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Super-resolution algorithms reconstruct a high-resolution image from a set of low-resolution images of a scene. Precise alignment
of the input images is an essential part of such algorithms. If the low-resolution images are undersampled and have aliasing
artifacts, the performance of standard registration algorithms decreases. We propose a frequency domain technique to precisely
register a set of aliased images, based on their low-frequency, aliasing-free part. A high-resolution image is then reconstructed
using cubic interpolation. Our algorithm is compared to other algorithms in simulations and practical experiments using real
aliased images. Both show very good visual results and prove the attractivity of our approach in the case of aliased input images.
A possible application is to digital cameras where a set of rapidly acquired images can be used to recover a higher-resolution final
image.
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1. INTRODUCTION

Image resolutionis one of the limitingparameters in digital
camera design. With most digital cameras, however, it is pos-
sible to take bursts of multiple pictures in a very short period
of time. Thus, high-resolution images can be reconstructed
from a series of low-resolution images using super-resolution
algorithms.

The idea behind super-resolution imaging is to combine
the information from a set of slightly different low-resolution
images of the same scene and use it to construct a higher-
resolution image. Throughout this paper, a higher-resolution
image is defined as an image with more resolving power. This
means that an image that is obtained by merely upsampling
and interpolating a low-resolution image does not have a
higher resolution than its original. It has a larger number
of pixels, but the resolving power remains the same; that is,
the interpolated image does not contain more details than its
original. The resolving power of an image can be increased
by adding high-frequency information typically based on
knowledge about the specific image model. A higher resolv-
ing power is also obtained when the aliasing ambiguity in
an image is removed. We will take this second approach to
construct high-resolution images. The aliasing ambiguity in
an image is removed by incorporating the additional infor-
mation obtained from other images of the same scene.

There are two major, and to some extent, independent
challenges in super-resolution imaging. First, the difference
between the low-resolution input images needs to be known
precisely. This difference can have many origins: camera mo-
tion [1–7], change of focus [8, 9], a combination of these two
[10–13], and so forth.We will consider images that differ by a
planar motion. Therefore, the first challenge corresponds to
having a precise knowledge of the motion parameters. This is
a challenge because we use images containing possibly large
amounts of aliasing. An error in themotion estimation trans-
latesalmost directly into a degradation of the resulting high-
resolution image. It is generally better to interpolate one of
the low-resolution images than to create a high-resolution
image from the set of images using incorrect motion param-
eters. The artifacts caused by an incorrectly aligned image
are visually much more disturbing than the blurring effect
from interpolating only one image. The second challenge is
to apply the information obtained from the different regis-
tered images to the reconstruction of a sharp high-resolution
image. A nontrivial deconvolution operation is required to
undo the blurring operation applied by the camera point
spread function. This paper mainly focuses on the first prob-
lem, thus, no point spread function is taken into account in
the reconstruction. The sampling operation is assumed to be
ideal Dirac sampling and we do not consider the deconvolu-
tion problem.
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We describe an image registration algorithm using a new
frequency domain method that outperforms the state of
the art in frequency domain registration methods. It also
performs better than the spatial domain method by Keren
et al. [5] if the images have some directionality. Unlike other
motion estimation algorithms whose performance is often
very low for noisy or highly aliased images (see Section 2),
our algorithm only uses low-frequency information. This is
the part of the signals with the highest signal-to-noise ratio
(SNR), and in our setup, the aliasing-free part of the images.
We developed a new, computationally efficient method to es-
timate planar rotations. To reconstruct the high-resolution
image, we apply bicubic interpolation on a high-resolution
grid. The super-resolution algorithm we propose recon-
structs an image with almost double resolution in both di-
mensions from four aliased images. The four low-resolution
images are necessarily undersampled. Otherwise, our algo-
rithm is not able to reconstruct a better image as it uses ex-
actly this undersampled information. We compare our ap-
proach in a simulation to other spatial domain and frequency
domain registration algorithms. We find that our algorithm
can better estimate shift and rotation parameters than the
other methods, in particular, when some strong direction-
ality is present in the image.

A possible application of the proposed image registra-
tion algorithm is that of a user holding his digital camera
in his hands while manually or automatically taking a se-
ries of four shots of a scene within a short period of time.
The small vibrations of the user’s hands during image cap-
ture are sufficient to reconstruct a high-resolution image.
The scene needs to be flat or at a large distance, such that
no parallax effects take place. We tested such a setup us-
ing real digital cameras. We verified that aliasing occurs with
these cameras by measuring their spatial frequency response.
In the experiments, we found that our algorithm results in
better visual quality than the other methods, which typically
failed to adequately register all four images. Other applica-
tions of super-resolution algorithms can be found in foren-
sic imaging, satellite imaging, microscopy, medical imaging,
constructing still images from video sequences, and so forth.

The article is organized as follows. Section 2 discusses the
state of the art in image registration and super-resolution
imaging. The planar motion estimation algorithm is de-
scribed in Section 3 and the reconstruction in Section 4.
Section 5 shows the results on simulated and real images and
the comparison to other algorithms. The results are discussed
in Sections 6 and 7 concluding the article.

