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Quantization Effects and Stabilization
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The exact and actual cause of the failure of the fast-Kalman algorithm due to the generation and propagation of finite-precision
or quantization error is presented. It is demonstrated that out of all the formulas that constitute this fast Recursive Least Squares
(RLS) scheme only three generate an amount of finite-precision error that consistently propagates in the subsequent iterations
and eventually makes the algorithm fail after a certain number of recursions. Moreover, it is shown that there is a very limited
number of specific formulas that transmit the generated finite-precision error, while there is another class of formulas that lift or
“relax” this error. In addition, a number of general propositions is presented that allow for the calculation of the exact number
of erroneous digits with which the various quantities of the fast-Kalman scheme are computed, including the filter coefficients.
On the basis of the previous analysis a method of stabilization of the fast-Kalman algorithm is developed and is presented here, a
method that allows for the fast-Kalman algorithm to follow very difficult signals such as music, speech, environmental noise, and
other nonstationary ones. Finally, a general methodology is pointed out, that allows for the development of new algorithms which,
intrinsically, suffer far less of finite-precision problems.

Keywords and phrases: Kalman filtering, recursive least squares filtering, adaptive algorithms, quantization error in fast-Kalman
algorithm, finite-precision error in RLS algorithms.

enhancement, biological signal processing, frequency domain
adaptive filtering, and so forth, (see [1, 2, 3]).

Adaptive filtering, by means of Recursive Least Squares (RLS)
algorithms, finds an exceedingly large number of applica-
tions in many areas of automatic control and signal pro-
cessing, as for example in adaptive control, in model based
fast process fault diagnosis, in system identification, stochas-
tic control, adaptive differential encoding and deconvolution,
echo cancellation and channel equalization, in line and image

Various fast (i.e., of O(m) computational complexity)
algorithms that perform an RLS adaptive filtering by means
of an infinite window have been developed (see [1, 4, 5, 6, 7],
etc.). Most of these schemes use the fruitful concept of rank
displacement, introduced by Morf [8],and suffer from serious
numerical problems, due to the finite-precision with which all
calculations are made. Actually, it has been demonstrated in
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practice, that the faster algorithms, for example, the FAEST 5p
[5] introduced by Carayannis, Manolakis, and Kalouptsides
or the original FTF version proposed by Cioffi and Kailath
[9], have the worst numerical behaviour and fail very quickly.
However, even the first fast-Kalman algorithm introduced by
Ljung, Morf, and Falconer [4] fails quickly enough, in the
sense that it produces completely unreliable results after a
fairly small number of iterations (see also [1, 10, 11], etc., and
Section 3 of the present work).

A number of authors have dealt with the problem of
numerical instability and error propagation concerning the
RLS schemes, and/or other related algorithms, as for exam-
ple, Fabre and Gueguen [1], Ljung and Ljung [10], Lin [12],
Botto and Moustakides [13], Glaros and Carayannis [14],and
so forth. Slock and Kailath in a well-known paper [9] have
proposed a method based on feedback schemes, for stabi-
lizing the numerical behaviour of the fast transversal algo-
rithm.

In this paper, the finite-precision error generation and
propagation in the fast-Kalman scheme [4] is examined
on the basis of a set of newly introduced principles and
by means of an entirely new methodology and philoso-
phy, which are drastically different from the ones under-
taken in all the previous aforementioned papers. A pri-
mary form of this new methodology and of the related
introduced principles, has been used by the authors in
[15, 16, 17, 18, 19], in connection with other iterative DSP
algorithms. The application of those new principles and of
the related methodology allows to find the deeper, actual,
and exact cause of the numerical problems and of the nu-
merical instability due to the finite-precision, in the fast-
Kalman algorithm; it offers, moreover, the considerable ad-
vantage of having an accurate knowledge of the amount
of the finite-precision error generated at each recursion, as
well as a thorough knowledge of the reliability of the re-
sults offered by the algorithm at each iteration. But per-
haps most important of all, the knowledge of the exact
and deeper cause of the finite-precision problems and of
the eventual numerical failure of the fast RLS schemes,
shows the way for the construction of algorithms which, in-
trinsically, suffer far less from finite-precision problems, as
well as for the development of new methods for stabilizing
algorithms.

2. GENERAL REMARKS

2.1. Some necessary definitions and the notation used

The propositions stated in this paper hold true independently
of the radix of the arithmetic system. However, the numerical
error generation and propagation will be studied in the deci-
mal representation, because the decimal arithmetic system is
far more familiar and clear to the user. In this system, preci-
sion comparison between two numbers will be made using
the following definitions.

Definition 1. Consider two numbers, 11, 12, of the same sign,
written in canonical exponential form, with the same number
n of decimal digits in the mantissa, that is,

ny=dy-dp-dz---dyx107,
n2:51-62-63---6n><10”, (1)

T>p.

Then, these two numbers differ by K decimal digits, if and
only if
[ln| = [n2|| =dx107"0  1<d<10. (2

Notation 2. For any quantity « expressed in canonical expo-
nential form we write

(i) man(«) for the mantissa of «,
(ii) E(x) for the exponent of .

Notation 3. The abbreviation e.d.d. stands for “erroneous
decimal digits.”

Notation 4. The abbreviation f.p.e. stands for “finite-
precision error.”

Notation 5. The expression “the algorithm fails” means that
(at the iteration at hand and all the subsequent ones) the
specific algorithm gives totally unreliable results.

