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The G0
A distribution is assumed as the universal model for multilook amplitude SAR imagery data under the multiplicative model.

This distribution has two unknown parameters related to the roughness and the scale of the signal, that can be used in image
analysis and processing. It can be seen that maximum likelihood and moment estimators for its parameters can be influenced
by small percentages of “outliers”; hence, it is of outmost importance to find robust estimators for these parameters. One of the
best-known classes of robust techniques is that of M-estimators, which are an extension of the maximum likelihood estimation
method. In this work we derive the M-estimators for the parameters of the G0

A distribution, and compare them with maximum
likelihood estimators with a Monte-Carlo experience. It is checked that this robust technique is superior to the classical approach
under the presence of corner reflectors, a common source of contamination in SAR images. Numerical issues are addressed, and a
practical example is provided.

Keywords and phrases: inference, likelihood, M-estimators, Monte-Carlo method, multiplicative model, speckle, synthetic aper-
ture radar, robustness.

1. INTRODUCTION

The statistical modeling of synthetic aperture radar (SAR)
imagery has provided some of the best tools for the processing
and understanding of this kind of data. Among the statistical
approaches the most successful is the multiplicative model.

This model offers a set of distributions that, with a few
parameters, are able to characterize most of SAR data. This
model is presented, for instance, in [1], and extended in [2].

This extension is a general and tractable set of distribu-
tions within the multiplicative model, used to describe every
kind of SAR return. It was then called a universal model, and
its properties are studied in [3, 4, 5].

In this paper, the problem of estimating the parameters of
this extension, namely of the G0

A distribution, is studied for
the single look (the noisiest) situation. Two typical estima-
tion situations arise in image processing and analysis, namely
large and small samples, being the latter considered in this
work. The small samples problem arises in, for instance, im-

age filtering where with a few observations within a window
a new value is computed.

Statistical inference with small samples is subjected to
many problems, mainly bias, large variance, and sensitivity
to deviations from the hypothesized model. This last issue is
also a problem when dealing with large samples.

Robustness is a quite desirable property for estimators,
since it allows their use even in situations where the quality of
the input data is not perfect [6, 7, 8]. Most image processing
and analysis procedures (filtering, classification, segmenta-
tion, etc.) use spatial data. Even experienced users are unable
to guarantee that all the input data are free of spurious values
and/or structures.

A situation where this occurs is in the presence of corner
reflectors. These devices, which are essential for data calibra-
tion, produce a return which is quite higher than the rest
of the image. If data from a corner reflector enter a non-
robust estimation procedure, the results may be completely
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Figure 1: Man-made corner reflectors on a SAR image.

unreliable. Figure 1 shows man-made corner reflectors, the
white spot regularly placed horizontally along the middle of
the image, possibly buildings, on a SAR image where crops
predominate.

This paper presents classical estimators, namely those
based on sample moments and the maximum likelihood ones,
and derives robust M-estimators for the single lookG0

A model.
Once these estimators are derived, several situations are com-
pared by means of a Monte-Carlo experience. These estima-
tors are then applied to SAR imagery, and it is shown that
the robust approach exhibits a good performance even in the
presence of corner reflectors.

M-estimators have been mainly used for symmetric data,
being [7, 8] two very relevant exceptions. In this application
they are computed, implemented, and assessed for speckled
imagery that, as will be seen in the next section, follow laws
whose densities can be highly asymmetric. Since speckle noise
also appears in ultrasound B-scan, sonar and laser images,
the procedures here presented have potential application in
all these techniques.

2. NOTATION AND MODEL DEFINITION

In the following, 1A will denote the indicator function of the
set A, that is,

1A(x) =

1 if x ∈ A,

0 else.
(1)

The single-look G0
A(α,γ) distribution is characterized by

the following probability density function:

f
(
x, (α, γ)

) = −2αx
γ(1+ (x2/γ))1−α

1(0,+∞)(x), −α,γ,x>0.

(2)
Multilook, intensity, and complex versions of this distribution
can be seen in [2]. The polarimetric (multivariate) extension
of the G0 distribution is presented in [9].

The parameter α in (2) describes the roughness of the
target, being small values (say α < −15) usually associated
to homogeneous targets, like pasture, values ranging in the
[−15,−5] interval usually observed in heterogeneous clutter,
like forests, and big values (−5 < α < 0 for instance) com-
monly seen when extremely heterogeneous areas, as urban
spots, are imaged. The γ parameter is related to the scale, in
the sense that if Z′A is a G0

A(α,1)-distributed random vari-

able then Z = √γZ′ obeys a G0
A(α,γ) law and, therefore, it is

related to the brightness of the scene. Both parameters are es-
sential when characterizing targets, and in image processing
techniques involving statistical modeling.

In the following it will be assumed that α < 0 and γ > 0.
Calling

s1
(
x, (α, γ)

) = ∂
∂α

lnf
(
x, (α, γ)

)
,

s2
(
x, (α, γ)

) = ∂
∂γ

lnf
(
x, (α, γ)

)
,

(3)

the score function of the G0
A(α,γ) distribution is given by

s
(
x, (α, γ)

) =
(
s1
(
x, (α, γ)

)
s2
(
x, (α, γ)

)
)

=




1
α
+ ln

(
1+

(
x√γ

)2)

−α
γ
− 1−α
γ + x2


 .

