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Voiced musical sounds have nonzero energy in sidebands of the frequency partials. Our work is based on the assumption, often
experimentally verified, that the energy distribution of the sidebands is shaped as powers of the inverse of the distance from the
closest partial. The power spectrum of these pseudo-periodic processes is modeled by means of a superposition of modulated 1/f
components, that is, by a pseudo-periodic 1/f -like process. Due to the fundamental selfsimilar character of the wavelet transform,
1/f processes can be fruitfully analyzed and synthesized by means of wavelets.We obtain a set of very loosely correlated coefficients
at each scale level that can be well approximated by white noise in the synthesis process.

Our computational scheme is based on an orthogonal P-band filter bank and a dyadic wavelet transform per channel. The P
channels are tuned to the left and right sidebands of the harmonics so that sidebands are mutually independent. The structure
computes the expansion coefficients of a new orthogonal and complete set of harmonic-band wavelets. The main point of our
scheme is that we need only two parameters per harmonic in order to model the stochastic fluctuations of sounds from a pure
periodic behavior.

Keywords and phrases: wavelets, 1/f -noise, spectral modeling.

1. INTRODUCTION

The purpose of this work is to introduce a technique for the
analysis and synthesis of pseudo-periodic signals based on a
special kind of multiwavelet transform: the harmonic-band
wavelet transform.

Long term correlation is detectable in a large class of
pseudo-periodic signals such as voiced sounds in speech and
music. These signals exhibit an approximate 1/f behavior
in the neighborhood of each harmonic partial fn = nf0 (n
integer), that is, a 1/|f − fn| behavior. The power spectrum
contains peaks, centered on the harmonics, whose shape is
influenced by the long-term correlation of the stochastic fluc-
tuations from the periodic behavior of the signal itself. From
aperceptual point of view, these chaotic but correlatedmicro-
fluctuations are relevant if one needs to emulate naturalness
and dynamics of sounds with a detectable pitch.

Our idea is strongly inspired by the fact that 1/f processes
arise not only in musical signals but also in many physical
and biological systems as well as in man-made phenomena

such as variations in traffic flow, economic data and fluctua-
tion of pitch in music [1, 2]. These processes are significantly
correlated at large time lags. Fractal models, such as frac-
tional Brownian motion (fBm) [3], discrete fractional Gaus-
sian noise (dfGn) or fractionally differenced Gaussian noise
(fdGn) [4], are useful for representing systems or describing
phenomena that are chaotic but strongly influenced by the
past.

In a recent paper [5] Wornell introduced a new powerful
method for the synthesis of 1/f stochastic processes bymeans
of orthonormal wavelet bases. The main point is that, in or-
der to obtain a good approximation of a given 1/f stochastic
process, it is possible to adopt collections of mutually un-
correlated zero-mean processes with proper scale-dependent
energy as wavelet synthesis coefficients. A single parameter is
sufficient to control the slope of the 1/f -shaped power spec-
trum. This parameter determines all the variances, that is, the
energies of the synthesis coefficients for each different wavelet
subband. Any random number generator can provide white
noise coefficients.
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Following Wornell’s result we introduce a scheme for the
analysis and synthesis of pseudo-periodic signals. In order to
do this we need

(a) to define in a formal way a pseudo-periodic signal
model, that is, the pseudo-periodic 1/f -like noise,

(b) todefine an appropriatemathematical tool for the anal-
ysis and the synthesis of this type of signals.

The theoretical effort of Section 3 is aimed at solving
both problems by introducing a general cosine modulation
and demodulation scheme. Thanks to this scheme we are
able to provide a rigorous definition of the pseudo-periodic
1/f -like noise, as well as to define the multichannel filter
bank basis functions. The latter allow us to extend the class
of multiplexed wavelet transforms [6, 7] by introducing the
Harmonic-Band Wavelet Transforms (HBWT). We obtain a
new form of wavelet transform that provides a well-suited
tool for separating and analyzing the harmonics of sounds
with a detectable pitch. Harmonic separation is performed
by means of the cosine modulate multichannel filter banks.
Each harmonic is then analyzed by means of a wavelet fil-
ter bank, according to Wornell’s technique. Compared to the
multiplexed wavelet transforms, the harmonic-band wavelets
allow us to process each semiband of each partial indepen-
dently.

As inWornell’smodel,we show that it is possible tomodel
the HBWT expansion coefficients of pseudo-periodic sig-
nals by means of white noise with suitable scale-dependent
variances. These variances are the parameters controlling the
shape of the spectrum, that is, the 1/f -like behavior in the
neighborhood of each harmonic partial.

The claim of our synthesis technique is that it allows one
to control a highly complex stochastic process by means of
relatively few parameters. Given a sound signal with a de-
tectable pitch, we are able to grasp the essence of its evolu-
tion by means of perceptually relevant quantities. Roughly
speaking, our scheme is a sort of additive synthesis in which
instead of summing pure sinusoidal functions we add mod-
ulated fractal signals together.

For an overview on wavelet transforms and cosine modu-
lated filter banks the reader is referred to the existing literature
(see [8, 9, 10, 11, 12]).