2. STATE OF THE ART

The idea of super-resolution was first introduced in 1984 by
Tsai and Huang [1] for multiframe image restoration of ban-
dlimited signals. A good overview of existing algorithms is
given by Borman and Stevenson [14] and Park et al. [15].
Most super-resolution methods are composed of two main
steps: first all the images are aligned in the same coordinate
system in the registration step, and then a high-resolution
image is reconstructed from the irregular set of samples. In

this second step, the camera point spread function is often
taken into account.

Precise subpixel image registration is a basic requirement
for a good reconstruction. If the images are inaccurately reg-
istered, the high-resolution image is reconstructed from in-
correct data and is not a good representation of the orig-
inal signal. Zitová and Flusser [16] presentan overview of
image registration methods. Registration can be done ei-
ther in spatial or in frequency domain. By the nature of the
Fourier transform, frequency domain methods are limited
to global motion models. In general, they also consider only
planar shifts and possibly planar rotation and scale, which
can be easily expressed in Fourier domain. However, aliasing
is much easier to describe and to handle in frequency domain
than in spatial domain.

Tsai andHuang [1] describe an algorithm to registermul-
tiple frames simultaneously using nonlinear minimization
in frequency domain. Their method for registering multiple
aliased images is based on the fact that the original, high-
resolution signal is bandlimited. It is not clear, however, if
such a solution is unique and if such an algorithm will not
converge to a local minimum. Most of the frequency do-
main registration methods are based on the fact that two
shifted images differ in frequency domain by a phase shift
only, which can be found from their correlation. Using a log-
polar transform of the magnitude of the frequency spectra,
image rotation and scale can be converted into horizontal
and vertical shifts. These can therefore also be estimated us-
ing a phase correlationmethod. Reddy andChatterji [17] and
Marcel et al. [18] describe such planar motion estimation al-
gorithms. Reddy and Chatterji apply a high-pass emphasis
filter to strengthen high frequencies in the estimation. Kim
and Su [19], Stone et al. [20], and Vandewalle et al. [2] also
apply a phase correlation technique to estimate planar shifts.
To minimize errors due to aliasing, their methods rely on a
part of the frequency spectrum that is almost free of alias-
ing. Typically this is the low-frequency part of the images.
Foroosh et al. [21] showed that the signal power in the phase
correlation corresponds to a polyphase transform of a filtered
unit impulse. Lucchese and Cortelazzo [22] developed a ro-
tation estimation algorithm based on the property that the
magnitude of the Fourier transform of an image and the mir-
rored version of the magnitude of the Fourier transform of a
rotated image have a pair of orthogonal zero-crossing lines.
The angle that these lines make with the axes is equal to half
the rotation angle between the two images. The horizontal
and vertical shifts are estimated afterwards using a standard
phase correlation method.

Spatial domain methods generally allow for more general
motion models, such as homographies. They can be based
on the whole image or on a set of selected corresponding fea-
ture vectors, as discussed by Capel and Zisserman [4] and by
Fischler and Bolles in their RANSAC algorithm [23]. Keren
et al. [5] developed an iterative planar motion estimation
algorithm based on Taylor expansions. A pyramidal scheme
is used to increase the precision for large motion parameters.
Bergen et al. developed a hierarchical framework to estimate
motion in a multiresolution data structure [24]. Different
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motion models, such as affine flow or rigid body motion, can
be used in combination with this approach. Irani et al. [25]
present a method to compute multiple, possibly transparent
or occluding motions in an image sequence. Motion is esti-
mated using an iterative multiresolution approach based on
planar motion. Different objects are tracked using segmen-
tation and temporal integration. Gluckman [26] describes a
method that first computes planar rotation from the gradient
field distribution of the images to be registered. Planar shifts
are then estimated after cancellation of the rotation using a
phase correlation method.

In the subsequent image reconstruction phase, a high-
resolution image is reconstructed from the irregular set of
samples that is obtained from the different low-resolution
images. This can be achieved using an interpolation-based
method as the one used by Keren et al. [5]. Tsai and Huang
[1] describe a frequency domainmethod, writing the Fourier
coefficients of the high-resolution image as a function of the
Fourier coefficients of the registered low-resolution images.
The solution is then computed from a set of linear equations.
This algorithm uses the same principle as the formulation
in time domain given by Papoulis [27]. A high-resolution
image can also be reconstructed using a POCS algorithm
(Patti et al. [10]), where the estimated reconstruction is suc-
cessively projected on different convex sets. Each set repre-
sents constraints to the reconstructed image that are based
on the given measurements and assumptions about the sig-
nal. Capel and Zisserman [4] and Schultz et al. [6] use a
maximum a posteriori (MAP) statistical method to build the
high-resolution image.