(4)

The cumulative distribution function of such random vari-
able is given by

F
(
x, (α, γ)

) =
(

1−
(

1+ x
2

γ

)α)
1(0,+∞)(x). (5)

This will be used to compute an estimator based on order
statistics. In [5] a relation between a more general version of
the G0

A(α,γ) law and Snedekor’s F distribution is shown to
allow writing (5) as a function of the cumulative distribution
function of the latter.

The moments of a G0
A(α,γ) distribution are given by

E
(
Xk
) =



γk/2

kΓ(k/2)Γ(−α− k/2)
2Γ(−α) if −α > k

2
,

∞ else.
(6)

This distribution can be derived as the square root of
the ratio of two independent random variables: one obey-
ing a unitary-mean exponential distribution (which conveys
the speckle noise in one look) and one following a Γ(α, γ)
distribution, related to the unobserved ground truth, the
backscatter. Densities of the G0

A(α,γ) distribution are shown
in Figure 2, for α ∈ {−1,−3,−9} and the scale parameter
γ = γα adjusted to have unitary mean, that is, using (6) and
k = 1, one derives

γα = 4
π

(
Γ(−α)

Γ(−α− 1/2)

)2

. (7)

Following Barndorff-Nielsen and Blæsild [10], it is in-
teresting to see these densities as log probability functions,
particularly because the G0

A law is closely related to the class
of hyperbolic distributions [11]. Figure 3 shows the densities
of the G0

A(−2.5,7.0686/π) and the Gaussian distribution
N (1,4(1.1781−π/4)/π) distributions in semilogarithmic
scale, along with their mean value. The parameters were
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Figure 2: Densities of the G0
A(α,γα) distribution, with α ∈

{−1,−3,−9} (solid line, dashes, dash-dot, respectively) with uni-
tary mean.
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Figure 3: Densities of the G0
A(−2.5,7.0686/π) (solid line) and the

N (1,4(1.1781−π/4)/π) (dashes) distributions in semilogarith-
mic scale, with mean value in dash-dot.

chosen, using (6), so that these distributions have equal mean
and variance. The different decays of their tails in the loga-
rithmic plot are evident: the former behaves logarithmically,
while the latter decays quadratically. This behavior ensures
the ability of the G0

A distribution to model data with extreme
variability.

3. INFERENCE FOR THE G0
A MODEL

It can be seen that the maximum likelihood estimators of α
and γ based in X1, . . . , XN , represented here by α̂ML,N and
γ̂ML,N , respectively, are given by

α̂ML,N = −


 1
N

N∑
k=1

ln


1+


 Xk√

γ̂ML,N


2




−1

(8)

and by

γ̂ML,N =


1+ 2


 1
N

N∑
k=1

ln


1+


 Xk√

γ̂ML,N


2




−1



× 1
N

N∑
k=1

X2
k

1+ (Xk/√γ̂ML,N
)2 .

(9)

Assume α < −1/2 in order to have random variables
with finite mean. For each j = 1/2,1, define the jth order
moment as mj,N = N−1

∑N
k=1X

j
k. Using (6) it can be seen

that the half and first order moments estimators of α and γ
based onX1, . . . , XN ,denoted here by α̂MOM,N and by γ̂MOM,N ,
respectively, are given by the solution of

m1/2,N = γ̂1/4
MOM,N

Γ
(− α̂MOM,N − 1/4

)
Γ(1/4)

4Γ
(− α̂MOM,N

) ,

m1,N = γ̂1/2
MOM,N

√
πΓ

(− α̂MOM,N − 1/2
)

2Γ
(− α̂MOM,N

) .
(10)

Moment estimation is extensively used in remote sens-
ing applications [2], mainly because it is inexpensive from
the computational point of view and analytically tractable in
most situations. In the presence of corner reflectors, though,
severe numerical instabilities were observed.

A comparison among different estimators for rough-
ness parameter of the G0

A distribution was performed in [4]
through a Monte-Carlo experience. No contamination was
considered, and the α̂ML estimator was the best one in al-
most all cases with respect to the mean square error (mse)
and the closeness to the true value (bias) criteria, assuming
γ is known. No analytical comparison is possible, due to the
complexity of the estimators.

In previous works (see [12], for instance) it is shown that
moment and maximum likelihood estimators have many op-
timal properties when the observations, x1, . . . , xN are the
outcome from independent, identically distributed random
variables, with common density f(·, (α, γ)). Among these
properties, maximum likelihood estimators are asymptoti-
cally unbiased, that is, if X1, . . . , XN is a sequence of inde-
pendent, identically distributed random variables with com-
mon density f(·, (α, γ)) then, when N → ∞, it holds that
α̂MOM,N → α, γ̂MOM,N → γ, α̂ML,N → α, and γ̂ML,N → γ.
Nevertheless, good performance is neither warranted with fi-
nite samples nor if the sample does not obey precisely the
hypothesis. A common departure from classical hypothesis is
the contamination by a percentage of “outliers,” that is, when
some of the observed data come from a different distribution.

“Corner reflectors” can be considered outliers in SAR im-
agery. These are physical artifacts in the sensed area that re-
turn most of the power they receive. The image in these areas
is dominated by the biggest possible values admitted by the
storage characteristics, and their effect is typically limited to a
few pixels. Corner reflectors are either placed on purpose, for
image calibration, due to man-made objects, such as highly
reflective urban areas, or the result of double-bounce reflec-
tion [1].
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Since the routines that compute both ML- and M-
estimators require initial guesses, the unstable (and, therefore,
unacceptable) behavior of moment estimators demanded the
use of another technique. A procedure based on analogy using
order statistics and moments [13], defined in the following
for α < −1, was used.

