performance criteria are not con-
structive, that is, they do not provide a systematic method
to construct good ST codes.

3. DESIGN FOR DIVERSITY ADVANTAGE

3.1. Trellis structure analysis

The goal of this subsection is to analyze the algebraic struc-
ture of the trellis of the ST encoder and find closed form
expressions that relate the state sequence {St} to the start-
ing state S0 and the input source symbol sequence {bt}. The
additions and the multiplications are assumed to be stan-
dard integer operations. The modulo operation will always
be written explicitly to avoid ambiguity.

Assume that the encoder has N = RBK+p−1 states, with
R = 2r , B = 2bs , bs > 0, p ≥ 0, and 0 ≤ r < bs. Therefore,
it satisfies the lower bound of [9] for desired diversity ad-
vantage of K with B-ary source symbols. Any large enough
power of 2 number can be put into this form; the purpose
of this representation is to make the analytical treatment eas-
ier. The numberN is simply decomposed into the product of
two numbers: the first number, R is less than B, and the other
number is a power of B.

The state transition of the encoder at time t is determined
by the previous state, St−1 (St−1 ∈ {0, 1, . . . , N − 1}), and the
previous B-ary input, bt−1 (bt−1 ∈ {0, 1, . . . , B − 1}). Analyti-
cally it can be described as

St =
(
BSt−1 + bt−1

)
modN

= B
(
St−1 mod

(
RBK+p−2)) + bt−1.

(11)

It is shown in the appendix that we can unfold this recursion
and obtain a closed form expression for St , 1 ≤ t ≤ K + p − 1:

St = Bt(S0 mod
(
RBK+p−t−1)) + t−1∑

m=0

Bt−1−mbm, (12)

and for SK+p:

SK+p = BK+p−1(b0 modR
)
+

K+p−1∑
m=1

BK+p−1−mbm. (13)

Based on these analytical results, we can deduce some im-
portant information about the error path structure of the
trellis. Assume that the first decoding error occurs at state
S0, that is, the correct and the erroneous paths diverge at S0,
and they merge at some later state. As a consequence of this
assumption, we have S0 = S′0 and b0 �= b′0. We have no in-
formation regarding the rest of the bt’s and b′t’s. In this case,
(12) immediately tells us that for 1 ≤ t ≤ K + p − 1, St �= S′t .
Moreover, from (13), it can be seen that SK+p may or may not
be equal to S′K+p, since b0 modR may be equal to b′0 modR,
even though b0 �= b′0. Thus, we have the following theorem.

Theorem 1. If R = 1 (i.e., r = 0), the shortest error path is
exactly K + p long. If R > 1 (i.e., r > 0), the shortest error
path is either K + p long or longer. For arbitrary p ≥ 0 and
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000, 100, 200, 300

020, 120, 220, 320

030, 130, 230, 330

010, 110, 210, 310

003, 103, 203, 303

023, 123, 223, 323

033, 133, 233, 333

013, 113, 213, 313

001, 101, 201, 301

021, 121, 221, 321

031, 131, 231, 331

011, 111, 211, 311

002, 102, 202, 302

022, 122, 222, 322

032, 132, 232, 332

012, 112, 212, 312

t = 0 t = 1 t = 2 t = 3 t = 4

330

030

001

111

000

022

Figure 1: Example ST code for three antennas, QPSK.

0 ≤ r < bs, the shortest error path is at least K long, that is, the
paths diverging at S0 can merge only at SK or later.

3.2. Design for full diversity
Using formulas (12) and (13), we derive design rules that
guarantee that the ST trellis code achieves full diversity ad-
vantage. First, we obtain sufficient conditions to make the
channel symbol difference matrix corresponding to the first
K long error path segment of the first error event full rank.
Afterwards, the results will be extended to arbitrary channel
symbol difference matrices.

In the ST encoder, B channel symbol index vectors are
assigned to each state, according to the branches emanat-
ing from that state. The current source symbol selects one
of them, and the kth (k = 0, 1, . . . , K − 1) index of the cho-
sen vector determines the constellation point for antenna k.
Figure 1 depicts an example ST code for three antennas and
QPSK constellation (K = 3, B = 4, N = 16). In this case, if
the current state is state 2 and the value of the current source
symbol is 3, the ST encoder selects the third channel symbol
index vector, [3, 3, 0]T , and moves to state 11. The zeroth,
first, and second antennas will transmit the channel symbols
corresponding to the indices 3, 3, and 0, respectively.

Suppose that the transmitter sends T (T > K) source
symbols. Without loss of generality, we can assume that the
first decoding error event occurs at S0, making the correct
and the decoded paths diverge. For now, we are concerned
only about the first K long segment of all error paths of
length K or larger immediately after the first error event has
occured. Our goal is to construct the K × K channel symbol
difference matrix D1, defined as

D1 =
[
c
(
S0, b0

) − c
(
S′0, b

′
0

)
, c
(
S1, b1

)
− c(S′1, b

′
1), . . . , c

(
SK−1, bK−1

) − c
(
S′K−1, b

′
K−1

)]
,
(14)

in such a way that it is of full rank for any possible correct
and erroneous paths through the trellis. Our method is to
make D1 upper triangular with nonzero diagonal elements.
We exclude all ST codes that do not produce upper triangular
D1 matrices, so the resulting ST codes may not be optimal.
However, what we gain is a problem formulation that leads
to a simple solution.