The paper is organized as follows. In Section 2, we briefly
review Wornell’s result on the synthesis of 1/f processes
by means of wavelet transforms. In Section 3, we define the
pseudo-periodic 1/f noise process by means of a harmonic-
bandmodulation and demodulation scheme. In Section 4,we
illustrate the theoretical result on which our new method of
synthesis is based. The proof of the main theorem is reported
in Appendix A. In Section 5, we briefly review discrete-time
harmonic-band wavelets and their properties. We also de-
scribe an operational scheme for the analysis and synthesis of
pseudo-periodic 1/f noise. Section 6 illustrates applications
to music synthesis. We provide results on harmonic-band
wavelet analysis of real-life sounds and examples of the new
method of synthesis. Finally, in Section 7 we draw our con-
clusions.

2. SYNTHESIS OF 1/f-NOISE BYMEANS OF DWT

In [5, Theorem 3] Wornell shows that, given an orthonormal
wavelet basis ψn,m(t) and a collection of mutually uncor-
related zero-mean synthesis coefficients xn(m) we obtain a
process

x(t) =
∞∑

n=−∞

∞∑
m=−∞

xn(m)ψn,m(t) (1)

which is nearly 1/f , that is, its time-averaged power spectrum

S̄x(ω) = σ2
∞∑

n=−∞
2γn∣∣Ψ(2nω

)∣∣2 (2)

satisfies the relations

σ2
L,q

|ω|γ ≤ S̄xω ≤ σ2
U,q

|ω|γ (3)

for some 0 < σ2
L ≤ σ2

U < ∞. The following autosimilarity
relationship holds for any integer k:

|ω|γSx(ω) = ∣∣2kω
∣∣γSx

(
2kω

)
. (4)

In order to extend this result to pseudo-periodic signals,
we will introduce a new set of multiwavelets. These multi-
wavelets are associated to a continuous-time filter bank with
an infinite number of channels, whose outputs are sampled
and analyzed by means of the Discrete-Time Wavelet Trans-
form (DTWT).

For our developments we need a discrete-time counter-
part of Wornell’s results. It is easy to show that the discrete-
time synthesis process

x(l) =
N∑

n=1

∞∑
m=−∞

bn(m)ψn,m(l)+
∞∑

m=−∞
aN(m)φN,m(l),

(5)

where φN,0(l) is the scaling sequence relative to the DTWT
ψn,0(l), is wide-sense cyclostationary (WSCS) of period 2N

with average power spectrum

S̄N(ω) =
N∑

n=1

2nγ |Ψn,0(ω)|2
2n + 2Nγ |ΦN,0(ω)|2

2N . (6)

Here Ψn,0(ω) represents the DTFT of the wavelet sequence
ψn,0(l) andΦn,0(ω) represents the DTFT of the correspond-
ing scaling sequence φn,0(l).

Let G(ω) and H(ω) be the frequency responses of
the QMF filters used to generate the discrete-time dyadic
wavelets ψn,0(l) as in [11]. They satisfy the relationships:

|G(ω)|2 + |H(ω)|2 = 2,

H(ω)G∗(ω+π)+H∗(ω+π)G(ω) = 0.
(7)
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Figure 1: 1/f -like noise: synthesized by means of Daubechies
wavelet (solid line), synthesizedby ideals bandpasswavelets (dashed-
dotted line) and ideal 1/f behaviour (dashed-line).

From this and the recursive definition of the DTWT, we
have ∣∣Ψn,0(ω)

∣∣2

2n =
∣∣G(2n−1ω

)
Φn−1,0(ω)

∣∣2

2n

=
∣∣G(2n−1ω

)∣∣2

2

n−2∏
r=0

∣∣H(2rω
)∣∣2

2
.

(8)

The spectrum in (6) is a multilevel approximation of a 1/f
behavior as depicted in Figure 1. The accuracy of the approxi-
mation depends on the flatness and on the order of the filters.
In the case where H and G are ideal filters, that is, for

H(ω) =

√

2 if − π
2

< ω <
π
2
,

0 otherwise,
(9)

and G(ω) = √2−H(ω), we obtain from (8)∣∣Ψn,0(ω)
∣∣2

2n

=


1 for ω ∈

[(
1− 2n − 1

2n

)
π,
(

1− 2n−1 − 1
2n−1

)
π
]
,

0 otherwise,
(10)

which yields a synthesized power spectrum

S̄N(ω)

= 2Nγχ[0,(1−(2N−1)/2N)π](ω)

+
N∑

n=1

2nγχ[(1−(2n−1)/2n)π,(1−(2n−1−1)/2n−1)π](ω), ω > 0,

(11)
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Figure 2: Magnitude of the DTFT of the discrete-time scaled
wavelets and order 4 scaling sequence based on Daubechies filters
of order 11.

where

χ[0,1](ω) =
1 for 0 ≤ω ≤ 1

0 otherwise.
(12)

This corresponds to the staircase function shown in Figure 1.
While staircase approximation adopting octave bands

ideal filters has a pure demonstrative value, the ap-
proximation obtained by means of easily implementable
Daubechies’ filters provides a very accurate approxima-
tion of the spectrum as shown in Figure 1. This re-
sult can be appreciated from Figure 2, where we plot the
magnitude DTFT of scaled Daubechies’ wavelets of or-
der 11.

The autosimilarity relation (4) does not carry over to
discrete-time since the invariance for scale is only approxi-
mately true in that case.

3. MODULATED 1/f-NOISE

In this section we consider a general modulation and de-
modulation scheme that leads to a useful representation of
pseudo-periodic processes. Based on this scheme we provide
a definition of pseudo-periodic 1/f -like noise suitable for the
synthesis and the analysis of sounds.