Definition 6. Let all the quantities be written in canonical ex-
ponential form, with n decimal digits in the mantissa. Sup-
pose that the correct value an arbitrary quantity o« should
have, if all calculations were made with infinite precision, is
&c. Then one may define that the quantity « has been com-
puted with precisely the last A decimal digits erroneous if and
only if « and &, differ by A digits according to Definition 1.

2.2. Error generation, propagation, or relaxation

in a set of fundamental operations
Some of the propositions presented in this paper can be found
in [15, 16, 18]. However, they are stated here too, for com-
pleteness and easy reference.

Proposition 7. Let all the involved quantities be computed with
finite-precision of n decimal digits in the mantissa, and consider
any quantity computed through

xX=y-z. (3)

Suppose that, due to the previous finite-precision calculations,
the quantity y has been computed with precisely the last A
e.d.d., while z has been computed with up to A e.d.d. In this
case the following hold:

@ If

|man(y) - man(z)| = 10, (4)

then x is computed with precisely the last A or A — 1 e.d.d.
(ii) If

|man(y) - man(z)| < 10, (5)

then x is computed with precisely the last A or A + 1 e.d.d.
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Proposition 8. Let all the following quantities be computed
with finite-precision of n decimal digits in the mantissa, and
consider any quantity computed through a formula of the type

B
k= o (6)
Suppose that, due to the previous finite-precision calculations,
the quantity B has been computed with precisely the last 1 e.d.d.,
while « has been computed with up to 1 e.d.d.

Then the following hold:

@) If lman(B)/ man(x)| > 1, then k is computed with
precisely the last A or A — 1 e.d.d.

(i) If Iman(B)/ man(x)| < 1, then k is computed with
precisely the last A + 1 or A e.d.d.

The following proposition will play a crucial role in all
the subsequent analysis.

Proposition 9. Let all the involved quantities be computed with
finite-precision of n decimal digits in the mantissa, and consider
any quantity calculated through a formula of the type

w=t-r, t-r>0, (7)

where

W=w W wy X 10°,
t=1t1-tr-- -1, x107, (8)

Y=71-72 -1y X 107,
are such that
6 <max{T,p} = E(w) <max{E(t),E(r)}. (9)
Moreover, let
d = |max{T,p} - 6| (10)

and suppose that, due to the previous finite-precision calcula-
tions, the higher order quantity has been computed with pre-
cisely the last A e.d.d., while T has been computed with a number
of e.d.d. equal to or smaller than A.

Then w is computed with the last (A + d) e.d.d.

Most of the proofs of these propositions can be found in
(15, 16].

Proposition 10 (the numerical error relaxation shift). Let all
the involved quantities be computed with finite-precision of n
decimal digits in the mantissa, and consider any quantity x
computed through a sum of two quantities, that is,

X=y+z. (11)

Suppose moreover that z has its last A e.d.d. and that the expo-
nent of z is by v smaller than the exponent of v, that is,

E(y) > E(z2), (12)
v = E(y) - E(2). (13)

Then z transfersto x only A — v e.d.d. if A—v > 0, or no e.d.d.
atallif A —v <0.

Proof. In finite-precision, the addition of the mantissa of y
and z, because of the inequality (12) and of the entailed
necessary corresponding shift, takes place as follows:

man(y) + 0 - QQQ Z122** * Zp-v. (14)

v decimal
places

Hence, only A — v e.d.d. participate in this addition and they
are eventually transferred to the quantity x if (A —v) > 0, or
noe.d.d.atallif (A —v) <O. O

2.3. Some general results concerning the
finite-precision error generated in any recursive
algorithm

As will become evident from the subsequent analysis too, all
the formulas that constitute a certain iterative algorithm are
not equivalent from the point of view of the finite-precision
error generation and propagation. On the contrary, in all the
recursive computational schemes that have been examined so
far (see also [15, 16,17, 18, 19]) it has been asserted that

(a) There is a limited number of specific formulas, each
of which generates the greatest and most decisive part of the
numerical error due to the finite word length (for a more
extensive analysis see Section 2.4). We will refer to each one
of those formulas, with the generic name “Main Source of
Finite-Precision Error.”

(b) Similarly, there is a class of specific formulas that
“transmit” the generated quantization error.

(c) On the other hand, there is another class of formulas
that “relax” the f.p.e. that has been generated elsewhere (see
Section 2.4).

Clearly, which formula precisely belong to the class (a),
(b), or (c), depends on the exact form of the computational
scheme in hand, and on the exact nature of the input data
each time.

2.4. Understanding and classifying the role of each
formula in the quantization effects

Propositions 7, 8, 9, and 10 may offer a clear understanding
of the way with which each formula generates quantization
error. Moreover, they dynamically offer exact knowledge of
the generated number of e.d.d., up to +1 digit. However, we
must stress that knowledge of the amount of f.p.e., generated
by a single formula alone, is not sufficient for understanding,
explaining, and classifying its role in the overall quantization
effects in an algorithm. For example, suppose that all opera-
tions are made with single (float) precision and that the out-
come of an operation is the number x = 1.2345678 x 107,
computed with six e.d.d., shown in bold, where four of
these erroneous digits have been generated from the op-
eration in hand, say for the reasons described in Proposi-
tion 9. If, in the immediately subsequent operation in the
algorithm execution, number x is added to the error-free
number y = 8.7654321 x 10!, then the outcome of this op-
eration will be 1 = 8.7654332 x 10!, which is error free, too.
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If this sequence of events occurs statistically often, namely
whenever the first operation generates quantization error, the
second one “relaxes” it, then the first operation is not a main
source of f.p.e.