The S0 → S1 state transition is special since both the cor-
rect and the erroneous paths start at the same state. The goal
is to set the zeroth entry of the zeroth column of D1 to a
nonzero value and to zero out the rest of the entries in that
column. This can be achieved by the following conditions
that form the first half of the design rules:

(1a) The zeroth indices of the channel symbol index vectors
at the same state must be different.

(1b) The remaining indices of the channel symbol index
vectors at the same state must be the same.

In our example, assume that the b0 = 0 (top) path is the
correct path and the b′0 = 3 (bottom) path is the erroneously
decoded path. The channel symbol index vectors [0, 3, 0]T

and [3, 3, 0]T have different zeroth indices, but the first and
second indices are the same; therefore, the zeroth column of
the D1 matrix will be [1 + j, 0, 0]T .

For the rest of the state transitions St → St+1, t =
1, 2, . . . , K − 1, the objective is to set the tth entry of the tth
column of D1 to a nonzero value and to zero out all the en-
tries below the tth entry in that column. To facilitate the ex-
planation, we introduce the following definitions.

Definition 1. A level t group is a collection of all destination
states that can be reached at state transition t from a given
S0 starting state through all possible b0, b1, . . . , bt−1 input
sequences.
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Definition 2. A subgroup of a level t group is a collection of
all destination states that can be reached at state transition t
from a given S0 starting state and a given b0 starting branch
through all possible b1, b2, . . . , bt−1 input sequences.

In order to effectively use these defnitions in the design
procedure, we need to describe the relationship between the
encoder states and the groups and subgroups at different lev-
els. Equation (12) expresses the state transition at time t,
t = 1, 2, . . . , K − 1, as a function of the starting state, S0,
and the source symbol sequence b0, b1, . . . , bt−1. Because S0
is kept constant in Definition 1 for all possible b0, b1, . . . , bt−1
sequences, we can eliminate the effect of the starting state
by taking modulo Bt of both sides of (12). Therefore, the
expression St modBt will describe how St depends on the
b0, b1, . . . , bt−1 sequence for an arbitrary, but fixed, S0 start-
ing state. From (12), we obtain

St modBt = Bt−1b0 + Bt−2b1 + · · · + Bbt−2 + bt−1. (15)

The above quantity can be thought of as a t digit B-ary
number. As the input B-tuples (b0, b1, . . . , bt−1) vary from
(0, 0, . . . , 0) to (B − 1, B − 1, . . . , B − 1), the value of St modBt

varies from 0 to Bt − 1. Consequently, for t = 1, 2, . . . , K − 1,
any level t group starts at statem such thatmmodBt = 0 and
consists of Bt consecutive states.

Similarly, S0 and b0 are kept constant in Definition 2, so
the expression St modBt−1 will describe how St changes as a
function of b1, b2, . . . , bt−1. From (12), we have

St modBt−1 = Bt−2b1 + Bt−3b2 + · · · + Bbt−2 + bt−1. (16)

The above quantity can be thought of as a t − 1 digit B-
ary number. As the input B-tuples (b1, b2, . . . , bt−1) vary from
(0, 0, . . . , 0) to (B−1, B−1, . . . , B−1), the value of St modBt−1

varies from 0 to Bt−1 − 1. Therefore, we conclude that for
t = 1, 2, . . . , K − 1, any subgroup of a level t group starts at
statem such thatmmodBt−1 = 0 and consists of Bt−1 consec-
utive states.

Since b0 ∈ {0, 1, . . . , B−1}, by definition every group con-
sists of B subgroups according to different b0 values. From
(15), it can be seen that different b0 values result in dis-
joint sets of St modBt values as the B-tuples (b1, b2, . . . , bt−1)
vary from (0, 0, . . . , 0) to (B − 1, B − 1, . . . , B − 1). Thus, for
t = 1, 2, . . . , K − 1, every level t group consists of B disjoint
subgroups. We index the subgroups within a group by the ze-
roth source symbol, so St belongs to the b0th subgroup and
S′t belongs to the b

′
0th subgroup of the same level t group.

In the case of the ST code of Figure 1, the level 1 groups
consist of 4 consecutive states, starting at states 0, 4, 8, and
12. The subgroups consist of only one state. The only level 2
group is comprised of all the 16 states, and its subgroups are
made up of 4 consecutive states, starting at states 0, 4, 8, and
12. The level 1 and level 2 groups and subgroups of the exam-
ple ST code are depicted in Figures 2b and 2c, respectively.

Because both the correct and the erroneous paths start
from the same state (S0 = S′0), at state transition t, t =
1, 2, . . . , K − 1, both the correct path (St) and the erroneous

path (S′t) go through states that belong to the same level t
group. This means that if themth indices of the channel sym-
bol index vectors at states belonging to any level t group are
the same, then the mth entry of the tth column of D1 will
be zero. For example, in Figure 1, states 8 and 11 belong to
the same level 1 group, and the second indices of the channel
symbol index vectors [0, 0, 1]T and [1, 1, 1]T are the same. As
a consequence, the first column of the D1 matrix becomes
[1 − j, 1 − j, 0]T .

Since the first decoding error occurs at S0 (b0 �= b′0), at
state transition t, t = 1, 2, . . . , K − 1, the correct path (St)
and the erroneous path (S′t) go through states that belong to
different subgroups of the same level t group. We can take
advantage of this fact as follows: if the mth indices of the
channel symbol index vectors at states belonging to differ-
ent subgroups of the same level t group are different, then
the mth entry of the tth column of D1 will be nonzero. To
continue the example, states 0 and 13 belong to different sub-
groups of the same (only) level 2 group. The second indices
of the channel symbol index vectors [0, 0, 0]T and [0, 2, 2]T

are different, so the second column of the matrix D1 will be
[0, 2, 2]T .