Other methods iteratively create a set of low-resolution
images from the estimated image using the imaging model.
The estimate is then updated according to the difference
between the real and the simulated low-resolution images
(Keren et al. [5], Irani and Peleg [7]). This method is known
as iterative backprojection. Zomet et al. [11] improved the
results obtained with typical iterative backprojection algo-
rithms by taking the median of the errors in the different
backprojected images. This proved to be more robust in the
presence of outliers. Farsiu et al. [12] proposed a new and
robust super-resolution algorithm. Instead of the more com-
mon L2 minimization, they use the L1 norm, which produces
sharper high-resolution images. They also showed that this
approach performs very well in combination with the al-
gorithm by Zomet et al. [11]. Elad and Feuer [13] present
a super-resolution framework that combines a maximum-
likelihood/MAP approach with a POCS approach to define a
new convex optimization problem. Next, they show the con-
nections between their method and different classes of other
existing methods.

Our main contribution in this paper consists of a new
frequency domain algorithm to register not just low resolu-
tion, but also aliased images. We use a planar motion model.
When a series of images is taken in a short amount of time
with only small camera motion between the images, we as-
sume that the motion can be described with such a model.
In general, a planar model is simpler and has less parame-
ters making it often more robust in the presence of noise. We

also extend the planar shift motion model from [2, 19, 20]
to include planar rotations, because they are often part of the
cameramotion. Even a small rotation has a large influence on
final registration. Our rotation estimation algorithm is com-
putationally efficient and adapted to work with aliased im-
ages. We test our algorithm not only in simulations, but also
on real sequences of aliased images. The results from these
tests validate the assumptions made about the motion. They
show, both visually and in SNR, that our algorithm outper-
forms other frequency domain registration methods as well
as a spatial domain method if directionality is present in the
images.

3. PLANARMOTION ESTIMATION

We use a frequency domain algorithm to estimate the mo-
tion parameters between the reference image and each of the
other images. Only planar motion parallel to the image plane
is allowed. Themotion can be described as a function of three
parameters: horizontal and vertical shifts, Δx1 and Δx2, and
a planar rotation angle φ.

A frequency domain approach allows us to estimate the
horizontal and vertical shift and the (planar) rotation sepa-
rately. Assume we have a reference signal f1(x) and its shifted
and rotated version f2(x):

f2(x) = f1
(
R(x + Δx)

)
,

with x =
[
x1
x2

]

, Δx =
[
Δx1
Δx2

]

, R =
[
cosφ − sinφ
sinφ cosφ

]

.

(1)

This can be expressed in Fourier domain as

F2(u) =
∫∫
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= e j2πu
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(2)

with F2(u) the Fourier transform of f2(x) and the coordinate
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x′′ = Rx′, the relation between the amplitudes of the Fourier
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Figure 1: Rotation estimation. (a) Frequency values of the reference image for 0.1ρ < r < ρ. (b) Frequency values of the rotated image
(φ = 25 degrees) for 0.1ρ < r < ρ. (c) Average value as a function of the angle h(α) for both |F1(u)| and |F2(u)|.

where |F2(u)| is a rotated version of |F1(u)| over the same
angle φ as the spatial domain rotation (see Figures 1(a) and
1(b)). |F1(u)| and |F2(u)| do not depend on the shift values
Δx, because the spatial domain shifts only affect the phase
values of the Fourier transforms. Therefore we can first esti-
mate the rotation angle φ from the amplitudes of the Fourier
transforms |F1(u)| and |F2(u)|. After compensation for the
rotation, the shift Δx can be computed from the phase differ-
ence between F1(u) and F2(u).

In Section 3.1, we give a precise rotation estimation al-
gorithm. A subpixel shift estimation algorithm is described
in Section 3.2, and an adaptation of this method to estimate
motion accurately in aliased images is presented in Section
3.3.

3.1. Rotation estimation

The rotation angle between |F1(u)| and |F2(u)| can be com-
puted as the angle θ for which the Fourier transform of the
reference image |F1(u)| and the rotated Fourier transform of
the image to be registered |F2(Rθu)| have maximum correla-
tion. This implies the computation of a rotation of |F2(u)|
for every evaluation of the correlation, which is computa-
tionally heavy and thus practically difficult.

If |F1(u)| and |F2(u)| are transformed in polar coordi-
nates, the rotation over the angle φ is reduced to a (circular)
shift over φ. We can compute the Fourier transform of the
spectra |F1(u)| and |F2(u)|, and compute φ as the phase shift
between the two (as it was also done by Marcel et al. [18] and
Reddy and Chatterji [17]). This requires a transformation of
the spectrum to polar coordinates. The data from the regular
x1, x2-grid need to be interpolated to obtain a regular r, θ-
grid. Mainly for the low frequencies, which generally contain
most of the energy, the interpolations are based on very few

function values and thus introduce large approximation er-
rors. An implementation of this method is also computation-
ally intensive.