3.1. Harmonic-band modulation and demodulation

The frequency spectra of pseudo-periodic signals are char-
acterized by harmonically spaced peaks at frequencies ω̄k =
2πk/TP , where TP is the average period of the signal. In order
to separate the contribution of each of the harmonic bands,
one can devise a set of ideal narrow-band filters of bandwidth
∆ω = π/TP each fitting a single sideband of the harmonics
(see Figure 3). The magnitude of the Fourier transform of
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Figure 3: Harmonic subband allocation.

these filters is given by

Hq(ω) =

χ[qπ/TP ,(q+1)π/TP [(ω), q ≥ 0,

χ]qπ/TP ,(q+1)π/TP ](ω), q < 0,
(13)

where q = 0,±1,±2, . . . , and

χ[A,B[(ω) =
1 if A ≤ω < B,

0 otherwise
(14)

is the characteristic function of the interval [A, B[. In our
notation, the positive frequency right sideband R+ of the kth
harmonics corresponds to the band indexed by q = 2|k|. Its
negative frequency companion, which we still denote as the
right sideband R−, is the band indexed by q = −2|k| − 1.

Similarly, positive and negative left sidebands, L+ and L−,
are indexed, respectively, by q = 2|k| − 1 and q = −2|k|.
Notice that for the d.c. component (k = 0) the bands R−
and L−, respectively, coincide with the bands L+ and R+. The
outputs of these filters may be baseband shifted, according to
a suitable demodulation scheme. In dealing with real signals,
it is convenient to combine positive and negative frequencies
in such a way that the resulting component signal is still real.
This is achieved by demodulating the output of each filter
by the frequency of the corresponding harmonics, that is, by
multiplying the band q signal by

1
2
e−j(q/2�(2π/TP )t+βq), (15)

where βq = β−q−1 are otherwise arbitrary phase factors. We
then add together the outputs of the demodulated R+ and
R−, and those of the demodulated L+ and L−. This results in
the demodulation scheme reported in Figure 4. Considering
couples of positive and symmetric negative bands, demod-
ulation may be described as the projection 〈Kq(t,•), x(•)〉,
q = 0,1, . . . , of a signal x(t), where Kq is a set of real linear
operators with kernels

Kq(t, τ) = 1
TP

cos
(
t − (−1)q(2q + 1)τ

2TP
π + βq

)
× sinc

(
t − τ
2TP

)
, q = 0,1, . . . ,

(16)

where the sinc function represents ideal lowpass filtering,

L+ L−

− π
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ω
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ω− 2π
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ω

Figure 4: Baseband shift of harmonic sidebands: (b) sidebands of
the 2nd harmonics; (a) demodulation of the left sidebands; (c) de-
modulation of the right sidebands.

properly baseband demodulated by the cosine term. The op-
erators described by the kernels (16) perform a harmonic
cosine demodulation to baseband of the signal subband with
frequency support in

Wq ≡
⌋−(q + 1)π

TP
,
−qπ
TP

⌋
∪
⌊qπ

TP
,
(q + 1)π

TP

⌊
. (17)

The presence of the constant phase factors βq allows us
to generalize the cosine demodulation scheme to other
schemes, such as sine demodulation. We denote by Vq
the L2 subspace of signals bandlimited to Wq. The op-
erator Kq defines an isomorphism Vq ↔ V0, where V0

is the space of bandlimited baseband signals, with fre-
quency support in ] − π/TP ,π/TP[. In fact, one can ver-
ify that Kq is invertible, with inverse kernel K−1

q (t, τ) =
Kq(τ, t) = K†q(t, τ), where the symbol † denotes the
adjoint. Hence Kq is unitary. Conversely, the operators
K−1

q perform a harmonic cosine modulation, reposition-
ing the demodulated subband to the domain (17). It
should be noted that, unless q = 0, domain and range
space of the operator are different. Thus, Kq and K−1

q
do not commute, rather the domain and range space
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Figure 5: Model pseudo-periodic power spectrum.

of K−1
q Kq is Vq, while the domain and range space of

KqK−1
q is V0. Also, the identity operator in Vq has ker-

nel Iq(t, τ) = (1/TP) cos((2q + 1)π(t − τ)/2TP) sinc((t −
τ)/2TP), which, for q = 0, corresponds to I0(t, τ) =
(1/TP) sinc((t − τ)/TP).

Harmonic cosine modulation and demodulation is the
main ingredient of our representation and formal definition
of pseudo-periodic signals.

3.2. Pseudo-periodic 1/f-like noise

We model acoustic pseudo-periodic signals with fundamen-
tal frequency f0 = ω0/2π by means of a superposition of
cosine modulated bandlimited 1/f processes. Each process
contributes to a single side band of one of the harmonics of
a pseudo-periodic signal. Each one of these 1/f processes
is characterized by two parameters σ and γ (see equation
(2)). The parameter σ controls the global energy of the pro-
cess, while the parameter γ controls the slope of the spectral
curve. In the pseudo-periodic case we denote each harmonic
partial by means of the index k and we distinguish between
the left and right sideband by means of the indexes L and
R, respectively. We obtain a set of parameters σ2

k,R and σ2
k,L,

corresponding to the amplitudes of the side bands of the har-
monics k and a set of parameters γk,R and γk,L controlling
the slope of their 1/f -like spectra.

An example of pseudo-periodic spectrum is shown in
Figure 5. The modulating frequencies are chosen to be har-
monically related. The bandwidth B of each process equals
half the harmonic spacing, that is, B =ω0/2.