Having produced the methods to place zero and nonzero
entries into the matrixD1, we can state the second half of the
design rules:

(2a) For t = 1, 2, . . . , K − 1, the tth indices of the channel
symbol index vectors at states belonging to the same
subgroup of any level t group must be the same, and
they must be different from the tth indices of the chan-
nel symbol index vectors at states belonging to any
other subgroup of that group.

(2b) For t = 1, 2, . . . , K−2, the (t+1)st, (t+2)nd, . . . , (K−1)st
indices of the channel symbol index vectors at states
belonging to the same level t group must be the same.
(Note that criterion (2b) is omitted for t = K − 1.)

After making the matrix D1 full rank, the final task is
to show that the channel symbol difference matrix D corre-
sponding to the transmission of all T source symbols is also
of full rank. The matrix D can be decomposed as

D =
[
D1,D2

]
, (17)

where D1 is defined in (14), and D2 is a K × (T − K) ma-
trix. Since D2 is arbitrary, this description includes the cases
when the correct and the decoded paths diverge and merge
several times. From linear algebra, it is well known that if D1

is of full rank, thenD is also of full (row) rank. Consequently,
the design rules will produce codes that provide full diversity
advantage.

Figure 2a illustrates design rules (1a) and (1b) for the ST
code shown in Figure 1. At each state, the zeroth indices of
the channel symbol index vectors are different, and the 1st
and second indices are the same. Figure 2b shows how the
rules (2a) and (2b) are applied for t = 1. In each subgroup of
the level 1 groups, the first indices of the channel symbol in-
dex vectors are the same, and they are different from the first
indices of the index vectors of any other subgroup of that
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Figure 2: The group/subgroup structure of the example ST code.

group. Moreover, the second indices of the channel symbol
index vectors in each level 1 group are the same. Finally, rule
(2a) for t = 2 is illustrated in Figure 2c. In each subgroup of
the only level 2 group, the second indices of the channel sym-
bol index vectors are the same, and they are different from the
second indices of the index vectors of the other subgroups.

By observing the group/subgroup structure of the state
transitions in the trellis, we can make the design rules in-
dependent of the state evolution in time. The above design
method describes relationships between channel symbol in-
dices of different antennas at different states. Furthermore,
these design rules do not fully determine the state-channel
symbol assignment, providing the possibility to further opti-
mize for coding gain.

Design rules (1a) and (1b) are similar to the design rules
described in [9] for two transmit antennas. Therefore, our
approach can be treated as a generalization of the method of
[9] to an arbitrary number of transmit antennas.

4. DESIGN FOR CODING ADVANTAGE

In general, finding the best way to assign channel symbol in-
dices to antennas and states is not a simple task. If N > Nmin,
the shortest error path is longer than K , so the correspond-
ing code difference matrix does not have any special struc-
ture. As a consequence, expressing the minimum determi-
nant of the code becomes very difficult. However, in the
N = Nmin = BK−1 case (i.e., r = 0 and p = 0), it is possible
to find an efficient method to maximize the coding gain, so

from now on, it is assumed that the encoder has Nmin states.
The channel symbol difference matrix corresponding to

the first K long segment of the error paths after the first de-
coding error has occured is the matrix D1, defined in (14).
It is square and upper triangular, so its determinant is the
product of its diagonal elements:

det
(
D1

)
=

K−1∏
k=0

(
c
(
ik
(
Sk, bk

)) − c
(
ik
(
S′k, b

′
k

)))
. (18)

We define the K × K matrix A1 as A1 = D1D1
H . Then γ1, the

determinant of A1, is

γ1 = det
(
A1

)
= det

(
D1

)
det

(
D1

)∗
=

K−1∏
k=0

∣∣∣c(ik(Sk, bk)) − c
(
ik
(
S′k, b

′
k

))∣∣∣2. (19)

Considering the transmission of all T source symbols,
and using the decomposition of (17), the matrix A = DDH ,
whose minimum determinant is to be maximized, can be ex-
pressed as

A = D1D1
H +D2D2

H = A1 + A2, (20)

where A2 = D2D2
H . By construction, both A1 and A2 are

Hermitian and nonnegative definite. To continue the argu-
ment, we will use the following theorem from linear algebra
[12]: Let X and Y be K × K , Hermitian, and nonnegative
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Figure 3: Example ST code template for three antennas, 4-ary con-
stellations.

definite matrices. Moreover, let λ0(X) ≥ λ1(X) ≥ · · · ≥
λK−1(X) denote the real and nonnegative eigenvalues of X.
Then we have the following inequality for i = 0, 1, . . . , K − 1:

λi(X + Y) ≥ λi(X) + λK−1(Y). (21)

In our case, (21) becomes

λi
(
A1 + A2

) ≥ λi
(
A1

)
+ λK−1

(
A2

)
for i = 0, 1, . . . , K − 1.

(22)

Since A2 is nonnegative definite, λK−1(A2) ≥ 0. This means
that

λi(A1 + A2) ≥ λi(A1) for i = 0, 1, . . . , K − 1. (23)

From this, we can conclude that γ, the determinant of A, sat-
isfies the inequality

γ = det(A)=
K−1∏
i=0

λi
(
A1 + A2

)≥ K−1∏
i=0

λi
(
A1

)
= det

(
A1

)
= γ1.