Therefore, consider any algorithm used for the compu-
tation of a set of quantities Q, which is the output obtained
by the user at various instances of its execution. To set ideas,
for the fast-Kalman algorithm considered in this paper, Q is
the set consisting of the filter coefficients ¢y, obtained at the
end of each iteration. We will use for set Q the name “desired
final output,” too. By definition, a main source of f.p.e. for this
algorithm, is a formula which generates an amount of f.p.e.
that directly influences the quantization error of the desired
final output systematically. In order to unambiguously test if
a certain formula is a main source of quantization error the
following technique has been developed.

First, we have developed a software tool for perform-
ing the four fundamental operations with arbitrary preci-
sion, which may each time be chosen by the user. We have
executed the fast-Kalman algorithm first with standard float
precision (using about 8 decimal digits in the mantissa) and
then, employing the developed tool, we have executed it with
any precision using more than 2 x 8 decimal digits in the man-
tissa, say with fifty digits. We must stress that for all employed
precisions, the very same input sequence has been used. Then,
for each quantity, say x, of the algorithm the following three
representations have been obtained:

(a) xg resulting by executing the algorithm with float
precision.

(b) x50 resulting by executing the algorithm with fifty
decimal digits in the mantissa.

(c) Next, by keeping the eight most significant decimal
digits of the mantissa and the proper exponent of the quantity
X50, representation xg resulted.

Now, since finite-precision error is generated and prop-
agates from the least significant digit of the mantissa to the
most significant one, applying Definition 1 to xg and Xg,
one obtains a number K. As far as this number K is smaller
than eight, then one may safely state that K is the number
of e.d.d. with which quantity x has been generated at this
specific algorithm instant. Moreover, if K < 8, in other words
as far as the algorithm with float execution is not destroyed,
one safely concludes that the number X3 is an error-free eight
digit representation of quantity x.

Subsequently, in order to classify an operation, with quan-
tity x as outcome, from the quantization effects point of view,
one may proceed as follows:

(1) One replaces xg with xg immediately after the oper-
ation execution, simulating the case where the operation in
hand offered error-free results.

(2) One computes the exact number of e.d.d. with which
the desired final output of the whole algorithm is computed.
To set ideas, for the fast-Kalman algorithm, one computes the
exact number of e.d.d. with which the filter coefficients c;,
i =1,2,K, m, where m is the filter order, are computed.

(3) If the desired algorithm final output suffers from the
same quantization effects, then one may state that this oper-
ation is not a main source of finite-precision error. On the

contrary, if (a) the operation in hand statistically generates
an output with a number of e.d.d. greater than the maximum
number of e.d.d. of its input operands and (b) the substitu-
tion of xg with Xg, drastically reduces the number of e.d.d.
with which the desired algorithm output is computed at the
corresponding iteration, then one states that the operation in
hand is a main source of finite-precision error. By definition,
the formula that includes this operation is a main source, too.

In an analogous way, one may characterize a formula as a
“transmitter” of f.p.e. when, statistically, the number of e.d.d.
of its outcome equals the maximum number of e.d.d. of its
input operands. When a formula, statistically, reduces the
maximum number of e.d.d. of its input operands, then one
may characterize it as a “relaxation” formula.

We must stress once more that spotting the actual
and deeper cause of each formula behaviour from the
quantization effects point of view, demands employing
Propositions 7, 8, 9, and 10.

3. ANALYSIS OF THE WAY THE FINITE-PRECISION
ERROR IS GENERATED AND PROPAGATED IN THE
FAST-KALMAN ALGORITHM, WHEN THE INPUT
SEQUENCE x(n + 1) IS A WHITE NOISE

The fast-Kalman algorithm is intrinsically unstable, in the
sense that in any case, will fail completely after a fairly lim-
ited number of iterations. The exact number of recursions
after which all the obtained results become totally unreliable,
depends on various parameters such as: the nature of the
input sequence, the value of the forgetting factor A, the initial
conditions that determine the speed of convergence, the ratio
of the maximum (or the mean) value of the output z(n) by
the maximum (or the mean) value of the input x(n) (i.e.,
the “SNR”), the used arithmetic system, and so forth. How-
ever, when standard IEEE arithmetics is used, with A = 0.97
and SNR in the interval [10 dB, 100 dB], then, one may safely
state that, when the input sequence is a white noise or a pe-
riodic function, the number of recursions after which the
fast-Kalman algorithm totally fails, typically belongs to the
interval [3600, 4000], reaching, rarely, under very favorable
conditions the 4500 recursions.

3.1. The main sources of numerical error in this
algorithm, for a white noise input

Out of all the formulas that constitute the fast-Kalman algo-
rithm (see Appendix A for its description, where the notation
introduced in [5] is used), only three are the main sources of
numerical error, that is, only three formulas generate consis-
tently an amount of finite-precision error that propagates in
the other formulas and the subsequent iterations and even-
tually makes the algorithm fail after a certain number of
recursions. These are the following formulae.

(1) The formula (A.3) that computes sfn(n +1).