Our approach is computationally much more efficient
than the two methods described above. First of all, we com-
pute the frequency content h as a function of the angle α by
integrating over radial lines:

h(α) =
∫ α+Δα/2

α−Δα/2

∫∞

0

∣
∣F(r, θ)

∣
∣dr dθ. (4)

In practice, |F(r, θ)| is a discrete signal. Therefore, we com-
pute the discrete function h(α) as the average of the values
on the rectangular grid that have an angle α − Δα/2 < θ <
α + Δα/2. As we want to compute the rotation angle with
a precision of 0.1 degrees, h(α) is computed every 0.1 de-
grees. To get a similar number of signal values |F(r, θ)| at
every angle, the average is only evaluated on a circular disc
of values for which r < ρ (where ρ is the image radius or
half the image size). Finally, as the values for low frequen-
cies are very large compared to the other values and are very
coarsely sampled as a function of the angle, we discard the
values for which r < ερ, with ε = 0.1. Thus, h(α) is com-
puted as the average of the frequency values on a discrete grid
with α− Δα/2 < θ < α + Δα/2 and ερ < r < ρ.

This results in a function h(α) for both |F1(u)| and
|F2(u)| (Figure 1(c)). The exact rotation angle can then be
computed as the value for which their correlation reaches a
maximum. Note that only a one-dimensional correlation has
to be computed, as opposed to the two-dimensional correla-
tion approaches presented in [17, 18].
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Figure 2: In the presence of (partial) aliasing, the shift between two sampled signals cannot be found directly. However, after low-pass
filtering, the shift can be easily determined. (a) Original continuous-time signal in time and frequency domain. (b) Sampled signal in time
and frequency domain, with aliasing. (c) Low-pass filtered sampled signal in time and frequency domain.

3.2. Shift estimation

A shift of the image parallel to the image plane can be ex-
pressed in Fourier domain as a linear phase shift:

F2(u) =
∫∫

x
f2(x)e− j2πuTx dx =

∫∫

x
f1(x + Δx)e− j2πuTx dx

= e j2πu
TΔx

∫∫

x′
f1(x′)e− j2πuTx′ dx′ = e j2πu

TΔxF1(u).

(5)

It is well known that the shift parameters Δx can thus be
computed as the slope of the phase difference ∠(F2(u)/
F1(u)). To make the solution less sensitive to noise, a plane
is fitted through the phase differences using a least squares
method.

3.3. Aliasing

If the low-resolution images are aliased, the methods de-
scribed earlier do not result in precise registration anymore.
This is due to the difference in frequency content of the low-
resolution images caused by the aliasing. In this case, (2),
(3), and (5) no longer hold. Instead of (5), a shift is now
expressed as

F2(u) =
K∑

k=−K
e j2π(u−kus)

TΔxF1
(
u− kus

)
, (6)

with us the sampling frequency and 2K +1 overlapping spec-
trum copies at frequency u. Aliasing terms disturb the linear
phase relation between F1(u) and F2(u). However, in cases of
limited aliasing, it is still possible to use the above methods,
by considering only the frequencies that are free of aliasing
or only marginally affected by aliasing. A similar idea was
used for shift estimation methods by Kim and Su [19] and
by Stone et al. [20].

Assume a one-dimensional, bandlimited signal f (x)
(with maximum frequency umax, Figure 2(a)), which is sam-
pled at a frequency umax < us < 2umax. This does not satisfy
the Nyquist criterion, and the sampled signal f [k] will have
aliasing artifacts (Figure 2(b)). f (x) cannot be perfectly re-
constructed from the samples f [k]. Consider two sampled
signals, f1[k] and f2[k], sampled at 0,T , 2T , . . . , kT , . . . and
Δx,T +Δx, 2T +Δx, . . . , kT +Δx, . . . , respectively (with T =
1/us the sampling period). Due to the aliasing, their Fourier
transforms differ by more than just a linear phase shift, and
the shift estimation method described above does not work
any more. However, the values at frequencies −us + umax <
u < us−umax are free of aliasing and thus the same for the two
sampled signals f1[k] and f2[k] (up to a linear phase shift).
So if a low-pass filter is applied to f1[k] and f2[k], the re-
sulting signals f1,low[k] and f2,low[k] are exactly the same up
to their shift Δx (Figure 2(c)). This shift can then be derived
using a correlation operator in time domain or by estimating
the linear phase difference in frequency domain.

An extension to two dimensions is straightforward. The
two sampled signals f1[k] and f2[k] are first low-pass fil-
tered (with cutoff frequency us − umax) in horizontal and
vertical dimensions. The filtered images are identical up to
their registration parameters and can be registered using the
methods described in Sections 3.1 and 3.2. As both meth-
ods are applied in the Fourier domain, the filtering step can
be avoided by applying the registration algorithms imme-
diately to the low frequencies. The rotation estimation is
then based on the frequencies for which ερ < r < ρmax

(with ρmax = min((us − umax)/us)), and the horizontal and
vertical shifts are estimated from the phase differences for
−us + umax < u < us − umax.

Using this approach, high-frequency noise is removed to-
gether with the aliasing, which results in more accurate reg-
istration. A global overview of the registration algorithm is
given in Algorithm 1.
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(1) Multiply the images fLR,m by a Tukey window to make them circularly symmetric. The windowed images are called fLR,w,m.
(2) Compute the Fourier transforms FLR,w,m of all low-resolution images.
(3) Rotation estimation: the rotation angle between every image fLR,w,m (m = 2, . . . ,M) and the reference image fLR,w,1 is estimated.