In otherwords, the average spectrumof themodel process
has the following form:

S(ω) =
∞∑

q=0

σ2
q,R∣∣ω− qω0

∣∣γq,R χ[qω0,(q+1/2)ω0[(ω)

+ σ2
q,L∣∣ω− qω0

∣∣γq,L χ[(q−1/2)ω0,qω0[(ω), ω ≥ 0.

(18)

We can provide a formal definition of pseudo-periodic 1/f -
like noise that extends that of the 1/f noise given in [5]. In
fact, if each sideband of the harmonics is baseband shifted
by means of cosine demodulation, as described in the pre-
vious section, the resulting process is 1/f , bandlimited to
[−ω0/2,ω0/2]. This is equivalent to say that, by passing the
demodulated component processes through an ideal band-
pass filter

H(ε)(ω) = χ[−ω0/2,−ε](ω)+ χ[ε,ω0/2](ω), (19)

where ε is arbitrarily small,oneobtains afinite-variancewide-
sense stationary process. This is actually the main idea of
the definition of 1/f in [5]. Therefore, we can provide the
following definition.

Definition 1. A stochastic process x(t) is said to be a 1/f -
like pseudo-periodic noise if there exists a TP > 0 such that
when x(t) is operated by Kq in (13) it yields a collection of
processes

wq(t) =
∫∞
−∞

Kq(t, τ)x(τ)dτ, q = 0,1, . . . (20)

which, when filtered through H(ε)(ω), with ω0 = 2π/TP ,
become wide-sense stationary and bandlimited processes
with power spectrum

Swq(ω) =


σ2

q

|ω|γq
if ε < |ω| < ω0

2
,

0 otherwise,
(21)

for some γq and σq.

The operations involved in (20) are equivalent to filtering
the single sidebands of each of the harmonics, separately for
the positive and negative frequencies, and properly baseband
shifting the result. The phase factors βq in (16) are arbitrary.
It can be shown that the power spectrum Swq(ω) does not
depend on the choice of βq. Similarly, any signal generated
by harmonic modulation of a 1/f baseband process with
arbitrary phase yields a 1/f process when demodulated by
means of (20).

This is true even if the phase factors do not coincide.
Therefore, our definition is consistent.

Comparing (21) with the model spectrum in (18), we can
make the following associations:

γ2q−1 = γq,L, γ2q = γq,R,

σ2q−1 = σq,L, σ2q = σq,R.
(22)

Since the resulting processes wq(t) in Definition 1 are ban-
dlimited to [−ω0/2,ω0/2], they can be sampled with sam-
pling rate ω0/2π = 1/TP . It can be shown that the op-
erations in (20) followed by sampling at a rate 1/TP are
equivalent to the projection of x(t) on the set of functions
{gq,k(t)}q=0,1,... ;k∈Z, defined as follows:

gq,k(t) = gq,0
(
t − kTP

)
(23)
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with

gq,0(t) = 1√
TP

cos
(

2q + 1
2TP

πt
)

sinc
(

t
2TP

)
. (24)

The set in (23) is easily shown to form an orthonormal ba-
sis. The functions gq,0(t) are the impulse responses of ideal
bandpass filters, with passband (17), that is, the sinc(t/2TP)
ideal lowpass filter with passband ] − π/TP ,π/TP[, modu-
lated to the band (17) by the cosine function. It is clear that
the coefficient obtained by projecting a signal x(t) on a basis
element gq,k(t), where k corresponds to the time kTP and
q corresponds to the band (17), is just the sample at time
kTP of the component of x(t) bandlimited to (17), that is,
〈x,gq,k〉 =

√
TPwq(kTP).

4. SYNTHESIS OF PSEUDO-PERIODIC 1/f-LIKE NOISE
BYMEANS OF HARMONIC-BANDWAVELET
TRANSFORM

In order to extend Wornell’s results to the synthesis of 1/f
pseudo-periodic processes by means of wavelet bases, and to
introduce their discrete-time counterpart we need the follow-
ing lemma.

Lemma 1. A stochastic process x(t) defined as follows:

x(t) =
∞∑

q=0

∞∑
k=−∞

νq(k)gq,k(t), (25)

where the gq,k(t) are given in (23) and {νq(k)} are
jointly stationary discrete-time stochastic processes, that is,
Rνq,νq′ (k, k

′) = Rνq,νq′ (k − k′), is wide sense cyclostationary
(WSCS) with period TP .

Proof. We have

Rx
(
t + rTP , t′ + rTP

)
= E

{( ∞∑
q=0

∞∑
k=−∞

νq(k)gq,k
(
t + rTP

))

×
( ∞∑

q′=0

∞∑
k′=−∞

νq′
(
k′
)
gq′,k′

(
t′, rTP

))}
(26)

which, by making the substitutions k′ −k = l and r −k = k′′
and using (23) becomes

Rx
(
t + rTP , t′ + rTP

)
=

∞∑
q,q′=0

∞∑
l,k′′=−∞

gq,0
(
t − k′′TP

)
× gq′,0

(
t′ − (l+ k′′

)
TP
)
Rνq,νq′ (l)

= Rx(t, t′),

(27)

which does not depend on r .

We now introduce a continuous time multiwavelet basis
forming the harmonic-band wavelet set:

ξn,m,q(t) =
∑
r

ψn,m(r)gq,r (t), (28)

where n ∈ N, m ∈ Z, q = 0,1, . . . , P , P ∈ N and
{ψn,m(r)}n∈N, m∈Z is an ordinary discrete-time wavelet ba-
sis while gq,r (t) are defined in (19).