If X is G0
A(α,γ) distributed the median of the scaled ran-

dom variable Y = X/E(X) can be computed using (5)

Q2 = 2√
π

√
α
√

1/2− 1
Γ(−α)

Γ(−α− 1/2)
. (11)

This scaled median does not depend on γ, so α̂ can be esti-
mated using the sample median q2(y), where y = (xi/x̄)i,
using standard numerical tools. An estimate of γ using the
first-order moment can then be computed as

γ̂ = 4
π
m2

1,N

(
Γ(−α̂)

Γ(−α̂− 1/2)

)2

. (12)

This estimator of α derived from (11) and the one computed
for γ through (12) will be called mixed estimator for (α, γ),
and denoted (α̂MIX, γ̂MIX).

In the following, ML- and M-estimators will be assessed
in two situations: the pure model, when no contamination is
present, and cases where outliers simulating a corner reflector
enter the data.

The contamination model here considered is defined
as a sequence of independent, identically distributed ran-
dom variables X1, . . . , XN with common distribution func-
tion F(·, (α, γ), ε, z) given by

F
(
x, (α, γ), ε, z

) = (1− ε)F(x, (α, γ))+ εδz(x), (13)

where δz(x) = 1[z,+∞)(x), with z a “very big” value with
respect to most of the values typically assumed by a random
variable with distribution G0

A(α,γ). Equation (13) describes
a contamination that occurs at random with probability ε,
that is, in average Nε out of N samples will be “very big”
values (corner reflectors), while N − Nε samples will obey
the G0

A(α,γ) distribution (the background). The flexibility
of the G0

A(α,γ) distribution will allow the modeling of any
kind of background, namely crops, forests, and urban areas.
The contamination value z will be chosen as a factor of the
mean value of the underlying distribution G0

A(α,γ).
Other contamination hypothesis may include different

distributions for the departure of the model, and/or spatial
dependence among observations.

In order to quantitatively assess the sensitivity of ML-
estimators in our case, using the strong law of large numbers
on (8) and assuming γ = 1, it is immediate that

lim
N→∞

α̂ML,N(z) = −
(
EF(·,(α,γ),ε,z)

(
ln
(
1+X2)))−1

= − 1
ε ln(1+ z2)− (1− ε)(1/α) .

(14)

Figure 4 shows, for α = −5, this limit as a function of ε,
the proportion of outliers in the sample, for several values of
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Figure 4: Asymptotic value of α̂ML, under the contaminated model
with α = −5, as a function of the proportion of contamination ε
and outlier values −45 (solid line),−30 (dots), and −15 (dashes).

the outlier z. Three values of z are shown for ε ∈ [0,0.1].
It can be seen that a sample that suffers from a small con-
tamination of ε = 0.02 leads to the wrong conclusion that
extremely heterogeneous targets are under observation, since
the estimated value will be around −3 whilst the true value
is −5 (corresponding to an heterogeneous target). The big-
ger the contamination the worse this behavior. This influence
on the ML-estimator is noticed regardless the value of z in
the chosen range. This result justifies a careful analysis of the
performance of estimators for a single representative value of
the contamination z, and for several values of ε, as presented
in Section 5.

4. M-ESTIMATORS

These estimators offer a useful alternative when small propor-
tions of values may be far from the bulk of data. A good survey
on these estimators and their use in practical situations can
be seen in [7]. The difficulty in our case arises due to the fact
that the underlying distribution is asymmetric. Inspired in
the work by Marazzi and Ruffieux [8], that robustified maxi-
mum likelihood estimators for the parameters of the gamma
distribution with success, we will compute M-estimators for
the parameters of the G0

A(α,γ) distribution.
One has to devise ways to prevent a large influence of

outliers in the likelihood equations. M-estimators propose
the use of ψ functions that truncate the score of influential
observations in the likelihood equations.

Let b1 and b2 be two real positive numbers. We will call
M-estimators of parameters α and γ based on the sample
X1, . . . , XN , the statistics α̂M,N , and γ̂M,N such that

N∑
k=1

ψb1

(
s1
(
Xk,

(
α̂M,N , γ̂M,N

))− c1
(
α̂M,N , γ̂M,N , b1

)) = 0,

N∑
k=1

ψb2(s2(Xk,
(
α̂M,N , γ̂M,N

))− c2
(
α̂M,N , γ̂M,N , b2

)) = 0,

(15)
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where s1 and s2 are given in (4), and ψb1 and ψb2 are

ψbi(x) =



−bi if x ≤ bi,
x if − bi < x < bi,
bi if x ≥ bi,

(16)

with x ∈ R and i = 1,2. Note that making these functions
the identity and c1 = c2 ≡ 0, equations (15) reduce to the
familiar system of likelihood equations. Figure 5 illustrates
the ψ6(x) function, where its effect on the data becomes
clear: it truncates the score of those values above and below
its threshold. In this manner, this function prevents abnormal
(too small and too big) data having excessive influence on the
estimates.

The functions ci : Θ× (0,+∞)→ R in (15) are defined in
such way that (α̂M,N , γ̂M,N)N is a sequence of asymptotically
unbiased estimators of (α, γ), that is,∫

ψb1

(
s1
(
x, (α, γ)

)− c1
(
α,γ, b1

))
f
(
x, (α, γ)

)
dx = 0,∫

ψb2

(
s2(x, (α, γ)

)− c2
(
α,γ, b2

))
f
(
x, (α, γ)

)
dx = 0,

(17)
for any (α, γ) ∈ Θ, b1 > 0 and b2 > 0. The computation of
these functions is presented in Appendices A and B.
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Figure 5: The ψ6 function used to define M-estimators.