(a) Compute the polar coordinates (r, θ) of the image samples.
(b) For every angle α, compute the average value hm(α) of the Fourier coefficients for which α− 1 < θ < α+1 and 0.1ρ < r < ρmax.

The angles are expressed in degrees and hm(α) is evaluated every 0.1 degrees. A typical value used for ρmax is 0.6.
(c) Find the maximum of the correlation between h1(α) and hm(α) between −30 and 30 degrees. This is the estimated rotation

angle φm.
(d) Rotate image fLR,w,m by −φm to cancel the rotation.

(4) Shift estimation: the horizontal and vertical shifts between every image fLR,w,m (m = 2, . . . ,M) and the reference image fLR,w,1 are
estimated.

(a) Compute the phase difference between imagem and the reference image as ∠(FLR,w,m/FLR,w,1).
(b) For all frequencies −us + umax < u < us − umax write the linear equation describing a plane through the computed phase

difference with unknown slopes Δx.
(c) Find the shift parameters Δxm as the least squares solution of the equations.

(5) Image reconstruction: a high-resolution image fHR is reconstructed from the registered images fLR,m (m = 1, . . . ,M).

(a) For every image fLR,m, compute the coordinates of its pixels in the coordinate frame of fLR,1 using the estimated registration
parameters.

(b) From these known samples, interpolate the values on a regular high-resolution grid using for example cubic interpolation.

Algorithm 1: An overview of the complete super-resolution algorithm as it was described in Sections 3 and 4. A high-resolution image fHR

(with Fourier transform FHR) is reconstructed from a set ofM low-resolution images fLR,m (m = 1, 2, . . . ,M) with Fourier transform FLR,m.

4. RECONSTRUCTION

When the low-resolution images are accurately registered,
the samples of the different images can be combined to re-
construct a high-resolution image. As discussed in Section 1,
the sampling kernel is assumed to be a Dirac. In other words,
no (generally low-pass filtering) point spread function was
considered. For methods to deconvolve the image from a
(known) point spread function, we refer to the reconstruc-
tion algorithms reviewed in Section 2.

In our reconstruction algorithm, the samples of the dif-
ferent low-resolution images are first expressed in the coor-
dinate frame of the reference image. Then, based on these
known samples, the image values are interpolated on a regu-
lar high-resolution grid. We chose bicubic interpolation be-
cause of its low computational complexity and good results.

What is the optimal number of images to use when re-
constructing a high-resolution image? The exact answer to
this question depends on many parameters, such as the reg-
istration accuracy, imaging model, total frequency content,
and so forth. Intuitively, two effects need to be balanced. On
one hand, the more images there are, the better the recon-
struction should be. On the other hand, there is a limit to
the improvements that can be obtained: even from a very
large number of very low-resolution images of a scene, it will
not be possible to reconstruct a sharp, high-resolution im-
age. Blur, noise, and inaccuracies in the signal model limit
the increase in resolving power that can be obtained. In our
case, the motion estimation algorithm is limited to subsam-
pling by a factor less than two in both dimensions (because
our algorithm needs an aliasing-free part of the spectrum, see

also Section 3.3). Therefore, the resolution can only be really
increased by (almost) a factor of four. Any supplementary
increase in the number of pixels can as well be performed
by upsampling one of the signals and applying low-pass in-
terpolation, but it does not result in an increase of resolv-
ing power. It can reduce noise, however. Figure 3 shows the
mean-squared error (MSE) of the reconstruction versus the
number of images used. The performance increases rapidly
with the first six images, but the improvement is marginal
beyond that.

In the rest of this paper, we will use four images as in-
put to the super-resolution algorithms. Assuming the low-
resolution images were subsampled by almost two, this is the
theoretical limit for which our algorithm should be able to
reconstruct an image of almost double resolution. In other
words, four images are aminimum to have a well-determined
system when upsampling by two. Thus, we do not consider
the improvement to SNR that the use of more images would
bring.

5. RESULTS

The super-resolution algorithm described above is tested in
simulations and in practical experiments. A simulation gives
complete control over the setup and gives exact knowledge of
the registration parameters. It enables us to test the perfor-
mance of the registration and the reconstruction algorithms
separately. The three images that were used in the simula-
tions are shown in Figure 4. In the practical experiment, we
tested our algorithm on sets of pictures taken with real digital
cameras.
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Figure 3:MSE of the reconstructed image as a function of the num-
ber of images used in the super-resolution algorithm. Six images
form a good trade-off between performance and computational
complexity.

In both simulation and experiment, we compared our
registration algorithm to other registration methods. First,
our registration method is compared to the frequency do-
main algorithms by Marcel et al. [18] and by Lucchese and
Cortelazzo [22]. Because Lucchese and Cortelazzo use the
same phase correlation method as Marcel et al., the method
by Lucchese and Cortelazzo is not included in the simula-
tions where only shifts are used. Next, we also compared
it to the spatial domain method based on Taylor expan-
sions by Keren et al. [5]. In the simulations using only shifts,
our registration method was also compared to the algorithm
by Bergen et al. [24], as it was implemented in the super-
resolution imaging software by Farsiu et al. [28]. This was
only done for the case of horizontal and vertical shifts, be-
cause image rotations are not (yet) implemented in this soft-
ware.