The Fourier transforms of the harmonic-band wavelets
correspond to comb versions of ordinary wavelets, filtered by
the filterbank with frequency responses Gq,0(ω):

Ξn,m,q(ω) = Ψn,m
(
TPω

)
Gq,0(ω). (29)

In (29) Gq,0(ω) is the Fourier transform of gq,0(t) and
Ψn,m(TPω) is the Fourier transform of a Comb wavelet [6].
This means that we have infinite comb wavelets, one for each
q, and that the action of filtering is essentially equivalent to
selecting a single sideband of the harmonics. What we have
obtained is to wavelet transform each single sideband inde-
pendently. Furthermore, the harmonic-band wavelets (28)
satisfy the following shift covariance property:

ξn,m,q
(
t + 2NrTP

) = ξn,m−2N−nr ,q(t). (30)

Consider the case where the {νq(k)} in (25) are WSCS pro-
cesses with period 2NP (see also (5)) defined as follows:

νq(r) =
N∑

n=1

∞∑
m=−∞

βn/2
q νn

q (m)ψn,m(r), (31)

where the νn
q (m) are unit variance mutually uncorrelated

coefficients, while βq = σ2
q 2γq are scale dependent energy

factors. We can prove the following lemma.

Lemma 2. A stochastic process x(t) such that

x(t) =
∞∑

q=0

∞∑
k=−∞

νq(k)gq,k(t)

=
∞∑

q=0

N∑
n=1

∞∑
m=−∞

βn/2
q νn

q (m)ξn,m,q(t),

(32)

where the ξn,m,q(t) are defined in (28), is cyclostationary with
period 2NTP .

Proof. We have

Rx
(
t + 2NrTP , t′ + 2NrTP

)
= E


 ∞∑

q=0

N∑
n=1

∞∑
m=−∞

βn/2
q νn

q (m)ξn,m,q
(
t + 2NrTP

)

×
 ∞∑

q′=0

N∑
n′=1

∞∑
m′=−∞

βn′/2
q νn′

q′ (m
′)ξn′,m′,q′

(
t′ + 2NrTP

) .

(33)

By using (23), the shift property (30) and the fact that
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Rνn,q,νn′ ,q′ (m,m′) = βn
qδn,n′;q,q′;m,m′ , equation (33) be-

comes

Rx
(
t + 2NrTP , t′ + 2NrTP

)
=

∞∑
q=0

N∑
n=1

∞∑
m=−∞

βn
qξn,m−2N−nr ,q(t)ξn,m−2N−nr ,q

(
t′
)
.

(34)

Finally, by the substitution m′ =m− 2N−nr we obtain

Rx
(
t + 2NrTP , t′ + 2NrTP

)
=

∞∑
q=0

N∑
n=1

∞∑
m′=−∞

βn
qξn,m,q(t)ξn,m,q

(
t′
) = Rx

(
t, t′

) (35)

which is independent of r .
The same result holds for the scale residue in (5).

We are then able to derive the following result for the
synthesis.

Proposition 1. Consider an orthonormal set of functions
{gq,k(t)}q=0,1,... ;k∈Z, as defined in (23) and a collection of
jointly uncorrelated sets of coefficients {νq(k)}q=0,1,..., related
to (5) by the following relation:

νq(k) = 1√
TP

x(k)

= 1√
TP

( N∑
n=1

∞∑
m=−∞

bn,q(m)ψn,m(k)

+
∞∑

m=−∞
aN,q(m)φN,m(k)

)
,

(36)

where {bn,q(m)} and {aN,q(m)} are jointly uncorrelatedWSS
white noise processes with variances Var{bn,q(m)} = σ2

q 2nγq

and Var{an,q(m)} = σ2
q 2Nγq . Then the random process

s(t) =
∞∑

q=0

∞∑
m=−∞

νq(m)gq,m(t), (37)

has an average power spectrum of the form

S̄(ω) = 1
TP

∞∑
q=0

σ2
q
∣∣Gq,0(ω)

∣∣2

×
( N∑

n=1

2nγq
∣∣Ψn,0

(
ωTP

)∣∣2 + 2Nγq
∣∣Φn,0

(
ωTP

)∣∣2
)
.

(38)

For the proof see Appendix A.
In the ideal case∣∣Gq,0(ω)

∣∣2

= (χ]−(q+1)π/TP ,−qπ/TP ](ω)+ χ[qπ/TP ,(q+1)π/TP [(ω)
)

(39)
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Figure 6: Synthesized pseudo-periodic 1/f -like noise: three har-
monics with different σq andγq. (a) solid line: synthesized by DCT
and Daubechies wavelet (b) dotted line: synthesized by ideal filter
banks (c) dashed line: ideal spectrum behaviour.

and (38) is approximately 1/f near each harmonic 2l(π/TP)
with k = �(q + 1)/2�, q = 0,1, . . . .

That is, for

(2l− 1)
π
TP

≤ω ≤ 2l
π
TP

if q is odd (right semiband),

(40)
or

2l
π
TP

≤ω ≤ (2l+1)
π
TP

if q is even (left semiband), (41)

we have

σ2
L,q∣∣ω− 2l(π/TP)

∣∣γq ≤ S̄N(ω) ≤ σ2
U,q∣∣ω− 2l(π/TP)

∣∣γq (42)

for some 0 < σ2
L,q ≤ σ2

U,q <∞.
It follows from Proposition 1 that one can synthesize a

signal with an approximately pseudo-periodic 1/f -like be-
havior, as shown in Figure 6.