(2) The formula (A.5) that performs the computation of
w1 (n+ 1), together with (A.8) that computes wi, (n + 1).
Actually those two formulas act as a strongly interrelated cou-
ple, as far as the generation and propagation of the finite-
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precision error is concerned. In fact, the formula that com-
putes w;y . (n + 1) is the main source of f.p.e., while the
one for the wj, (n + 1) computation fully transmits the f.p.e.
generated into the other formula (A.5).

(3) The formula (A.9) for the computation of by, (1 +1).
The error generated by this formula is transmitted to the rest
of the algorithm, mainly by means of (A.7) that computes the
quantity eb, (n + 1).

A more extensive analysis of the exact role of each one of
these three main sources of f.p.e. error follows immediately.

3.2. Finite-precision error generated in the
computation of s,’; n+1)

The analysis of the finite-precision error generation and
propagation in connection with the formula that computes
sfn(n + 1) may, quite clearly, demonstrate the meaning of
the terms “main source of numerical error,” “f.p.e. transmit—
ter,” and “formula that relaxes the generated f.p.e. error.” In
fact, prior to &l (n + 1), consider the el (n + 1) computa-
tion. Then, it is possible that at a certain iteration, say the
kth iteration, the two terms in the right-hand side of (A.1)
that computes efn(k) (1) are of opposite sign and (2) have a
number of digits in common, in the sense of Definition 1.

Therefore, at this particular iteration, el (k) is computed
with a corresponding number of e.d.d. These e.d.d., however,
do not propagate essentially in the subsequent steps of the
algorithm, nor in the following iterations, due to

(a) the relaxation shifts that take place in the performance
of the operations in the right-hand sides of (A.2) and
(A.4) and

(b) the fact that there is no systematic reason that makes
conditions (1) and (2) occur; or, equlvalently, there
is no systematic reason that forces eh(n + 1) to be
generated with a certain number of e.d.d. statistically
regularly.

On the contrary, for the &l (n + 1) it holds that

f
f _em(n+1)
emin+1) = () (15)
amm) =1 x5 (n)wp (n). (16)

But the demand that the system matrix Ry, (n + 1) must be
positive definite for all time instants n implies, in a straight-
forward way, that

1<amn) (17)

must always hold. Therefore, due to (16), (17), and the specific
nature of the input x(n + 1), it follows that, statistically, in

the computation of Em(n + 1) by means of
ehn+1)=x(m+1)+al, (n+ 1)xm(n), (18)

the exponent of the quantity eh(n+1)is repeatedly lower
than the maximum of the exponents of x (n + 1) and aj, (n +

1)Xm (n). In other words, mainly due to the positive definite-
ness requirement, it holds that in the right-hand side of (18),
the two terms x (71 + 1) on the one hand and &, (n + 1)X, (1)
on the other, statistically, (i) are of opposite sign and (ii) have
a number of digits in common, in the sense of Definition 1.
Therefore, according to Proposition 9, it follows that at
each iteration where the above conditions (i) and (ii) occur,
Efn(n + 1) is computed with k additional e.d.d., with k =

p — T, where T is the exponent of sfn (m + 1), that is,

T=E(eh(n+1) (19)

and p is the maximum of the exponents of x(n + 1) and
al (n + 1)x;, (n), that is,

p =max{E(x(n+1)),E(@l, (n + Dxpyu(n))}.  (20)

It is worthwhile noticing that it is not necessary for the two
quantities x (n+1) and al, (n+1)x;, (n) to satisfy conditions
(1) and (ii) at each iteration; actually, they do not. However,
due to the requirement of the positive definiteness of the
system matrix Ry, (n) for every n, conditions (i) and (ii) are,
statistically, bound to hold at a certain number of iterations.
Therefore, at each such iteration an additional amount of
finite-precision error is generated and accumulated in syfn (n+
1); this error is transferred to the Kalman gain of order m + 1,
w1 (n + 1) and then, via formula (A.8), to the Kalman
gain of order m and subsequently to all the quantities of the
algorithm and in particular to the filter coefficients ¢, (n +1).

One may recursively compute the exact, practically up
to +1, number of e.d.d. with which the various quantities
are computed owing exclusively to the finite-precision error
generated in formula (A.3), if one uses the previous results
and Propositions 7, 8, 9, and 10.

3.3. Numerical error due to finite word length
generated by the two formulas for the
computation of the Kalman gains w;,, ., (n + 1)
and w};, (n + 1) together, considered as a unity

Each one of the two formulas (A.5) and (A.8), standing alone,
is a source of finite-precision error. The first formula that
computes Wi, ., (n + 1) is a comparatively much stronger
source of f.p.e., while the one that computes wj, (n + 1) is
a much more feeble such source. However, the amount of
finite-precision error generated at each iteration by one of
those two formulas can be propagated only by the other, com-
plementary, formula. To set ideas, suppose that at a certain
iteration all the quantities w,, ,; (n + 1) are generated with
one e.d.d., due to the phenomenon described in Proposi-
tion 9. If this numerical error is relaxed in the computation
of wii, (n + 1) by means of the relaxation shift described in
Proposition 10, then clearly this error does not propagate in
the subsequent iterations. If, on the contrary, the f.p.e. gen-
erated in the computation of wj,,; (n + 1) is actually trans-
mitted to wj, (n + 1) by means of formula (A.8), then in the
subsequent (n+2)thiteration, w;, , ; (n+2) will be calculated
with at least the same amount of finite-precision error, due to
the presence of wj;, (1+1) in formula (A.5) and due to the fact
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that, statistically, the term [s{n (n+1)/ (xfn m+1lam(n+1)
is of a smaller order than w};, (n + 1).