5.1. Simulation

In the simulation, we started from a high-resolution im-
age, which was considered as the equivalent for continu-
ous space (Figure 5(a)). This image was then multiplied by
a Tukey window (Figure 5(b)) to make the image circu-
larly symmetric and thus avoiding all boundary effects. Next,
three shifted and rotated copies are created from this high-
resolution image. Gaussian zero-mean random variables are
used for the shift (pixels) and rotation (degrees) parameters.
For the shifts, a standard deviation of 2 is used, while the
rotation angles have a standard deviation of 1. The different
images are then low-pass filtered using an ideal low-pass fil-
ter with cutoff frequency 0.12us (with us the sampling fre-
quency of the high-resolution image) to achieve the setup
specified in Section 3.3 and Figure 2. The first of these im-
ages (not-moved reference image) will be the reconstruction
target for the super-resolution algorithm (Figure 5(c)). And
finally, the four images are downsampled by a factor eight.

This results in four low-resolution, shifted and rotated im-
ages that can be used as input for the super-resolution algo-
rithm (Figure 5(d)). They are aliasing-free in the frequency
band (−0.04us, 0.04us), and are aliased in the rest of the spec-
trum as discussed in Section 3.3 and Figure 2. By construc-
tion, all shifts are multiples of 0.125, but this information is
not used in any of the registration algorithms to keep them
generally applicable.

The results using the different algorithms are summa-
rized in Table 1. The registration results with our algorithm
are much better than the other frequency domain algorithms
byMarcel et al. and Lucchese and Cortelazzo. The motion es-
timates using the algorithm by Lucchese and Cortelazzo are
still accurate up to subpixel precision, while the algorithm
by Marcel et al. performs much worse in estimating the ro-
tation angle. Because of this erroneous rotation cancellation,
the following motion estimation also fails. The results ob-
tained with the algorithm by Keren et al. are similar to those
with our algorithm in both shift and rotation estimation.

Another simulation was also made with only horizontal
and vertical shifts. The results of this simulation are listed
in Table 2. Our algorithm outperformed the other methods
and computed the parameters up to the working precision of
the computations. The algorithm by Marcel et al. has clearly
lower precision than the other algorithms. The spatial do-
main algorithms by Keren et al. and by Bergen et al. (as im-
plemented by Farsiu et al.) outperform the frequency domain
algorithm by Marcel et al., but have lower precision than our
algorithm.

In order to find the same motion parameters in the reg-
istration as the parameters that were used to create the im-
ages, we need to reverse the order in the registration. In other
words, because we first shifted the images and then rotated
them in the simulation setup, we need to undo the rotation
first and then the shifts. Otherwise, a conversion would have
to be made before comparing the two.

5.2. Practical experiment

The different algorithms are also compared in two practical
experiments with real images. First, a Leica DC250 black and
white digital camera is used, with a Nikon 85mm optical
system. As can be seen from its spatial frequency response
[29] (Figure 6), aliasing artifacts can occur with this camera.
The camera was firmly fixed on a stable tripod that allows
only horizontal and vertical shifts and planar rotations par-
allel to the image plane.

With this camera setup, four shifted and rotated images
of a planar scene are captured (Figures 7(a) and 7(b)1). The
planar scene is a resolution test chartin a plane parallel to the
image plane of the camera. These images are then registered
using the different registration algorithms to be compared
(see Table 3), and a high-resolution image is reconstructed
using bicubic interpolation (Figure 8).

1 When this paper is displayed on a screen or printed, it is possible that
additional aliasing is present in the images due to resizing. The full size
images are available online [30].



8 EURASIP Journal on Applied Signal Processing

(a) (b) (c)

Figure 4: High-resolution images used in the simulations. (a) Building, (b) castle, and (c) leaves.

(a) (b) (c)

(d) (e)

Figure 5: Simulation setup. (a) Original high-resolution image. (b) Original image multiplied by a window to make it circularly symmetric.
(c) Low-pass filtered image to satisfy the reconstruction conditions. This image is used as reconstruction target. (d) Low-resolution image
used as input to the super-resolution algorithm. (e) Reconstructed high-resolution image.

In a second experiment, a set of four color images was
taken using a Sigma SD10 digital camera. This camera uses
a Foveon X3 sensor, which has three photodetectors (for red,
green, and blue) at every pixel location. The camera was held
manually in approximately the same position while taking

the pictures, which caused small shifts and rotations be-
tween the images (Figure 7). Aliasing is present in the high-
frequency regions of the images. The different registration
algorithms are then applied to these images and a high-
resolution image is reconstructed (see Table 3 and Figure 9).
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Table 1: Comparison of the average absolute error (μ) and the standard deviation of the error (σ) for the shift and rotation parameters in
the different algorithms. 150 simulations were performed for each of the images (Figure 4).

Parameters
Our algorithm Marcel et al. Lucchese et al. Keren et al.