This is the main result of our scheme. The inverse
harmonic-band wavelet transform with random coefficients
is used as a synthesis scheme for pseudo-periodic 1/f -like
noise. We are able to simulate a real-life pseudo-periodic sig-
nal with arbitrary pitch P . The parameters necessary to define
the behavior of each sideband are only two: σq and γq. They
control, respectively, the amplitude and the slope of the side-
band spectrum.

5. DISCRETE-TIME HARMONIC-BANDWAVELETS

The discrete-time counterpart of (23) is the basis associated
with an ideal P band filterbank, where P is the length in
samples of the period of the pseudo-periodic signal. In order
to obtain an efficient scheme for the analysis and synthesis of
pseudo-periodic 1/f noise we consider an approximation of
the ideal filterbank by a perfect reconstruction structure [12].
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Figure 7: Magnitude of the DTFT of the cosine modulated filters
(28).

In particular,we consider the class of type IV cosine mod-
ulated bases, whose Fourier transform magnitude is shown
in Figure 7

hq,r (l) = hq,0(l− rP), q = 0, . . . , P − 1; r ∈ Z,

hq,0(l) = W(l) cos
(

2q + 1
2P

(
l− M − 1

2

)
π − (−1)q

π
4

)
,

(43)

where the lengthM lowpass prototype impulse responseW(l)
satisfies the symmetry conditions given in [13]. That is, for
even P

W(l) = W(2P − l− 1) for l = 0, . . . ,2P − 1, (44)

W2(l)+W2(P − l− 1) = 2 for l = 0, . . . , P − 1, (45)

W(l) = 0 for l < 0, l > 2P − 1. (46)

For odd P , (45) is replaced by

W2(l)+W2(P − l− 1) = 2 for l = 0, . . . , P − 1, l �= P − 1
2

,

W
(
P − 1

2

)
= 1 for l = P − 1

2
.

(47)

A straigthforward computation shows that the conditions of
orthogonality and completeness of harmonic-band wavelets
are satisfied. In other words,

1
P

∞∑
l=−∞

W(l− rP)W(l− r ′P)

× cos
(

2q + 1
4P

(
2(l− rP)− P + 1

)
π
)

× cos
(

2q′ + 1
4P

(
2(l− r ′P)− P + 1

)
π
)
= δk,k′δr,r ′

(48)
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Figure 8: Magnitude Fourier transform of harmonic-band wavelet.

for orthogonality, while for completeness we have

1
P

∞∑
r=−∞

P−1∑
q=0

W(l− rP)W(l′ − rP)

× cos
(

2q + 1
4P

(
2(l− rP)− P + 1

)
π
)

× cos
(

2q + 1
4P

(
2(l′ − rP)− P + 1

)
π
)
= δl,l′ .

(49)

In order to synthesize the samples of 1/f -like processes
wq(k), we adopt the discrete-time counterpart of the scheme
illustrated in Section 2. The overall structure is realized by in-
troducing the discrete-time harmonic-band wavelets and the
synthesis is achieved by using white noise coefficients. The
discrete-time harmonic-band wavelets are defined by

ξn,m,q(k) =
∑
r

ψn,m(r)hq,r (k),

n = 1,2, . . . , N; m ∈ Z; q = 0,1, . . . , P − 1,
(50)

where ψn,m(r) are discrete-time ordinary wavelets [8] and
hq,r (k) are the cosine modulated functions (43). The DTFT
of the basis elements (50) are shown in Figure 8.

A structure for computing the discrete-time harmonic-
band wavelet transform and its inverse is shown in Figure 9,
where the blocksWTdenotewavelet transformand the blocks
IWT denote its inverse.

In the analysis structure, the signal is sent to a P channel
filterbank separating the semibands. In view of perfect recon-
struction, the output can then be downsampled by P . Each
P-downsampled signal is then wavelet transformed (WT
block). Signal reconstruction is achieved by separately inverse
wavelet transforming the harmonic-band wavelet coefficients
and passing these sequences through the inverse P channel
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x(k) h0,0(−k)
P

WT

h1,0(−k)
P

WT
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(a) Harmonic band wavelet coefficients.

h0,0(k)

P
IWT

h1,0(k)

P
IWT

hP−1,0(k)
P

IWT

x(k)

(b) Harmonic band wavelet coefficients.

Figure 9: Harmonic-band wavelet transform: (a) analysis and (b)
synthesis structures.

filterbank with upsampling factor P . Upsampling moves the
spectrum of each subsignal back to its proper subband.

The harmonic-band wavelets generalize the Multiplexed
Wavelets (MW), recently introduced in [6, 7], to which they
revert when hq,0(k) = δ(k), where δ(k) is the unit pulse
sequence. Similarly to the MW, harmonic-band wavelets
are useful for separating, for each harmonics, the sinu-
soidal behavior (scaling component) from transients and
noise (wavelet components). The idea of our model is to
employ the theoretical result of Proposition 1 in order to
have an efficient scheme for synthetically reproducing the
noisy sidebands of the spectrum of voiced sounds in mu-
sic. Experimental results confirm the validity of the 1/f
model for the sidebands in a wide class of musical pseudo-
periodic signals. Thanks to the result of Proposition 1 we
can easily reproduce the synthesis coefficients in our scheme
by means of white noise or weakly correlated noise. The
coefficient energy is controlled by few parameters (2 per
each semiband) drawn from the analysis scheme of the
signal.