Now, when the input sequence is a white noise, then it
follows that, statistically, in the computationof w},, ., (n+1)
the conditions of Proposition 9 often hold indeed, and hence
a corresponding amount of f.p.e. is frequently generated, and
usually the one corresponding to one or two e.d.d. In other
words, the formula for the computation of w;, . (n + 1) is
a consistent source of finite-precision error. This numerical
error is, statistically, fully transmitted to w;, (n + 1), since in
the numerator of the right-hand side of (A.8), participate all
the components of wjy, ., (n + 1).

Similarly, the f.p.e. generated in the computation of

m (1 + 1), according to Proposition 9, can be transmitted
to the subsequent recursion, by means of formula (A.5), and
then, normally, to all the other formulas and iterations. We
shall stress once more that (A.5) that computes w | (1 + 1)
is a much more crucial and decisive source of f.p.e., while for-
mula (A.8) that computes wjy, (n + 1) acts mainly as a good
and crucial transmitter of the numerical error generated by
the complementary formula (A.5).

Once more, it is possible to make a theoretical prediction
of the exact, practically up to +1, number of e.d.d. with which
the various quantities of the fast-Kalman algorithm are com-
puted due exclusively to the quantization error generated in
formula (A.5), on the basis of the previous analysis and the
one of Section 2.2.

3.4. Finite-precision error generated in the
computation ofb,, (n + 1)

Along very similar lines with Section 3.3 it may be shown that,
when the input data is a white noise then statistically, the two
terms b, (n) and wJ (n+1)*eb m(n+1) in the right-hand
side of (A.9) satisty the conditions of Proposition 9, hence, a
corresponding amount of finite-precision error is generated
in the computation of by, (1 + 1). This numerical error is
normally transmitted to wj, (n + 2), via formulas (A.7) and
(A.8) and hereafter to all the quantities of the algorithm.

The number of e.d.d. with which by, (n + 1) is computed
is not drastically great; this means that the formula that calcu-
lates by, (1 + 1) is not a dominant source of f.p.e. However, if
one wants to develop an error-free RLS algorithm, one must,
absolutely, render this or the corresponding formula error-
free too, because, if the other two sources of quantization
error were made error-free, then, still, the error generated by
this formula (A.9) can destroy the algorithm.

3.5. Therole of the relaxation shift in the error
generation and propagation of the fast-Kalman
algorithm

It is worthwhile noticing that the serious numerical error

generated in the sfn(n + 1) computation, that has been
examined in Section 3.2, does not affect the value of the quan-

tity o (n + 1) the way one might expect. On the contrary,
even when gy (n + 1) is computed with five or six e.d.d., only

one or two e.d.d. are transferred to oty (1 + 1) or even no
e.d.d. at all. This “relaxation of the finite-precision error” is

due to the fact that the order of the term E{n (n+ l)eyfn (m+1)
is decisively smaller than the one of the quantity oy, (n).
Actually, it is an immediate consequence of Proposition 10
that the greater the numerical error with which elh(n+1)is
calculated, the smaller its exponent, and hence the smaller the

exponent of the quantity E;fn (n+1) eyfn (n+1) as compared to

the exponent of (xfn (n). This implies that in the performance
of the addition

oy () + e (n + Dely(n + 1), (21)

the quantity el (n+1)el, (n+1) undertakesa corresponding
shift which implies that a Very restricted number of e.d.d. is
actually transferred to (xm(n + 1), as described in Proposi-
tion 10.

Similarly, it turns out that an even considerable amount
of f.p.e. may be generated in the computation of the Forward
Linear Predictor a;, (n + 1). However, this computation does
not constitute a main source of f.p.e., since the generated
numerical error does not propagate, all, in the subsequent
computations and iterations. In fact, again, it is a straight-
forward consequence of Proposition 10 that the greater the
number of e.d.d. with which one FLP coefficient a j ,, (1 + 1)
is generated, the smaller its exponent; therefore, the more
clear and decisive the relaxation shift occurring in the perfor-
mance of the addition

ajm(n+ l)sfn(n +1)

Fam+ 1)+ (22)

afn(n+1)

necessary for the w¥, ., (n+1) computation. This favorable

j m+

“relaxation shift” is strengthened by the fact that ehn+1)
has, almost constantly, a (very) small value. Hence, once
more, a very restricted number of the e.d.d. generated in
the a;, (n + 1) computation is transferred to wi, (n + 1) so
restricted, that one may safely claim that this error does not
influence at all the numerical behaviour of the fast-Kalman
algorithm.

3.6. Prediction of the number of erroneous decimal
digits generated in the fast-Kalman algorithm

It is stressed once more, that one may recursively compute
the exact, up to £1, number of e.d.d. with which the various
quantities are computed owing to all the factors that have
been pointed out in this paper, if one uses the previous results
and Propositions 7, 8, 9, and 10.

This is demonstrated in Figure 1, where the results of a
system identification experiment are presented. In fact, the
continuous “step-like” line in Figure 1 shows the theoretically
predicted number of e.d.d. of the “approximated response”
Z(n + 1), while the discontinuous line shows the experimen-
tally confirmed number of e.d.d. This computation of the
number of e.d.d. can be performed in parallel with the ex-
ecution of the main algorithm, with small additional com-
putational complexity. The great advantage of this method is
that the user, at any instant of the execution of the algorithm,
can have a complete knowledge of the algorithm robustness
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FIGURE 1: Demonstration of the theoretical prediction of the num-
ber of the generated e.d.d. The continuous “step-like” line shows
the theoretically predicted number of e.d.d. of the “approximated
response” Z(n + 1) in connection with a system identification ex-
periment, while the discontinuous line shows the experimentally
confirmed number of e.d.d.

and of the reliability of the obtained results, and that indepen-
dently of the nature of the input signal and of the employed
machine precision.