μ σ μ σ μ σ μ σ

Shift (pixels) 0.029 0.038 1.999 11.522 0.327 0.417 0.019 0.027

Rotation angle (deg) 0.126 0.191 19.003 79.086 0.142 0.181 0.053 0.071

Table 2: Comparison of the average absolute error (μ) and the standard deviation of the error (σ) for the shift parameter in the different
algorithms. 150 simulations with only horizontal and vertical shifts (no rotations) were performed for each of the images.

Parameters
Our algorithm Marcel et al. Keren et al. Bergen et al.

μ σ μ σ μ σ μ σ

Shift (pixels) 3.2e-15 3.9e-15 0.3126 0.3803 4.1e-3 6.0e-3 5.4e-3 7.9e-3
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Figure 6: Spatial frequency response. (a) Horizontal (dashed line) and vertical (solid line) relative spatial frequency response of the Le-
ica DC250 digital camera used in the experiment. A relative spatial frequency of 1 corresponds to 1017 line widths/picture height and
74 cycles/mm on the image sensor. (b) Relative spatial frequency response (solid line) and its aliased versions (dashed line) after sampling.
Although there is no aliasing-free part, the signal-to-aliasing ratio is relatively high for low frequencies, and our algorithm still works.

In these experiments, the estimated cutoff frequency in
our algorithm is set as high as possible to obtain reliable re-
sults. The shifts are estimated from the central 5% of the fre-
quency domain image, while for the rotation estimation, a
disc with ρ = 0.6 is used. The use of more information for
the rotation estimation than for the shift estimation is re-
quired to get sufficient precision (see also Section 6). It can
be justified by the fact that in this area, the aliasing compo-
nent of the sampled signal is smaller than the base spectrum
component.

The estimates using the algorithm by Marcel et al. and
the shift estimation of the algorithm by Lucchese and Corte-
lazzo have lower precision due to the size of the images. Be-
cause the original images are already relatively large, the re-
quired additional upsampling and interpolation require too
much memory to be performed on a regular computer. The
upsampling is therefore omitted in this case and the shifts are
only computed up to pixel level.

Because the exact motion parameters are unknown, it is
only possible to compare visually the different reconstructed
images. From Figures 8 and 9, it can be seen that with our al-
gorithm, the registration was very accurate. Most aliasing has
been removed in both reconstructed images. In the images
obtained with the algorithms by Marcel et al. and by Luc-
chese and Cortelazzo, at least one of the images was badly
aligned. Therefore, the reconstructions are also less precise.
The results with the algorithm by Keren et al. are comparable
to the results with our algorithm.

6. DISCUSSION

A very precise registration algorithm is required for any
super-resolution algorithm to work. From the comparison
in simulations and with real image sequences, it is clear that
our frequency domain algorithm and the spatial domain
algorithm by Keren et al. are accurate enough to improve
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Table 3: Registration parameters for the practical experiments using our algorithm, nonlinear minimization, and the algorithm by Keren
et al. Experiment 1 is the experiment with the resolution chart using the Leica camera. Experiment 2 is the experiment with the outdoor
scene using the Sigma camera.

Im. pairs Our algorithm Marcel et al. Lucchese et al. Keren et al.

Exp. 1 Δx Δy θ Δx Δy θ Δx Δy θ Δx Δy θ

Im2-Im1 9.24 −3.84 0.9 11.2 −4.20 1.06 9.00 −0.50 1.21 9.27 −3.86 0.92

Im3-Im1 9.74 −2.21 1.2 12.4 0.20 1.39 10.00 2.00 1.68 9.86 −2.29 1.14

Im4-Im1 10.32 −5.00 1.2 12.4 −5.00 1.39 11.25 −0.75 1.63 10.37 −5.06 1.17

Exp. 2 Δx Δy θ Δx Δy θ Δx Δy θ Δx Δy θ

Im2-Im1 −12.75 −10.34 −0.1 −17 −10 0 −15 −4 −0.53 −12.51 −10.43 −0.01
Im3-Im1 14.65 12.96 0 22 13 0 11 36 1.66 15.22 13.08 0.01

Im4-Im1 −12.08 1.54 −0.1 −18 2 0 −14 −6 −0.63 −12.76 1.74 −0.09

(a) (b)

(c) (d)

Figure 7: Aliased images taken with a real digital camera and used
in the practical experiments. (a) One of the four images of the res-
olution chart taken with the Leica digital camera, and (b) a detail
showing the aliasing. (c) One of the four images of a real-life scene
taken with the Sigma digital camera, and (d) a detail showing the
aliasing. The four images for both experiments are available online
[30].

resolution and remove aliasing artifacts (see Figures 8 and
9). Our algorithm performs better than the algorithm by
Keren et al. if there is some strong directionality present in
the images. The other frequency domain algorithms by Mar-
cel et al. and Lucchese and Cortelazzo perform worse both in
the simulations and in the practical experiment.

We can also observe that a bad image registration is fatal
for the reconstruction. In such cases, it would be better to re-
construct a larger image from only one of the low-resolution
images using interpolation, even though this does not in-
crease the resolution. The artifacts due to bad motion esti-
mation are visually very noticeable.