(24)

We can fix an arbitrary correct path and pick an arbi-
trary error path that is longer than K state transitions. Both
this error path and the error path corresponding to the K
long error event that starts from the same S0 starting state

and the same b′0 starting branch go through states that be-
long to the same subgroups of the same groups, resulting in
D1 matrices with the same diagonal elements (design rules
(1a) and (2a)). Therefore, for any error event that is longer
than K state transitions, it is possible to find a K long er-
ror event with the same det(A1) value. As a consequence of
this observation and (24), γmin, the minimum determinant
of the code, can be determined by taking into account only
the shortest error events:

γmin = min
{Sl ,bl},{S′l ,b′l}
l=0,1,...,K−1

K−1∏
k=0

∣∣∣c(ik(Sk, bk)) − c
(
ik
(
S′k, b

′
k

))∣∣∣2. (25)

The minimum is taken over all possible K long correct and
incorrect paths.

The Sk and S′k state transition sequences can also be de-
scribed by making use of the group/subgroup structure of
the trellis. The results of Section 3 allow us to map the first K
long segment of the correct and erroneous paths of the first
decoding error event onto different groups and subgroups of
states. Toward this end, we introduce a channel symbol index
based notation that does not explicitly depend on the state
transition sequence.

Let i0l , i
0
l ∈ {0, 1, . . . , B − 1}, be the zeroth indices of

the channel symbol index vectors at the same state corre-
sponding to source symbol l (l ∈ {0, 1, . . . , B − 1}). For
simplicity, it is assumed that the 0th indices of the chan-
nel symbol index vectors at different states corresponding
to the same source symbol values are the same. Moreover,
let ikl , k = 1, 2, . . . , K − 1, ikl ∈ {0, 1, . . . , B − 1}, denote
the kth indices of the channel symbol index vectors at the
states belonging to the lth subgroup of the same level k group
(l ∈ {0, 1, . . . , B−1}). According to design rules (1a) and (2a),
the relation ikl �= ikm must hold for any l �= m. Therefore, the
B-tuple (ik0, i

k
1, . . . , i

k
B−1), k = 0, 1, . . . , K − 1, is an (arbitrary)

permutation of the numbers 0, 1, . . . , B − 1.
Applying the design method of Section 3 and using the

above index notation, we can create a “template” ST code.
It is called template because the design rules for full spa-
tial diversity do not specify the codes completely. It con-
tains channel symbol index templates at each state for each
antenna. For the ST code example of Figure 1, this tem-
plate is shown in Figure 3. Here, the 4-tuples (i00, i

0
1, i

0
2, i

0
3),

(i10, i
1
1, i

1
2, i

1
3), and (i20, i

2
1, i

2
2, i

2
3) can be any permutations of the

numbers (0, 1, 2, 3). The ST code will achieve full diversity
advantage for arbitrary permutations. The objective is to find
those permutations that result in maximizing the coding ad-
vantage of the ST code.

Using the simplified notation l = b0 and m = b′0 (l �= m),
it was shown earlier that for k = 1, 2, . . . , K − 1, Sk belongs to
the lth subgroup and S′k belongs to the mth subgroup of the
same level k group. Therefore, using the above defined index
notation, we can make the following substitutions:

ik
(
Sk, bk

)
= ikl , ik

(
S′k, b

′
k

)
= ikm, for k = 0, 1, . . . , K − 1.

(26)

Consequently, the expression for the minimum determinant
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can be rewritten as

γmin = min
l,m∈{0,1,...,B−1}

l<m

K−1∏
k=0

∣∣∣c(ikl ) − c
(
ikm
)∣∣∣2. (27)

The l < m condition can be used since the squared distance
function is symmetric in its arguments. The final goal is to
maximize the minimum determinant. Therefore, if ΩB de-
notes the set of all permutations of the numbers 0, 1, . . . , B−1,
and σk ∈ ΩB (k = 0, 1, . . . , K − 1) stands for a particular per-
mutation (ik0, i

k
1, . . . , i

k
B−1), then γ∗min, the optimal minimum

determinant, can be expressed as

γ∗min = max
σ0 ,σ1 ,...,σK−1


 min

l,m∈{0,1,...,B−1}
l<m

K−1∏
k=0

∣∣∣c(ikl ) − c
(
ikm
)∣∣∣2


. (28)

This combinatorial optimization problem can be interpreted
as follows. The design rules for diversity advantage and K
permutations of the numbers 0, 1, . . . , B−1 together uniquely
determine the code. The task is to find those permutations
that offer the largest minimum determinant. Because the
numbers 0, 1, . . . , B − 1 can be arranged in B! different ways,
the size of the search space is (B!)K . This means that exhaus-
tive search may be impractical in certain cases. For example,
if B = 16 and K = 5, the search has to be done over approxi-
mately 4 · 1066 possibilities.

To get around this complexity growth, we propose a sub-
optimal approach that offers a practical solution. The basic
idea is to restrict the search space such that the resulting com-
plexity is not prohibitive. Toward this end, we define the no-
tion of the parametric permutation function.

The parametric permutation function is a function that
generates a subset of all possible permutations of the num-
bers 0, 1, . . . , B − 1. Different parameters produce different
permutations, so the problem will be reduced to a search for
the best parameter. Therefore, the parametric permutation
function is required to have the following properties:

• It must be a bijective map: for any parameter, it must
map the set {0, 1, . . . , B−1} onto itself in a one-to-one
manner.

• Two different parameters must generate two different
permutations.