4. ANALYSIS OF THE FINITE-PRECISION ERROR
GENERATION AND PROPAGATION, IN THE CASE
THAT THE INPUT SEQUENCE x(n + 1) ISA
SINUSOIDAL OR PERIODIC SIGNAL

In the case where the nature of the input signal x(n + 1)
is different than white noise, then it is intrinsically possi-
ble that, in every formula of the fast-Kalman algorithm, the
relationship of the involved quantities may be different as
well. Therefore, in this case, some of the aforementioned for-
mulas may not be a main source of f.p.e. any more. On the
other hand, due precisely to the fact that the terms in the
various formulas of the algorithm may systematically have a
different magnitude relationship, new formulas may emerge,
that are the main sources of numerical error.

In general, in connection with any computational organi-
zation, the set of formulas that are the main sources of f.p.e.
may have different elements or they may even be entirely dis-
joint, for a different nature of the input signal x(n + 1). In
fact, in the fast-Kalman algorithm case, the following hold.

In contrast with what happens in the white noise case, the
formula (A.5) that computes w,, ; (n + 1) does not generate
a serious amount of f.p.e. any more. On the contrary, the
following two formulas are the main sources of f.p.e.

(1) Formula (A.10) that computes ey, (1 + 1).

(2) Formula (A.8) that performs the computation of
wi (n + 1), with main transmitter of this generated f.p.e.,
formula (A.5) that computes w} ., (n + 1). In other words,
once more, those two formulas act as a strongly interrelated

couple, as regards the generation and propagation of the f.p.e.,
with their roles interchanged however.
(3) The other main source of f.p.e. is, once more, the for-

mula that computes 551 (n+1). That is it is the same with the
first main source in the white noise case, precisely for the rea-
sons described in Section 3.2 before, namely for the positive
definiteness requirement of the system matrix Ry, (1 + 1), for
every n.

Notice, moreover, that there is an essentially lesser source
of f.p.e., namely the one that calculates ¢;u (n + 1).

The above results hold true for the case where the input
signal is a sum of sinusoidal functions and hence for a large
class of periodic functions.

All the comments regarding the role of the “error relax-
ation shift,” that have been made in the white noise case, are
identically valid in the case where the input sequence is a
sinusoidal or a periodic function. And in this case too, one
may compute, the number of e.d.d. with which the various
quantities are computed, due to each man source of finite-
precision error, separately and, most important, due to all the
error sources together.

5. A GENERAL METHOD FOR STABILIZING THE
FAST-KALMAN ALGORITHM AND FOR
DEVELOPING ROBUST RECURSIVE LEAST
SQUARES ALGORITHMS

The previous analysis demonstrates that the deeper and actual
cause of the failure of the fast-Kalman algorithm is the exis-
tence of formulas that constitute the main sources of finite-
precision error and the existence of formulas that transmit
this error. Therefore, one may employ the results of this pa-
per, in order to stabilize the fast-Kalman algorithm as well
as to develop new algorithms that have radically improved
numerical behaviour. In fact,

(A) Concerning the stabilization of the fast-Kalman algo-
rithm the following method has been applied:

(1) First, one spots the main sources of finite-precision
error, as before. These sources are formulas (A.3), (A.8), and
(A.9) for white noise input and (A.5), (A.8), and (A.10) for a
periodic input.

(2) Then from the resultant conclusions, a piece of code
has been developed that predicts the exact amount, up to a
selected number of digits, of the finite-precision error the
main sources generate at each iteration, as stated in Section 3.6
and shown in Figure 1. This prediction computation is car-
ried out while the algorithm is executed and the additional
complexity is negligible compared to the one of the whole
scheme.

(3) Finally, a feedback process that corrects the numerical
error is executed each time the observed quantization error
calculated at the previous step reaches a selected threshold, for
example, it reaches five e.d.d. in the mantissa. In fact, in that
case, one initiates execution of a second identical implemen-
tation of the fast-Kalman algorithm, which keeps running
until convergence, simultaneously with the previous one for
alimited number of iterations N;. A good choice for N; seems
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FIGURE 2: Demonstration of the way the stabilized fast-Kalman algo-
rithm tracks a fast varying signal with white noise input. The dotted
line depicts the original signal and the continuous line depicts the
computed signal. For this experiment, a system order m = 35, an
SNR 10dB and a forgetting factor A = 0.97 have been chosen.

to be a number between 40 and 80 recursions. Immediately
after conclusion of these Nj iterations, one can perform one
of the following two actions for obtaining a robust scheme:

(a) Let the first implementation stop and let running the
second implementation of the fast-Kalman algorithm until its
main sources reach the same critical threshold of e.d.d. (say
five), in which case the first implementation is called upon
again and the present stops running after N; recursions, and
SO on.

(b) If the second implementation is executed with a higher
precision than the first one, the proper number of the decimal
digits in the mantissa, as well as the proper exponent for
fast-Kalman algorithm quantities are kept and are given as
a quantization error-free input to the first implementation
which subsequently continues running on its own, offering
the desired results to the user.