The values b1 and b2, called “tuning parameters” are cho-
sen in such a way that the efficiency of the M-estimators is not
unacceptably poor with respect to the maximum likelihood
ones. Thus, we will choose b1 and b2 such that

V
(
α̂ML

)
V
(
α̂M

) 	 e1,
V
(
γ̂ML

)
V
(
γ̂M

) 	 e2, (18)

where V denotes variance, with 0.9 ≤ ei ≤ 0.975 for exam-
ple. This restriction imposes that the variance of the robust
estimators will not surpass those of the maximum likelihood
ones in more than a certain factor. The computation of these
parameters is done in Appendix C.

In order to assess the finite sample behavior of the pro-
posed estimators consider the situation whereN observations
from independent identically distributed G0

A(α,γ) random
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Figure 6: Maximum likelihood (continuous line) and M-(dotted
line) estimators for the estimation of α and γ in a sample with
N = 77 pure observations and M = 4 contaminated values.

variables are contaminated by L observations taking the value
z. The contaminated sample z = (z1, . . . , zN, z, . . . , z︸ ︷︷ ︸), where

the brackets denote the N + L outliers, will be used to esti-
mate α and γ. Depending on the true parameters, on the
contamination (the value z and the number of outliers L)
and on the sample size N, it is expected that any non-robust
estimator will be mislead by the departure from the hypoth-
esized model. Figure 6 shows the maximum likelihood and
M-estimators for the situation where N = 77 pure observa-
tions and L = 4 equal contaminated values are used. It can
be seen that the former suffers from both the departure from
the true model and from numerical instabilities (the peak
around the value 10). It is noticeable that the robust estima-
tor remains closer to the true value (the dash-dot line) than
the other in the presence of contamination. The bigger the
value of the contamination the further maximum likelihood
will go from the true value, while the M-estimator will render
the same estimate. The same behavior was observed for the
estimators of γ. The values employed for N, L, α and z are
representative of the kind of problem at hand: filtering im-
ages over a heterogeneous area (α = −3) with 9×9 windows
(N + L = 81) where some observations (L = 4) are due to a
corner reflector (z varying and taking large values).

5. RESULTS

A Monte-Carlo experience was performed to compare maxi-
mum likelihood (ML) and M-estimators (M), since analytical
comparisons are unfeasible. G0

A deviates can be obtained in
two ways, namely (a) by the inversion of the cumulative dis-
tribution function, given in (5), or (b) by the constructive
definition of this distribution, that is, returning z = √

y/x
where y is a sample of the unitary mean exponential dis-
tribution and x is a sample of the Γ(−α,γ) distribution, X
independent of Y . Alternative (b) was chosen in this experi-
ence. Since the parameter γ is a scale factor, all the studied
situations will use the parameter that makes the expected
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value 1, that is, γ = γα = 4(Γ(−α)/Γ(−α− 1/2))2/π .
We studied four models that will be identified as Models

1, 2, 3, and 4: Model 1 (the “ pure” model) consisting of sam-
ples of the F(·, (α, γα)) distribution; Model 2 consisting of
samples taken from the F(·, (α, γα), ε, z) distribution with
ε = 0.01 and z = 15 , Model 3 is a collection of samples ob-
tained from the F(·, (α, γα), ε, z) distribution with ε = 0.05
and z = 15, while Model 4 is a collection of samples obtained
from the F(·, (α, γα), ε, z) distribution with ε = 0.10 and
z = 15. In this manner, the pure situation and three levels
of contamination are examined. The contamination value z
is held fixed, as discussed in Section 3, as fifteen times the
expected value of the underlying model which is big enough
to describe corner reflectors.

In each of these models we deal with three situations,
namely with: Situation 1 (α = −1.0), Situation 2 (α = −3),
and Situation 3 (α = −6). These situations cover representa-
tive targets in practice: extreme heterogeneity, heterogeneity
and homogeneity.

In order to determine the number of replications an em-
pirical precision criterion was used. One hundred replications
(1 ≤ r ≤ R′ = 100) with samples of size N = 9 × 9 = 81
were performed. One estimator for α is computed for each
replication r , say α̂(r). The final number of replications
R = R′ + 	, 	 ≥ 1 integer, is the smallest number of sam-
ples that allows forming an asymptotic confidence interval
at the 95% level on the mean of the R estimators, that is,
2 × 1.96sR/

√
R < 0.5 where sR is the standard deviation of

the sample {α̂(1), . . . , α̂(R)}. This is computed for every es-
timator for α and every estimator for γ in every model and
every situation. The biggest number of replications R (the
worst case) is then used. This procedure led to R = 101 in
every model and every situation.

The following tables show the results obtained in this
study for each situation: for every model the sample mean of
the estimator over the R replications Ê(ζ) = R−1

∑R
r=1 ζ(r),

the mean square error mse = Ê(ζ−θ)2 = V̂ (ζ)+(Ê(ζ)−θ)2,
and the absolute relative bias B(ζ) = θ−1|Ê(ζ) − θ|, where
θ is the true value of the parameter and ζ is the estimator
under study.

In all the tables it can be seen that M-estimators are almost
as good as ML-estimators when there is no contamination,
while in the presence of outliers M-estimators exhibit smaller
absolute relative bias and smaller mean squared error. As α is
smaller (the observed region is more homogeneous), estima-

Table 1: Pure model (Model 1 where ε = 0) and three situations.