In the sequel, we will use the notation i2 = ψB(n, i1) for
one possible realization of the parametric permutation func-
tion. The value n is the parameter to be optimized (n ∈
{1, 2, . . . , B − 1}), and i1 and i2 are the input and output in-
dices, respectively (i1, i2 ∈ {0, 1, . . . , B−1}). Note that the ob-
vious ψB(n, i1) = (ni1)modB, for odd n, is not a good choice
because it does not “shuffle” the indices well enough.

The output index is generated according to the follow-
ing description. The input index i1 and the parameter n are
treated as binary vector representations of two field elements
in GF(B) = GF(2bs). These field elements are multiplied to-
gether according to field arithmetic, and the output index i2
will be the binary vector representation of the product. For
example, for B = 4, the field GF(4) can be built up using α, a

Table 1: Element representation in GF(4).

Value Binary vector Polynomial Power Power
representation representation representation

0 00 0 0 –
1 01 1 α0 0
2 10 α α1 1
3 11 α + 1 α2 2

Table 2: The generated permutations.

i1 n = 1 n = 2 n = 3
0 0 0 0
1 1 2 3
2 2 3 1
3 3 1 2

root of the primitive polynomial p(x) = x2 + x + 1, as shown
in Table 1. In this case, the function ψ4(·, ·) will generate the
permutations given in Table 2. The table entries are the func-
tion values for different input index and parameter values.

The above example shows two general properties of the
function ψB(·, ·). First, the zero index always maps to itself:
ψB(n, 0) = 0. Second, if the parameter is one, the function
value is equal to the input index value: ψB(1, i1) = i1. Since
the above definition of the parametric permutation func-
tion exploits the algebraic properties of the underlying Ga-
lois field, it can be easily seen that it has the required prop-
erties. Moreover, the elements of a Galois field can also be
represented as powers of a primitive element, providing the
possibility of efficient implementation by turning the multi-
plications into modulo B − 1 additions.

Replacing the permutation operation by the parametric
permutation function, the optimization problem reduces to

γ∗min = max
n0 ,n1 ,...,nK−1
∈{1,2,...,B−1}


 min

l,m∈{0,1,...,B−1}
l<m

K−1∏
k=0

∣∣∣c(ψB
(
nk, l

))

− c
(
ψB

(
nk,m

))∣∣∣2

.
(29)

To find γ∗min, we only have to search over (B − 1)K possibili-
ties. In the case of the B = 16, K = 5 example, the size of the
search space will be less than 8 ·105. Once the n∗0, n∗1, . . . , n∗K−1
parameter values that maximize the minimum determinant
have been calculated, the channel symbol indices can be de-
termined as

ikl = ψB
(
n∗k, l

)
, k = 0, 1, . . . , K − 1, l = 0, 1, . . . , B − 1.

(30)

5. CODE DESIGN EXAMPLES

This section provides some examples that demonstrate the
code design method described in the previous sections. First,
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we describe the relationship between the repetition coded de-
lay diversity scheme of [10] and our approach. The delay di-
versity scheme was chosen as a basis for comparison because,
to our knowledge, this is the only existing procedure that can
be used to construct ST trellis codes for any number of trans-
mit antennas and any constellation. Then, we give specific
code design examples.

The delay diversity scheme is a special case of our de-
sign method. For B = 2 (e.g., the BPSK constellation) and
N = Nmin, the two methods are equivalent: the design rules
for full spatial diversity uniquely determine the code. For
B > 2, the delay diversity scheme corresponds to n∗k = 1
(k = 0, 1, . . . , K − 1), which leads to ikl = l (k = 0, 1, . . . , K − 1,
l = 0, 1, . . . , B − 1). In [10], it was shown that, if ∆ denotes
the minimum Euclidean distance of the chosen constellation,
then the minimum determinant of the resulting delay diver-
sity ST code will be γDmin = ∆2K .

To characterize the theoretical performance improve-
ment of our method over the delay diversity ST codes, we
will use the relative coding advantage, β, defined as β =
K
√
γ∗min/γ

D
min. This quantity describes the normalized vertical

shift between the two error performance curves as the SNR
becomes large.

5.1. Code design for B-ary PSK

In case of B-ary PSK modulation, the squared distance be-
tween constellation points l andm (l, m ∈ {0, 1, . . . , B−1}) is
given by

d2(l, m) =
∣∣c(l) − c(m)

∣∣2 = 4 sin2
(
(l −m)π

B

)
. (31)

A pictorial representation of the QPSK and 8PSK constel-
lations are shown in Figures 4a and 4b. Using (31) to ex-
press the minimum determinant of the code, the optimiza-
tion problem becomes

γ∗min= max
n0 ,n1 ,...,nK−1
∈{1,2,...,B−1}


 min
l,m∈{0,1,...,B−1}

l<m

4K

×
K−1∏
k=0

sin2
((

ψB
(
nk, l

)−ψB
(
nk,m

))
π

B

).
(32)

If this optimization procedure is used for three antennas
(K = 3) with QPSK (B = 4, N = 16), and Table 2 is used to
generate the parametric permutation function values, then
the result of the optimization will be n∗0 = 1, n∗1 = 2, and
n∗2 = 3 with γ∗min = 16. Note that this maximum is not unique:
several other sets of {n∗k} values exist. This is not surprising
because of the symmetry of the QPSK constellation and the
commutativity of multiplication. The obtained permuta-
tions are: (i00, i

0
1, i

0
2, i

0
3) = (0, 1, 2, 3), (i10, i

1
1, i

1
2, i

1
3) = (0, 2, 3, 1),

and (i20, i
2
1, i

2
2, i

2
3) = (0, 3, 1, 2). These permutations generate

the ST code example depicted in Figure 1 . The minimum
determinant of the corresponding delay diversity ST code
is γDmin = ∆6 = 8, resulting in a relative coding advantage of

β = 1.26. For this particular case, the authors of [13] found a
better code (γmin = 32) through computer search. However,
exhaustive search cannot be used to find good ST codes for a
larger number of transmit antennas and larger constellation
sizes because of its computational complexity.