It must be pointed out that application of the feedback
process adds 10% to 15% to the overall computational com-
plexity and that no discontinuity appears in the results of the
algorithm.

One very important feature of this approach is that
the fast-Kalman algorithm stabilized in this way, can track
“very difficult to follow signals” with noticeable success.
For example, it can track speech, music, environmental noise,
and other nonstationary signals. The aforementioned results
have been confirmed by a considerable number of simula-
tion experiments. To set ideas, the stabilized version of the
algorithm has been used to find the Linear Prediction Coef-
ficients for various signals-outputs of many musical instru-
ments and extended speech signals and run with complete
success for millions of iterations, without showing any sign
of breaking.

The same parameters with those of Figure 2 have been used.

1100 1200 1300 1400 1500 1600 1700

(b) A detail of Figure 3a, depicting the area where the fast-Kalman
algorithm fails completely, due to quantization error.

FIGURE 3

Few results of these experiments are depicted in Figures
2,3,4,and 5. In fact,

o In Figure 2, the way the stabilized fast-Kalman algorithm
tracks a fast varying signal is presented with white noise input.
For this experiment, there have been chosen a system order
m = 35, an SNR 10dB and a forgetting factor A = 0.97,
while all operations were made with standard single precision
(float), using twenty-four bits for the mantissa and eight bits
for the exponent.

» The incapability of the fast-Kalman algorithm to follow
this fast varying signal is demonstrated in Figure 3, where the
output of this scheme when the very same parameters have
been used, is depicted.

In Figure 4, a very difficult to follow by most RLS algo-
rithms signal is presented. This signal is depicted in Figure 4a,
and is the actual digitized recording of a musical instrument
(apiano). The stabilized by the introduced method algorithm,
has been used to perform the following experiment, very use-
ful for removing environmental noise from a given signal,
where, once more, all operations were made with standard
single precision (float):
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(a) The actual digitized recording of a musical instrument (a piano).
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(b) The computed estimated response by the stabilized fast-Kalman
algorithm, with input a sample of environmental noise. The forgetting
factor A is 0.97, the SNR is 10 dB, and the system order m is 128.
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(c) A detail of the signals shown in Figures 3a and 3b superimposed
here. The dotted line depicts the computed signal and the continuous
line depicts the original signal.

FIGURE 4
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(a) The first 900 samples of the actual digitized recording of a musi-
cal instrument (a piano), the same as Figure 4. We have plotted the
signal in the same scale with the one of Figure 5b, for comparison.
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(b) The computed estimated response by the fast-Kalman algorithm,
where the failure of this algorithm, starting approximately at sample
780, is obvious.
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(c) A detail of the way the fast-Kalman algorithm fails to approximate
the original signal of Figure 5a. It is clear that after sample 850 the
fast-Kalman results become totally unreliable.

FIGURE 5
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The input to the algorithm has been a sample of environ-
mental noise.

(1) The output (desired response) of the algorithm has
been the signal shown in Figure 4a, obtained from a piano.

(2) The forgetting factor A is 0.97, the SNR is 10 dB and
the system order m is 128. The estimated response is shown
in Figure 4b.

(3) A detail of these signals superimposed is shown in
Figure 4c.

o In Figures 5a, 5b, and 5c¢, the incapability of the fast-
Kalman algorithm to follow the original signal of Figure 4
is demonstrated, where the output of this scheme when the
very same parameters have been used, is depicted.

(B) On the other hand, in order to develop a more robust
recursive least square algorithm, one must avoid including
(using) formulas that are the main sources of finite word
length error and/or formulas that are the main transmitters
of quantization error, as they are described in this paper.
To set ideas, one must use instead of formulas (A.3), (A.5),
(A.8),(A.9),and (A.10), other equivalent that do not manifest
the behaviour described in the previous sections, and, hence,
that do not generate such a serious amount of quantization
error. Similarly, probably at the same time, one must avoid
using formulas that transmit the generated finite-precision
error.

Such an RLS algorithm, developed by the authors, is pre-
sented in Appendix B. The proposed algorithm can be sta-
bilized by means of a quite analogous techniques, while it
maintains excellent tracking properties.

The main reason for which the proposed RLS computa-
tional scheme is more robust than the fast-Kalman one, lies
with formula (B.4) used for the computation of nfn, which in

a sense is equivalent to formula (A.3) that computes &l To
be more specific, in this formula, quantity a,, (1 + 1) is com-
puted via formula (B.3), while in the fast-Kalman scheme via
formula (A.2). The extra term present in (B.3) reduces the
frequency of occurrence of events (i) and (ii) in Section 3.2,
therefore the amount of quantization error that this main
source generates is essentially reduced. The robustness of the
introduced RLS algorithm, as compared with the fast-Kalman
one, has been extensively experimentally verified, employing
the method presented here.

In Figure 6, the way the proposed algorithm tracks a
speech signal, a part of the recording of a phrase in American
English taken at random from the related database “TIMIT”
is depicted, signal, which, too, is very difficult to follow by
most RLS algorithms. In this experiment, the system order
m = 20, the window length L = 200 and the forgetting factor
A = 0.99. The very good tracking properties of the proposed
algorithm are obvious in the graphs of the estimated output
z(n) as presented in this figure.