6. APPLICATIONS TOMUSIC SYNTHESIS

The results of Section 3 are useful for the synthesis of the
stochastic microfluctuations of the steady part of sounds.

1 2 3 4 5 6 7 8 9 10

HBWT tessellationtime-frequency

Figure 10: Spectral subdivision, dotted: deterministic component,
gray: pseudo-periodic 1/f -like model, dark gray: shot noise model.

That is, we are able to synthesize the part of the power
spectrum of a pseudo-periodic sound that is well repre-
sented by means of a pseudo-periodic 1/f -like model. In
other words, the harmonic-band wavelet subbands of each
harmonic peak are well suited to represent the stochas-
tic fluctuations with respect to the harmonic components.
In Figure 10 this part of the spectrum is shadowed in
gray and corresponds to the 2nd, 3rd, and 4th harmonic-
band wavelet subbands. The deterministic component, cor-
responding to the dotted areas in Figure 10, is represented
by the scaling component. We just resynthesize it from the
set of analysis coefficients in order to maintain the time
coherence of the harmonic part of the original sounds. In
view of the downsampling factor 2N this requires only few
samples.

From an auditory point of view, the HBWT subbands
contain all the information relative to the timbre dynamic,
that is, the“life”of sound.Bymeans of our technique a separa-
tion of the harmonic peaks and the stochastic components is
straightforward. The perfectly reconstructed harmonic com-
ponents sound clearly “poor” and unnatural to our ear. Thus
the reproduction of the harshness of the stochastic compo-
nents is essential to provide a sound with a convincing, nat-
ural “flavor.”

In our experiments, we verified that not all the sidebands
of the harmonics are representable by a 1/f -like model. In
particular all the first wavelet subbands do not fit the model
(see Figure 10, dark gray areas). These are the bands contain-
ing the extra noise due to the physical device of production of
sound, or,more precisely, the bandswhere this type of noise is
not masked. This noise shows a long time correlation due to
all the discontinuities present for example in breath noise or
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bow noise in string instruments. Other techniques seem to be
more suitable in order to deal with this time correlation due
to all the discontinuities present for example in breath noise
or bow noise in string instruments. Other techniques seem to
be more suitable in order to deal with this time correlation,
one of these being shot noise models.

The synthesis technique for the pseudo-periodic 1/f -like
model requires the estimation of three parameters per each
harmonic partial k : σk, γk,R , γk,L. The meaning of these pa-
rameters is intuitively appealing. Figure 6 depicts three har-
monics of pseudo-periodic signal. We use identical variances
for the left and right semibands of each harmonics. The pa-
rametersσk control the amplitude of the kth harmonic,while
the parameters γk,R and γk,L control the 1/f -like slopes re-
spectively of the right and left semiband of kth harmonic. The
parameters σk may be estimated from the frequency spec-
trum by means of peak-picking algorithm. The estimation of
the γ′s is based on the results of the HBWT analysis. Each
subband is a piecewise approximation of a 1/f spectral curve
as shown in Figure 6. Considering the logarithm of the ener-
gies of each of the subbands of a single sideband, we find a
linear relationship characterized by the parameter γk. More
specifically, we can perform the following linear regression:

log2
(

Var
(
xn,q(m)

)) = γqn+ const, (51)

where k = �(q + 1)/2� is the kth harmonic and xn,q(m) =∑
k x(k)ξn,m,q(k) are the analysis sequences at the different

subbands n. The lower the parameter γ the higher the energy
and the presence of the stochastic components and vice versa.

The first experiment we performed was a test of the lim-
itations of the pseudo-periodic 1/f model. We considered
differentwind instruments (clarinet, trumpet,oboe,bassoon)
and bow instruments (cello and violin) and we applied (51).
What comes out is that the first wavelet subband and the sub-
bands of the resolution higher than the fifth are not fitting
the 1/f model (see Figure 11 as an example in the case of a
trumpet). We conclude that only four or three subbands, de-
pending on the instrument, are well representable by means
of the 1/f pseudo-periodic model. As already discussed, the
first subbands mainly contain additional noise due to the
physical excitation system and their energy is higher than
that provided by the 1/f slope. This appear as a background
noise, different from the stochastic fluctuations with respect
to a periodic behavior. This noise is masked (but present)
in the proximity of the harmonic peaks. On the contrary it
stands out in the first HBWT spectral subbands, where it may
overlap the pseudo-periodic 1/f spectral behavior. For this
portion of the spectrum another model has to be devised.
The noise contained in these bands can be modeled by means
of LPC techniques.

The higher subbands (the fifth in Figure 11) contain the
harmonic part and all the information concerning the time
envelope. In order to preserve the time coherence in the har-
monics we employ the full set of HBWT analysis coefficients,
which are actually the 2−5 = 1/32 part of the original sound
samples.
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Figure 11: Trumpet: linear regression according to (33), (a) first
harmonic left sideband, (b) right sideband.

A further problem is the transient, that is, the sound
attack, fundamental for the perception of timbre. Also in
this case we retain the original analysis HBWT coeffi-
cients.

The whole method consists then in preserving some sub-
sets of the HBWT analysis coefficients and in generating
other subsets by employing a restricted set of parameters (see
Figure 10).