For easy description, we need to find an efficient and con-
cise representation for our ST codes. In [14], a generator ma-
trix based approach was used. However, some of our codes
belong to a more general class of ST codes because they can-
not be described by generator matrices. To see this, consider
the ST code example of Figure 1. The constellation point for
antenna 2 is determined by the two most significant bits of
the 4 bit state information. We denote these two bits by s2
and s3 (s2, s3 ∈ {0, 1}). In order to be able to describe this ST
code by a generator matrix, the function F(s2, s3), defined as

F
(
s2, s3

)
=
(
a2s2 + a3s3

)
mod4, (33)

should generate the indices 0, 3, 1, 2 in this order for some a2
and a3 (a2, a3 ∈ {0, 1, 2, 3}). We trivially have F(0, 0) = 0. The
F(1, 0) = 3 relation forces a2 to be 3. Similarly, a3 has to be 1,
as a consequence of F(0, 1) = 1. Finally, the function will re-
sult in F(1, 1) = 0, which is not the desired value 2. Therefore,
this ST code cannot be put in a generator matrix form. The
possibly large number of encoder states prevents us from us-
ing the trellis diagram, so the channel symbol index permu-
tations will be used to describe the ST codes. Note that this
representation is unique, and due to the regular structure of
the proposed ST codes, it is easy to design simple encoders
with O(KB) hardware complexity.

Using the same procedure, ST codes for three transmit
antennas (K = 3), 8PSK (B = 8, N = 64), and 16PSK (B =
16, N = 256) constellations have also been constructed. In
the 8PSK case, the channel symbol index permutations

(
i00, i

0
1, i

0
2, i

0
3, i

0
4, i

0
5, i

0
6, i

0
7

)
= (0, 1, 2, 3, 4, 5, 6, 7),(

i10, i
1
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1
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1
3, i

1
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1
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i20, i
2
1, i

2
2, i

2
3, i

2
4, i

2
5, i

2
6, i

2
7

)
= (0, 2, 4, 6, 3, 1, 7, 5)

(34)

are one of the possible sets of permutations that maximize
the objective function, yielding the minimum determinant
γ∗min = 0.6863. The minimum determinant of the delay di-
versity scheme with the same design parameters is γDmin =
0.2010. These coding advantage values yield β = 1.51. For
the 16PSK constellation, our design method resulted in the
ST code given by the channel symbol indices
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Table 3: ST codes for QPSK modulation.

K N Permutations γ∗min γDmin Decoding
depth

2 4 P1, P1 4 4 25
4 64 P1, P1, P2, P3 32 16 25
6 1024 P1, P1, P2, P2, P3, P3 256 64 25
8 214 P1, P1, P1, P1, 1024 256 35

P2, P2, P3, P3

10 218 P1, P1, P1, P1, P2, 8192 1024 45
P2, P2, P3, P3, P3

The minimum determinant of this code is γ∗min = 0.110105,
while the delay diversity construction gives γDmin = 0.003529.
The relative coding advantage is β = 3.15.

The reduced computational complexity of the proposed
design procedure allowed us to construct ST codes for a large
number of transmit antennas. Table 3 contains the brief de-
scription of the codes designed for QPSK constellation. The
symbols P1, P2, and P3 denote the permutations (0, 1, 2, 3),
(0, 2, 3, 1), and (0, 3, 1, 2), respectively. The permutations are
assigned to transmit antennas from left to right. According to
this notation, the three antenna ST code example of Figure 1
can be described as: P1, P2, P3. The γ∗min and γDmin values are
also shown.

5.2. Code design for asymmetric QPSK

The next two examples employ constellations that are not
used in current wireless communication systems, but they
can illustrate the flexibility of the proposed design method.
The first ST code was constructed for four transmit antennas
(K = 4) and asymmetric QPSK modulation (B = 4, N = 64).
The pictorial representation of the asymmetric QPSK con-
stellation can be observed in Figure 4c. The parameter α,
which is the angle between the signal points and the real axis,
was set to π/8 (rad). The Euclidean distances between two ar-
bitrary constellation points cannot be expressed in a closed
form, but they can be easily calculated. The minimum dis-
tance of the constellation is ∆ = 2 sinα = 0.7654. The opti-
mization procedure results in

(
i00, i
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1, i

0
2, i

0
3

)
= (0, 1, 2, 3),(

i10, i
1
1, i

1
2, i

1
3

)
= (0, 1, 2, 3),(

i20, i
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1, i

2
2, i

2
3

)
= (0, 2, 3, 1),(

i30, i
3
1, i

3
2, i

3
3

)
= (0, 3, 1, 2)

(36)

permutations with γ∗min = 4.6863. The minimum determi-
nant of the delay diversity scheme is γDmin = 0.1177, so a rela-
tive coding advantage of β = 2.51 is achieved.