6. CONCLUSION

In this paper, it is shown that out of all the formulas that con-
stitute the fast-Kalman algorithm only three are main sources
of finite-precision error. Moreover, it is demonstrated that
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FIGURE 6: The way the proposed algorithm tracks a speech signal,
a part of the recording of a phrase in American English taken at
random from the related data base “TIMIT.” In this experiment, the
system order m = 20, the window length L = 200 and the forgetting
factor A = 0.99. The dotted line depicts the computed signal and the
continuous line depicts the original signal. The very good tracking
properties of the proposed algorithm are obvious in the graphs of
the estimated output 7Z(n) as presented in this figure.

there is a very limited number of specific formulas that trans-
mit the generated finite-precision error, while there is another
class of formulas that lift or “relax” this error. In addition, a
number of very general propositions is presented that allow
for the calculation of the exact number of erroneous dig-
its with which all the quantities of the fast-Kalman scheme
are computed. Finally, a general methodology is introduced
that allows both for the stabilization of the fast-Kalman algo-
rithm as well as for the development of new algorithms which,
intrinsically, suffer less of finite-precision problems.

APPENDICES

APPENDIX A: THE FAST-KALMAN ALGORITHM
(WITH THE NOTATION USED IN [5])

(1) Quantities available at time n: a,, (1), by (1), Cn (N),
Xm (M), Wi ().

(2) New information: x(n + 1), z(n + 1).

(3) Time updating of the gain vector:

e +1) = x(n+1) +al, (n)xm(n), (A1)
am(n+ 1) = am(n) + Wi (el (n + 1), (A.2)
ehm+1) =x(n+1)+alxy,(n), (A.3)
ochm+1) = adp(n) +elp(n + Defp(n + 1), (A4)

Wi (n+1) = [w;;(gz + 1)]
(A.5)

f
+ Em(n+l) * 1
o am(n+1) |’

mm+1)
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- T di(n+1) (A6)
Wl T D= s i | :

el m+1)=x(n+1-m)+bl (nW)x,(n), (A7)

Wi (1) = di,(n+1) - 6% (n+ l)bm(n)’ (A8)

1+65mn+1eln+1)

bnm+1) =bu(n) +wi(n+1)el (n+1). (A9)
(4) Time updating of the LS FIR filter:

emn+1)=zn+1)+ck (Mxp(n+1), (A.10)

cnm+1)=cpn) +whn+1enn+1). (A.11)

APPENDIX B: THE O(m) ALGORITHM FOR ADAPTIVE
FILTERING VIA A FINITE WINDOW

(1) Definition of useful intermediate quantities

fhm+1) = x(m+ 1) +al, ()xm(n),

gfn(n +1) = x(M) +al, ()X, (M - 1),

Sk +1) = xh (mug, (n), (B.1)
8%, (n+1) = x (M - 1uk (n),

5%, (n+1) =x, (M - 1)v;y, (n).

(2) Updating A¢(n + 1)

Ap(n+1) = AAf () + (fih(n+ 1)) (1485, (n+1))
b u@h(n+ D)2 - 8%, m+ 1) 52
—2ufhn+ Dgh(n+1)6%, (n+1)

+ 0.
(3) Updating the FLP filter coefficients

am(n+1) = am(n)+f1{1(n+ 1)u;§1(n)—ug£1(n+ 1)vi (n).

(B.3)
(4) Updatingujs, (n + 1) and v, (n + 1)

(4a) Computation of uj, (n + 1)
nhm+1)=xm+1) +al (n+ Dxm(n), (B.4)
. (0 1 1 nhn+D

U1 (n+1) = {u;’;m (n)} <[am(rw 1)} Ap(n+1)’ (B.5)

(4b) Partitioning

[ agm+1)
uy o (n+1)= [ufn+1(n+1)] (B.6)

(4c) Computation of v, (n + 1)
ki (n+1) =x(M) +al, (n+ D)xp (M- 1),

) (0 ) [ 1 khm+D
Vis(m+1) = {v;‘n(n)} {am(n+ 1)}Af(n+ 0N

(B.7)

(4d) Partitioning

vi(m+1) } (B.8)

. +1) =
Vi1 (n+1) [an+1(n+1)

(4e) Computation of u, (n + 1) and vii,(n + 1)

D=1+fLm+Duf,(n+1)—ugh,(n+1vi, (n+1),

(B.9)
1—pvl (n+1)ghmn+1)
Duu = )
D
D _ MU (n+ Dgp(n+1)
uv D ’
Dy, = U (n+ Bffa(n 1 (B.10)
l+ulf  m+1)fhm+1)
Dyy = D )
ub o m+1 vy (n+1
du _ m+l(D ), dy _ m+1(D ),
wy(m+1) =Dy f,(n+1) + Dyy Vi, (n + 1) — dyby,
(B.11)
Vi +1) =Dyt (n+1) + Dy Vi, (n+ 1) — dyby.
(B.12)
(5) Updating the BLP solution
ffm+ 1) =xm+1-m) +bl,(Mxm(n+1),
b T
(n+1)=x(M-m) + b, (n)Xy (M),
gm me (B.13)
bn(n+1) =by(n) + fL(n+Duf,(n+1)
—pghm+ Vi (n+1).
(6) Compute the filter coefficients
fmm+1)=zn+1) +ch(W)xm(n+1),
(m+1) =2z(M) + ¢l (n)xm (M),
gm me (B.14)

cmn+1)=cpn) + fmn+Hus(n+1)

—pugmn+1)vi(n+1).
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