Ê(α̂) B(α̂) mse(α̂) Ê(γ̂) B(γ̂) mse(γ̂)

α = −1
ML −1.16 0.16 0.33 0.53 0.31 0.16

M −1.19 0.19 0.20 0.54 0.33 0.11

α = −3
ML −5.37 0.79 148.98 6.01 1.08 279.11

M −3.88 0.29 8.35 4.00 0.39 14.25

α = −6
ML −6.36 0.06 124.96 7.23 0.08 229.72

M −6.25 0.04 69.13 7.08 0.06 122.36

Table 2: Model 2 (ε = 0.01) and three situations.

Ê(α̂) B(α̂) mse(α̂) Ê(γ̂) B(γ̂) mse(γ̂)

α = −1
ML −0.97 0.03 0.22 0.41 0.01 0.08

M −1.01 0.01 0.15 0.49 0.20 0.08

α = −3
ML −2.96 0.01 25.07 2.72 0.05 46.06

M −3.10 0.03 3.28 3.17 0.10 5.65

α = −6
ML −2.76 0.54 16.10 2.89 0.57 22.32

M −4.28 0.28 7.41 4.77 0.29 9.43

Table 3: Model 3 (ε = 0.05) and three situations.

Ê(α̂) B(α̂) mse(α̂) Ê(γ̂) B(γ̂) mse(γ̂)

α = −1
ML −0.68 0.32 0.12 0.27 0.33 0.03

M −0.86 0.14 0.12 0.39 0.04 0.08

α = −3
ML −0.89 0.70 4.45 0.70 0.76 4.87

M −2.01 0.33 1.46 2.13 0.26 1.60

α = −6
ML −0.93 0.84 25.51 0.81 0.88 34.84

M −2.51 0.58 12.67 2.96 0.56 15.31

Table 4: Model 4 (ε = 0.10) and three situations.

Ê(α̂) B(α̂) mse(α̂) Ê(γ̂) B(γ̂) mse(γ̂)

α = −1
ML −0.61 0.39 0.16 0.25 0.38 0.08

M −0.71 0.29 0.13 0.33 0.18 0.04

α = −3
ML −0.69 0.77 5.34 0.52 0.82 5.60

M −1.39 0.54 2.80 1.56 0.46 2.24

α = −6
ML −0.71 0.88 27.88 0.58 0.91 37.08

M −1.70 0.72 18.85 2.15 0.68 21.20

tion becomes less reliable. This is probably due to the shape
of the likelihood function, that becomes flat and, therefore, is
hard to find its maximum location. The bigger the proportion
of contamination the worse the behavior of both estimators,
but M-estimators remain consistently closer to the true value
than ML-estimators, as expected.

As an application, the image shown in Figure 7 is ana-
lyzed. Windows of size 9 × 9 are used to estimate the back-
ground parameters over a trajectory that spans from the up-
per left corner to the lower right corner. This trajectory passes
through the three corner reflectors of the image, which are
clearly seen as white spots.

Figure 8 shows the result of computing both ML (solid
line) and M-estimators (dashes) over 9×9 windows in every
position of the trajectory in Figure 7. The dotted line shows
the background value of α, and the corner reflectors are lo-
cated in the positions marked with dash-dots. It is clear that
the M-estimator is consistently closer than the ML-estimator
to the true value at positions where there is contamination.
Besides that, it is always possible to compute M-estimators,
whereas ML-estimator fails to converge in 5 out of 45 posi-
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Figure 7: Image with three corner reflectors over a heterogeneous
background.
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Figure 8: Estimated α using 9 × 9 windows: ML (solid line) and
M-(dashes) estimators.

tions (the gaps in the solid line). Similar results were observed
estimating the scale parameter γ.

6. CONCLUSIONS AND FUTURE WORK

There are numerical problems with the computation of these
estimators for certain parameters. For small samples there is
often no solution, being this situation more critical for small
values of α, that is, for homogeneous areas. This issue will be
further investigated in future works.

As it can be seen from the tables, in the pure model
(Model 1), the behavior of the robust estimators is as good
as the maximum likelihood ones, as it is expected. In the

contaminated situations (Models 2 and 3), we can see that
estimation by moments or maximum likelihood methods is
poor.

It is relevant to notice that under a very small contami-
nation or a very small deviation from the model the behavior
of the classical estimators is not reliable.

This work will continue computing the M-estimators for
the multilook case, that is, for the n > 1 situation and for
polarimetric (multivariate) data. An alternative approach us-
ing alpha-stable distributions [14] is also possible, but at the
expense of loosing the interpretability of the parameters that
stem from the multiplicative model.

APPENDICES

A. COMPUTATION OF c1

Let α < 0. The problem consists of finding c1(α,1) that
satisfies I1(α, c1, b) = 0, where I1(α, c, b) =

∫∞
0 ψb((1/α)+

ln(1+u)− c)((−α)/(1+u)1−α)du is the equation that has
to be solved in order to define the M-estimators for the G0

A
distribution (equations (15)).

Lemma A.1. Let α < 0, then
(1) If exp(2αb) > bα + 1 then there exists c0, with −b +

α−1 < c0 < b +α−1 that satisfies I1(α, c0, b) = 0. In this case
c0 is αc0 = exp(αb +αc0 − 1).

(2) If exp(2αb) < bα + 1 then there exists c0, with c0 ≥
b + α−1 that satisfies I1(α, c0, b) = 0, and it is given by c0 =
α−1(ln(−α)+ ln(b)− ln(e−αb − eαb)+ 1).