5.3. Code design for 4ASK

We also designed a ST code for four transmit antennas (K =
4), and 4ASK constellation (B = 4, N = 64), shown in
Figure 4d. The minimum distance of the normalized constel-
lation was ∆ =

√
4/5. The squared distance between constel-

lation points l andm (l, m ∈ {0, 1, 2, 3}) can be expressed as

d2(l, m) = |c(l) − c(m)|2 = ∆2(l −m)2. (37)

The ST code design method found the same permutations as
for the asymmetric QPSK case. The minimum determinant
of the code is γ∗min = 1.6384, and the delay diversity method
yields γDmin = 0.4096. The resulting relative coding advantage
is β = 1.41.

5.4. Discussion

The definition of the relative coding advantage allows us
to predict the performance improvement before performing
any simulation. If we compare the β values in the three an-
tenna case for B-ary PSK, we can see that as the number of
constellation points (B) increases, the relative coding advan-
tage also increases, and, therefore, more significant improve-
ment is expected.

Based on the relative coding advantage values of the four
antenna ST codes for QPSK, 4ASK and asymmetric QPSK
modulations, improvement comparison can be made for a
fixed constellation size (B = 4). The β values suggest that the
proposed QPSK ST code will perform a little better than the
delay diversity scheme, and the improvement will be more
pronounced in the case of the 4ASK codes. Finally, the asym-
metric QPSK ST code (whose actual performance depends
on the value of α) seems to offer the largest improvement.

Due to the structure of the proposed ST codes, the min-
imum determinants are functions of product distances. The
code design method tries to assign channel symbol indices to
antennas at different states in such a way that the minimum
value of the product distances is as large as possible. The
minimum determinant of the delay diversity construction is
only a function of theminimumdistance of the constellation.
Therefore, if the maximum distance of the chosen constella-
tion is much larger than the minimum distance, our design
method can exploit the additional degrees of freedom effec-
tively, producing ST codes that performmuch better than the
delay diversity scheme. On the other hand, if the distances in
the constellation have similar magnitudes, the proposed de-
sign method may not result in significant improvement.

6. SIMULATION RESULTS

To illustrate the performance of the codes designed using the
above described method, we show some simulation results.
We compare our approach with the delay diversity scheme
of [10], since, to our knowledge, this is the only method that
can be used to construct ST codes for any number of transmit
antennas and any memoryless constellation. The simulated
communication system had one receive antenna. The source
symbols were transmitted in frames of length 130, and the
Viterbi algorithm (ML sequence detection) with decoding
depth of 20 state transitions was used to decode the received
signals. For each frame, the path gains between the trans-
mit antennas and the receive antenna were modeled as in-
dependent, complex, zero-mean, circularly symmetric Gaus-
sian random variables with unit variance.
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Figure 4: Example constellations.

Since the frame error probability depends on the length
of the frame and it does not seem very informative, we
present probability of bit error curves as functions of the av-
erage signal-to-noise ratio (SNR) per source symbol at the
receive antenna. In the sequel, the expression coding gain will
refer to the difference (in dB) of transmit energies to achieve
the same probability of bit error value. Both the coding ad-
vantage and the coding gain give information about the per-
formance improvement, but the coding advantage is a the-
oretical quantity characterizing the vertical shift of the er-
ror performance curve, while the coding gain is experimental
and it describes the horizontal shift.

The repetition coded delay diversity of [10] is a special
case of our design rules. Figure 5a shows the performance of
this scheme for different number of transmit antennas (K =
2, 3, 4 andN = 4, 16, 64, respectively) and QPSKmodulation.
We observe that the codes indeed provide different spatial
diversity advantages since the steepness of the bit error rate
curves is different.

The rest of the figures compare the performance of the
delay diversity construction and our approach using the ex-
ample codes described in the previous section. Figure 5b de-
picts the results for three transmit antennas and QPSK mod-
ulation. The two probability of bit error curves are shifted
versions of each other, as expected. Approximately 0.4–0.5 dB
coding gain is observed over the delay diversity scheme.

Figure 6a shows the bit error rate curves of a three trans-
mit antenna system with 8PSK modulation. At low SNR, the
two error performance curves are close to each other, and
they behave according to the expectations at medium and
high SNRs. This phenomenon can be explained as follows.
The definition of coding advantage [9] is based on an upper
bound on the Q(x) Gaussian tail probability function, and
this bound is loose at low SNR. Moreover, the large number
of transmission errors and the small minimum distance of
the constellation may prevent the Viterbi algorithm with fi-
nite decoding depth from working properly at low SNR. The
simulation shows that the performance improvement is more
pronounced; at higher SNR, more than 1 dB coding gain can
be achieved.

The performance of the ST code for three antennas and
16PSK constellation can be observed in Figure 6b. Our ST
code yields 2–2.5 dB coding gain compared to the delay di-
versity scheme. Figures 7a and 7b depict the bit error rate
curves for the four antenna ST codes using asymmetric
QPSK and 4ASK modulation, respectively. The first figure
shows approximately 3 dB coding gain from medium SNR,
and the second figure demonstrates 2 dB improvement over
the delay diversity construction.

Since the number of states is exponential in the number
of transmit antennas, it is not possible to decode the ST trel-
lis codes designed for a large number of transmit antennas
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Figure 5: Simulation results I. (a) Delay diversity with QPSK, (b) three transmit antennas with QPSK.
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Figure 6: Simulation results II. (a) Three transmit antennas with 8PSK, (b) three transmit antennas with 16PSK.

using ML sequence detection (Viterbi algorithm). Therefore,
we chose a suboptimal tree decoding algorithm developed
for convolutional coding and trellis coding: the M-algorithm
[15]. This algorithm uses a tree structure to evaluate the met-
rics (in our case: the Euclidean distances) for the allowable
channel symbol sequences. At each stage, it keeps at mostM
partial paths with the best metrics. Thus, the decoding com-
plexity is O(M), which is independent of the number of en-
coder states.