From the experimental results shown in Figure 12, it is
possible to see how the pseudo-periodic 1/f -like model is
well suited for representing the inner subbands, that is, the
2nd, 3rd, 4th, and 5th subbands. These results show that we
are able to synthesize sounds with the same power spectra
as the original sounds. In Figures 14, 15, 16, 17, 18, and 19,
we show the results of the resynthesis of an oboe, a trumpet
and a flute. From an acoustical point of view (going beyond
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Figure 12: Results of the application of (33) to the HBWT anal-
ysis coefficients of three different instruments (2nd, 3rd, 4th, and
5th subbands). Correlation coefficients: (a) 0.9790 (b) 0.9911 (c)
0.9739.
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Figure 13

the mere spectral magnitude matching), some refinements
are necessary. The white noise coefficient approximation pro-
vides a good equilibrium between the energy of the harmonic
components and the stochastic ones. Nevertheless by means
of white noise we obtain something that sounds as “prop-
erly energy-scaled white noise.” Some kind of coefficient pre-
filtering, that is, white noise coloring is thus necessary. The
starting point is again Wornell results in [5]. He showed that
the analytical wavelet coefficients of a 1/f process have a
small but nonzero correlation. In order to simulate that cor-
relation we apply LPC analysis to the HBWT coefficients.
The resulting AR (autoregressive) filters are employed in the
resynthesis, in order to color the rough white noise coef-
ficients (see Figure 13). The different “order” of acoustical
quality obtained by means of this technique is clearly audi-
ble. If we compare each perfectly reconstructed subband with
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Figure 14: Real-life oboe (287.5 Hz).
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Figure 15: Synthesized oboe (287.5 Hz).

the corresponding synthetic one, the similarity is evident and
convincing.

A further refinement is to store the time envelope of the
HBWT analysis coefficients and to apply it on the resynthesis
coefficients.

As a consequence of these refinements the quality of the
reproduced sounds improved significantly at the expense of
a larger number of parameters.

7. CONCLUSIONS
In this work we introduced a new method for sound synthesis
that allows us to control and reproduce the microfluctuations
present in real life voiced sounds. This method is a sort of ad-
ditive synthesis where one adds not only the harmonics but
alsomodulated1/f signals.Wedefined anewclass of stochas-
tic processes, that is, the pseudo-periodic 1/f -like noise. We
introduced a new type of multiwavelet transform useful for
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Figure 16: Real-life trumpet (347 Hz).
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Figure 17: Synthesized trumpet (347 Hz).

the representation of these processes, the harmonic-band
wavelet transform. We devised an efficient analysis/synthesis
scheme able to performparameter estimation and to generate
pseudo-periodic 1/f -like noise.

The claim of this method is that it allows to reproduce
stochastic fluctuations in sounds bymeans of a very restricted
number of parameters. Some limitations of the method are
apparent when applied to real life sounds: the presence of
non 1/f noise components due to external sources as the
excitation devices requires an extension of our model.

APPENDIX A

We prove Proposition 1 of Section 4. We form

s(t) =
∞∑

q=0

∞∑
k=−∞

νq(k)gq,k(t), (A1)
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Figure 18: Real-life flute (298 Hz).
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Figure 19: Synthesized flute (298 Hz).

where

gq,k(t) = gq,0
(
t − kTP

)
(A2)

with

gq,0(t) = 1√
TP

cos
(

2q + 1
2TP

πt
)

sinc
(

t
2TP

)
,

νq(k) = 1√
TP

( N∑
n=1

∞∑
m=−∞

bn,q(m)ψn,m(k)

+
∞∑

m=−∞
aN,q(m)φN,m(k)

)
.

(A3)

From Lemma 2 we know that s(t) is 2NTP -ciclostationary.

Then the time-average power spectrum of the process s(t) is

S̄(ω) =
∫∞
−∞

R̄s(τ)e−jωτdτ

=
∫∞
−∞

dτ
2NTP

e−jωτ
∫ 2NTP /2

−2NTP /2
Rs(t, t + τ)dt,

(A4)

which can be written as follows:

S̄(ω) = 1
2NTP

∫ 2NTP /2

−2NTP /2
dt
∫∞
−∞

dτ

×
∞∑

q,q′=0

∞∑
r ,r ′=−∞

Lk,k′;r ,r ′(t, τ)

× Rνq

(
k, k′ + 2N(r ′ − r)

)
e−jωτ,

(A5)

where

Lk,k′;r ,r ′(t, τ) =
2N−1∑
k,k′=0

gq,0
(
t − kTP − 2NrTP

)
× gq′,0

(
t + τ − k′TP − 2Nr ′TP

)
.

(A6)

The trick of the proof is to exploit the 2N WSCS of the νq(m)
proved in Lemma 1, in order to transform the finite integral
over t into an integral over (−∞,∞) equal to G∗q,0(ω), that
is, the complex conjugate of the Fourier transform of gq,0(t).
After routine calculations we obtain

S̄(ω) = 1
2NTP

∞∑
q=0

∣∣Gq,0(ω)
∣∣2

×
∞∑

r=−∞

2N−1∑
k=0

Rνq(k, k+ r)e−jrωTP

= 1
TP

∞∑
q=0

∣∣Gq,0(ω)
∣∣2S̄q(ωTP),

(A7)

where S̄q(ωTP) is the time-average power spectrum of the
nearly 1/f processes bandlimited and modulated to the band
(17). The result in (6) concludes our proof.
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