Proof. The function G(c) = I1(α, c, b) is a continuous
monotone decreasing function, then

lim
c→−∞G(c) = b, lim

c→∞G(c) = −b. (A.1)

Therefore, there exits c0 that satisfies G(c0) = I1(α, c0, b) =
0. Denoting A = A(α, c) = exp(−b − (1/α) + c) − 1 and
B = B(α, c) = exp(b−α−1 + c)−1, then A < B and one can
write

ψb

(
1
α
+ ln(1+u)− c

)

=




−b if u < A,
1
α
+ ln(1+u)− c if A < u < B,

b if u > B.

(A.2)

If c < −b + α−1, then B < 0, and then I1(α, c, b) = b.
So, there is no c0 < −b + α−1 satisfying I1(α, c0, b) = 0. If
−b +α−1 ≤ c < b +α−1, then A < 0 < B and, therefore,

I1(α, c, b) =
exp(αb +αc − 1)

α
− c. (A.3)

As I1(α,−b +α−1, b) = b > 0, then c0 > −b +α−1, and

I1
(
α,−b + 1

α
,b
)
= 1
α
(

exp(2αb)− 1
)− b. (A.4)
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If I1(α,−b + (1/α), b) < 0, then there exits −b + α−1 <
c0 < b + α−1 such that I1(α, c0, b) = 0. This occurs when
exp(2αb) > bα+ 1 and c0 must satisfy

c0 = α−1 exp
(
αb1 +αc0 − 1

)
. (A.5)

If this is not the case, that is if exp(2αb) < bα + 1, then c
must be greater than b1 +α−1. Thus 0 < A < B and then,

I1
(
α, c, b1

)
= α−1( exp(αc +αb1 − 1

)− exp
(
αc −αb1 − 1

))− b1.
(A.6)

In this situation, c0 satisfying I1(α, c0, b) = 0 is given by
c0 = α−1(ln(−α)+ ln(b)− ln(e−αb − eαb)+ 1).

B. COMPUTATION OF c2

Let α < 0 and γ > 0. As for the computation of c1, the
problem of finding the function c2 consists of finding c2 =
c2(α, γ, b2) that satisfies

I2
(
α,γ, c2, b2

) = 0, (B.1)

where I2(α, γ, c, b2) =
∫∞
0 ψγb2(−α − (1−α)/(1+u) −

c)(−α)/(1+u)1−αdu. In this situation there are more cases
than in the computation of c1 due to the presence of the
parameter γ.

Lemma B.1. Letα < 0 and γ > 0. In order to find the function
c2 that satisfies (B.1) one has to consider the following cases:

(1) if 1−α− 2γb2 > 0 then
(a) if −(1 − α − 2γb2)1−α ≤ (γb2 − 1)(1 − α)1−α

then there exists c2 such that c2 ≤ (γb2 −
1), and it is given by the solution of c2 =
−((−γb2 −α− c2)/(1−α))1−α,

(b) if −(1 − α − 2γb2)1−α > (γb2 − 1)(1 − α)1−α
then c2 is given by

(i) the solution of γb2(1 − α)1−α = (γb2 −
α − c2)1−α − (−γb2 − α − c2)1−α if
(2γb2/(1−α))1−α − γb2 < 0, or

(ii) c2 = γb2 − α − (γb2)1/(1−α)(1 − α) if
(2γb2/(1−α))1−α − γb2 ≥ 0,

(2) if 1−α− 2γb2 ≤ 0 then c2 satisfying (B.1) is given by
(a) the solution of c2 = −((−γb2 −α− c2)/

(1−α))1−α, if γb2 < −α, or
(b) c2 = 0, if γb2 > −α and γb2 > 1, or
(c) c2 = γb2−α− (γb2)(1−α)

−1(1−α) if γb2 > −α
and γb2 ≤ 1.

Proof. As the function G(c) = I2(α, γ, c, b) is a continuous
monotone decreasing function, and

lim
c→−∞G(c) = b2, lim

c→∞G(c) = −b2, (B.2)

then there exists c2 that satisfiesG(c2) = I2(α, γ, c2, b2) = 0.

ψγb2

(
−α− 1−α

1+u − c
)

=




−γb2 if −α− 1−α
1+u − c < −γb2,

−α− 1−α
1+u − c if − γb2 < −α− 1−α

1+u − c < γb2,

γb2 if −α− 1−α
1+u − c > γb2.

(B.3)

Case 1. Suppose that 1−α−2γb2 > 0, soγb2−1 < −α−γb2.
If c ≤ γb2 − 1 and A = (1− γb2 + c)/(γb2 −α− c), then
c < −α− γb2, and

ψγb2

(
−α− 1−α

1+u − c
)

=




−γb2 if u < A,

−α− 1−α
1+u − c if A ≤ u ≤ B,

γb2 if u > B,

(B.4)

where B = (1+ γb2 + c)/(−γb2 −α− c); then

I2
(
α,γ, c, b2

) = −
(
−γb2 −α− c

1−α

)1−α
− c. (B.5)

Taking c = γb2 − 1 one has that I2(α, γ, γb2 − 1, b2) =
−(1−2γb2/(1−α))1−α− (γb2−1), therefore, if −(1−α−
2γb2)1−α ≤ (γb2 − 1)(1 − α)1−α one can say that there
exists c2(α, γ, b2) satisfying (B.1), given by the solution of
c2 = −((−γb2 −α− c2)/(1−α))1−α.