Figure 8a shows the performance of the four antennas,
QPSK ST code for ML decoding and for suboptimal decod-
ing. The bit error curve of the three antennas, QPSK ST
code with ML decoding is also included for comparison.
It can be observed that reducing the computational com-
plexity (reducing the value of M) results in performance
degradation.

Finally, the simulation results for the ST codes described
in Table 3 are depicted in Figure 8b. For 2 and 4 antennas,
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Figure 7: Simulation results III. (a) Four transmit antennas with asymmetric QPSK, (b) four transmit antennas with 4ASK.
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Figure 8: Simulation results IV. (a) Four antennas, suboptimal decoding, (b) ST codes for QPSK modulation.

the ML decoding algorithm was used, and for the 6, 8, and
10 antenna cases, the ST codes were decoded by the subop-
timal M-algorithm. The decoding complexity was kept ap-
proximately constant by settingM = 256. The used decoding
depth values can be found in the last column of Table 3. The
results show that as theN/M ratio increases, the performance
loss increases.

7. CONCLUSION

Having observed the group/subgroup structure of the state
transitions, we proposed systematic design rules for ST trellis
codes that achieve full spatial diversity. For encoders having
Nmin states, we developed a code construction method that
allows for ST code design for both diversity advantage and
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coding advantage. Due to the low complexity of the proposed
designmethod, ST codes for a large number of antennas were
also constructed. Based on the theoretical coding advantage
values and the simulation results, we can draw the following
conclusions.

First, if the ratio of the maximum and the minimum dis-
tances of the chosen constellation is large, the additional op-
timization for coding advantage results in codes that substan-
tially outperform the codes that were designed only for diver-
sity advantage.

Second, if theM-algorithm is used to decode the ST codes
with constant decoding complexity in a quasi-static Rayleigh
fading environment, increasing the number of transmit an-
tennas will provide diminishing returns. The choice of the
number of transmit antennas will depend on the actual al-
lowed maximum computational complexity.

APPENDIX

We will prove (12) by induction. Using (11), the first state
change can be expressed easily

S1 = B
(
S0 mod

(
RBK+p−2)) + b0. (A.1)

Assume that the formula holds for St−1, formally

St−1 = Bt−1(S0 mod
(
RBK+p−t)) + t−2∑

m=0

Bt−2−mbm. (A.2)

It only remains to show that the above described relationship
also holds for St. Using the symbol Q to denote RBK+p−2, St
can be expressed as

St = B
(
St−1 modQ

)
+ bt−1

= B

([
Bt−1(S0 mod

(
RBK+p−t))

+
t−2∑
m=0

Bt−2−mbm

]
modQ

)
+ bt−1.

(A.3)

By applying the identity

(
n∑
i=1

ai

)
mod b =

(
n∑
i=1

aimod b

)
mod b, (A.4)

the above expression becomes

St = B

([(
Bt−1(S0 mod

(
RBK+p−t)))modQ

+
t−2∑
m=0

(
Bt−2−mbm

)
modQ

]
modQ

)
+ bt−1.

(A.5)

Recognizing that for any 0 ≤ n ≤ K + p − 2 and S ∈
{0, 1, . . . , N − 1},

(
BnS

)
mod

(
RBK+p−2) = Bn(Smod

(
RBK+p−2−n)), (A.6)

the state transition equation can be rewritten as

St = B

([
Bt−1

((
S0 mod

(
RBK+p−t))mod

(
RBK+p−t−1))

+
t−2∑
m=0

(
Bt−2−mbm

)
modQ

]
modQ

)
+ bt−1.

(A.7)

The next step is to make use of the following simple result: if
b ∈ {0, 1, . . . , B − 1} then for any 0 ≤ n < K + p − 2

(
Bnb

)
mod

(
RBK+p−2) = Bnb. (A.8)

This allows for further simplification:

St = B

([
Bt−1

((
S0 mod

(
RBK+p−t))mod

(
RBK+p−t−1))

+
t−2∑
m=0

Bt−2−mbm

]
modQ

)
+ bt−1.

(A.9)

Now we use the fact that if S ∈ {0, 1, . . . , N − 1} and 0 ≤ n ≤
K + p − 1,

(
Smod

(
RBK+p−n))mod

(
RBK+p−n−1)

= Smod
(
RBK+p−n−1), (A.10)

and we can obtain the following form:

St = B

([
Bt−1(S0 mod

(
RBK+p−t−1))

+
t−2∑
m=0

Bt−2−mbm

]
modQ

)
+ bt−1.

(A.11)

Finally, the identity

(
Bnx + Bn−1b0+Bn−2b1 + · · · + bn−1

)
mod

(
RBK+p−2)

= Bnx + Bn−1b0 + Bn−2b1 + · · · + bn−1
(A.12)

that holds for bi ∈ {0, 1, . . . , B − 1}, 0 < n ≤ K + p − 2, and
x ∈ {0, 1, . . . , RBK+p−2−n − 1} will give us the final step that
completes the proof:

St =B

(
Bt−1(S0 mod

(
RBK+p−t−1))+ t−2∑

m=0

Bt−2−mbm

)
+bt−1

= Bt(S0 mod
(
RBK+p−t−1)) + t−1∑

m=0

Bt−1−mbm.

(A.13)

The closed form expression for SK+p can be derived using
similar ideas.
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