For the other situation, if −(1−α− 2γb2)1−α > (γb2 −
1)(1 − α)1−α one has to look for c2 in the interval (γb2 −
1,−α− γb2]. In this case,

I2
(
α,γ, c, b2

) = −γb2 +
(
γb2 −α− c2

1−α

)1−α

−
(
−γb2 −α− c2

1−α

)1−α
.

(B.6)

Replacing c in the above equation by −α − γb2 one ob-
tains I2(α, γ,−α − γb2, b2) = (2γb2/(1−α))1−α − γb2.
Then, if (2γb2/(1−α))1−α − γb2 ≤ 0, so there exists
γb2 − 1 < c2 ≤ −α − γb2 satisfying (B.1) and it is given
by the solution c2 that makes equation (B.6) zero.

But, when (2γb2/(1−α))1−α − γb2 > 0 one has to seek
for the solution of (B.1) in the interval (−α − γb2,+∞). In
this case

I2
(
α,γ, c, b2

) =
(
γb2 −α− c

1−α

)1−α
− γb2. (B.7)

Hence, c2 = γb2 −α− (γb2)(1−α)
−1(1−α).

Case 2. Consider the situation 1 − α − 2γb2 ≤ 0, so that
γb2 − 1 ≥ −α − γb2. If c ≤ −α − γb2 then one has that
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I2(α, γ, c, b2) = −((−γb2 −α− c)/(1−α))1−α − c. Taking
c = −α − γb2, then I2(α, γ,−α − γb2, b2) = α + γb2. As
I2(α, γ,−α − γb2, b2) < 0 if γb2 < −α, one can say that
c2 satisfying equation (B.1) is given by the solution of c2 =
−((−γb2 −α− c2)/(1−α))1−α.

But, if γb2 ≥ −α, one can take −γb2 − α < c ≤ γb2 −
1. In this case one has that I2(α, γ, c, b2) = −c, therefore
I2(α, γ, γb2−1, b2) = 1−γb2. Thus, if 1 < γb2 one can say
that the solution of equation (B.1) is c2 = 0.

If γb2 ≤ 1, then one takes c > γb2 − 1, leading to

I2
(
α,γ, c, b2

) = (γb2 −α− c
1−α

)1−α
− γb2. (B.8)

Hence, c2 = γb2 − α − (γb2)1/(1−α)(1 − α) is the solution
of (B.1).

C. COMPUTATION OF TUNING PARAMETERS

The definition of efficient M-estimators requires finding tun-
ing parameters b1 and b2 ensuring that the relative asymp-
totic variance (with respect to the variance of maximum
likelihood estimators) satisfies V(α̂ML)/V(α̂M) 	 e1 and
V(γ̂ML)/V(γ̂M) 	 e2 with, for instance, 0.9 ≤ ei ≤ 0.975.
V(α̂ML), V(γ̂ML) and V(α̂M), V(γ̂M) are the diagonal el-
ements of the asymptotic covariance matrix of the ML-
and M-estimators of parameters α and γ, here denoted by
V((α̂, γ̂)ML) and V((α̂, γ̂)M), respectively.

C.1. Computation of V((α,γ)ML)

We denote

V
(
(α, γ)ML

) = M(s, F(α, γ))−1J(α,γ)M
(
s, F(α, γ)

)−T ,
(C.1)

where F(α,γ) is the cumulative distribution function of
a random variable having G0

A(α,γ,1) distribution, s =
s(x, (α, γ)) is the vector of score functions,

J(α,γ) =
∫
s
(
x, (α, γ)

)
s
(
x, (α, γ)

)TdF(x, (α, γ)) (C.2)

is the Fisher information matrix, and

M
(
s, F(α, γ)

) = −∫ [ ∂
∂(α,γ)

s
(
x, (α, γ)

)]
dF
(
x, (α, γ)

)
.

(C.3)
It can be seen that

J(α,γ) =

 α−2

(
γ(1−α))−1(

γ(1−α))−1 −α((2−α)γ2
)−1


 , (C.4)

and that

M
(
s, F(α, γ)

) = J(α,γ)
=

 α−2

(
γ(1−α))−1(

γ(1−α))−1 −α((2−α)γ2
)−1


 .
(C.5)

Therefore, replacing matrix (C.4) and the inverse of ma-
trix (C.5) in equation (C.1), we have

V
(
(α, γ)ML

)

=

 α2(1−α)2 γα(1−α)(2−α)
γα(1−α)(2−α) −α−1γ2(1−α)2(2−α)


 .
(C.6)

C.2. Computation of V((α,γ)M)
We define

V
(
(α, γ)M

) = M(Ψ , F(α, γ))−1Q(α,γ)M
(
Ψ , F(α, γ)

)−T ,
(C.7)

where

Ψ = Ψ(x; (α, γ)
) =


ψb1

(
s1(x; (α, γ)

)− c1
(
α,γ, b1)

)
ψb2

(
s2(x; (α, γ)

)− c2
(
α,γ, b2

))

 ,

M
(
Ψ , F(α, γ)

) = − ∂
∂α

[∫
Ψ
(
x, (α, γ)

)
dF
(
x, (α, γ)

)]
,

Q(α,γ) =
∫
Ψ
(
x, (α, γ)

)
Ψ
(
x, (α, γ)

)TdF(x, (α, γ)).
(C.8)

The matricesM andQ are computed taking into account
all the cases that define the functions ci, i = 1,2, and solving
explicitly the integrals.

ACKNOWLEDGEMENT

The authors are grateful to Conicor, SeCyT, CNPq, and Vitae
for the partial support of this research.

REFERENCES

[1] C. Oliver and S. Quegan, Understanding Synthetic Aperture
Radar Images, Artech House, Boston, 1998.

[2] A. C. Frery, H.-J. Müller, C. C. F. Yanasse, and S. J. S. Sant’Anna,
“A model for extremely heterogeneous clutter,” IEEE Transac-
tions on Geoscience and Remote Sensing, vol. 35, pp. 648–659,
1997.

[3] J. Jacobo-Berlles, M. Mejail, and A. C. Frery, “The GA0 distri-
bution as the true model for SAR images,” in Simpósio Brasileiro
de Computação Gráfica e Processamento de Imagens, SBC, IEEE,
Campinas, SP, Brazil, 1999.

[4] M. Mejail, J. Jacobo-Berlles, A. C. Frery, and O. H. Bustos,
“Parametric roughness estimation in amplitude SAR images
under the multiplicative model,” Revista de Teledetección, vol.
13, pp. 37–49, 2000.

[5] M. E. Mejail, A. C. Frery, J. Jacobo-Berlles, and O. H. Bus-
tos, “Approximation of distributions for SAR images: Pro-
posal, evaluation and practical consequences,” Latin American
Applied Research, vol. 31, pp. 83–92, 2001.

[6] O. H. Bustos, “Robust statistics in SAR image processing,”
in Proceedings of the First Latino-American Seminar on Radar
Remote Sensing: Image Processing Techniques, pp. 81–89, ESA,
Paris, 1996.

[7] F. R. Hampel, E. M. Ronchetti, P. J. Rousseeuw, and W. A. Stahel,
Robust Statistics: The Approach Based on Influence Functions,
Wiley, New York, 1986.

[8] A. Marazzi and C. Ruffieux, “Implementing M-estimators of
the gamma distribution,” in Robust Statistics, Data Analysis,



114 EURASIP Journal on Applied Signal Processing

and Computer Intensive Methods, R. Helmut, Ed., vol. 109 of
Lecture Notes in Statistics, Springer-Verlag, Berlin, 1996.

[9] A. C. Frery, A. H. Correia, C. D. Rennó, C. C. Freitas, J. Jacobo-
Berlles, M. E. Mejail, and K. L. P. Vasconcellos, “Models for
synthetic aperture radar image analysis,” Resenhas (IME-USP),
vol. 4, no. 1, pp. 45–77, 1999.

[10] O. E. Barndorff-Nielsen and P. Blæsild, “Hyperbolic distribu-
tions and ramifications: Contributions to theory and applica-
tions,” in Statistical distributions in scientific work, C. Taillie
and B. A. Baldessari, Eds., pp. 19–44, Reidel, Dordrecht, 1981.

[11] A. C. Frery, C. C. F. Yanasse, and S. J. S. Sant’Anna, “Alter-
native distributions for the multiplicative model in SAR im-
ages,” in Quantitative remote sensing for science and applications,
IGARSS’95 Proc., pp. 169–171, IEEE, Florence, July 1995.

[12] P. K. Sen and J. M. Singer, Large Sample Methods in Statistics:
An Introduction with Applications, Chapman and Hall, London,
1993.

[13] C. F. Manski, Analog Estimation Methods in Economet-
rics, vol. 39 of Monographs on Statistics and Applied Prob-
ability, Chapman & Hall, New York, 1988, available at
http://elsa.berkeley.edu/books/analog.html.

[14] C. L. Nikias and M. Shao, Signal Processing with Alpha-Stable
Distributions and Applications, Wiley, New York, 1995.

Oscar H. Bustos received the B.S. degree
in Mathematics from the Universidad Na-
cional de Córdoba, Argentina, in 1970 and
the Ph.D. in Mathematics from the Univer-
sidad Nacional de San Luis, Argentina, in
1978. He is Professor at the Universidad Na-
cional de Córdoba (Mathematics, Physics
and Astronomy Institute) and his research
areas include mathematical and statistical
models for image processing, robustness in statistics and stochastic
simulation.

María Magdalena Lucini received the B.S.
degree in Mathematics from the Univer-
sidad Nacional de Córdoba (Mathematics,
Physics and Astronomy Institute) in 1996.
She is currently pursuing the Ph.D program
in Mathematics at the same university. Her
research interests are statistical signal pro-
cessing with emphasis in robust statistics,
estimation and filtering theory and appli-
cations in signal and image processing for imaging under severe
noise.

Alejandro C. Frery received the degree in
Electronic Engineering from the Universi-
dad de Mendoza, Argentina, in 1987. His
MSc degree was in Applied Mathematics
(Statistics) from the Instituto de Matemática
Pura e Aplicada (IMPA, Rio de Janeiro,
Brazil, 1990) and his Ph.D. was in Applied
Computing from the Instituto Nacional de
Pesquisas Espaciais (INPE, São José dos
Campos, Brazil, 1994). He is currently a lecturer the Computer Sci-
ence Institute of the Universidade Federal de Pernambuco, Brazil.
His research areas include stochastic models for image formation
and analysis, as well as stochastic simulation.

http://elsa.berkeley.edu/books/analog.html

	1. INTRODUCTION
	2. NOTATION AND MODEL DEFINITION
	3. INFERENCE FOR THE G0A MODEL
	4. M-ESTIMATORS
	5. RESULTS
	6. CONCLUSIONS AND FUTUREWORK
	APPENDICES A. COMPUTATION OF c1
	B. COMPUTATION OF c2
	C. COMPUTATION OF TUNING PARAMETERS
	ACKNOWLEDGEMENT
	REFERENCES