Our algorithm works best on images with strong fre-
quency content in certain directions (Figures 10(a) and
10(b)). In that case, our algorithm outperforms all other al-
gorithms including the spatial domain algorithm by Keren
et al. The accuracy of our rotation estimation (and conse-
quently also of the shift estimation) depends on the presence
of some strong directionality in the images. This can be ob-
served in Table 4, where the results from Table 1 for our algo-
rithm are displayed per image. If such frequency directions
are not present (Figures 10(c) and 10(d)), the registration
performance decreases. The results with our algorithm are
then slightly worse than with the algorithm by Keren et al.,
but still much better than those using the other frequency
domain algorithms. This dependence on directionality is re-
lated to the projection along radial lines in our rotation es-
timation algorithm. This highly reduces the computational
complexity of the algorithm, as only a one-dimensional cor-
relation is required instead of the regular two-dimensional
correlations. However, because of the projection, it is also
more subject to errors if there are no strong directions in the
image.

Next to the presence of directional frequency content, the
size of the low-resolution images also constrains the preci-
sion of our rotation estimation algorithm. As the frequency
values have to be averaged over a small angle (typically a few
degrees), the number of values to be averaged will be very
limited for small images. This number of values also varies
for different angles (e.g., more values around 0 and 90 de-
grees, less in between), which biases the computed functions.
In Table 5, simulation results with our algorithm are com-
pared for different image sizes. This explains also why we
consider a large disc for the rotation estimation, as estimates
based on the aliasing-free part alone are not accurate enough.

The super-resolution technique described in Sections 3
and 4 can be applied in many different applications, such as
surveillance, consumer digital cameras, aerial photography,
and so forth. However, an important limitation to its direct
application can be found in the current camera design. Be-
cause aliasing is visually so disturbing, most digital camera
manufacturers design the optical system of their cameras to
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(a) (b)

(c) (d)

Figure 8: Results of the different super-resolution algorithms on the real images of the resolution chart. Zoomed images of the central part
are displayed to show the differences better. (a) Our algorithm. (b) Registration algorithm by Marcel et al. (c) Registration algorithm by
Lucchese and Cortelazzo. (d) Registration algorithm by Keren et al.

(a) (b) (c) (d)

Figure 9: Results of the different super-resolution algorithms on the images of the real-life scene. Zoomed images of the central part are
displayed to show the differences better. (a) Our algorithm. (b) Registration algorithm byMarcel et al. (c) Registration algorithm by Lucchese
and Cortelazzo. (d) Registration algorithm by Keren et al.

remove aliasing. An optical low-pass filter is applied to the
image before it is captured to ensure that aliasing cannot oc-
cur. Our technique totally relies on the presence of aliasing in

the captured images, so if the images are free of aliasing, our
algorithm cannot perform better than a regular interpolation
from a single image.
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(a) (b)

(c) (d)

Figure 10: Our algorithm works best on images with strong fre-
quency content in a number of directions ((a) and its Fourier trans-
form (b)). If the energy is homogeneously spread among all possible
directions (as can be seen in (c) and its Fourier transform (d)), the
performance of the motion estimation algorithm decreases.

Table 4: Comparison of the average absolute error (μ) and the stan-
dard deviation of the error (σ) for the shift and rotation parameters
on different images. 150 simulations were performed for each of the
images (Figure 4).

Parameters
Image 4(a) Image 4(b) Image 4(c)

μ σ μ σ μ σ

Shift (pixels) 0.041 0.050 0.025 0.027 0.020 0.031

Rotation angle (deg) 0.050 0.034 0.063 0.066 0.265 0.316

The advantage of a frequency domain approach is that
the aliasing terms are clearly distinguishable. This makes it
much easier to take aliasing into account and accurately esti-
mate the motion, even in the (partially) aliased case. The fact
that only low-frequency information was used makes the al-
gorithm also more robust to noise, which is strongest in high
frequencies.

The disadvantage of a frequency domain motion estima-
tion algorithm is that it can compute only one set of motion
parameters for the whole image. This motionmodel does not
include a scenario when one object in a scene moves and the
rest of the scene stays constant. For such cases, a local algo-
rithm is needed.

7. CONCLUSIONS

We presented a new frequency domain method for the
registration of a set of low-resolution, aliased images that

Table 5: Comparison of the average absolute error (μ) and the stan-
dard deviation of the error (σ) for the shift and rotation parameters
for different image sizes using our algorithm. 50 simulations were
performed for each of the three images (Figure 4).

Input image size
221× 221 pixels 884× 884 pixels

μ σ μ σ

Shift (pixels) 0.0748 0.1010 0.0288 0.0376

Rotation angle (deg) 0.3931 0.5550 0.1261 0.1910

outperforms previous frequency domain registration meth-
ods. Planar rotation and translation parameters are precisely
estimated based on the low-frequency, aliasing-free part of
the images. This image registration technique is then ap-
plied to super-resolution imaging to reconstruct a double-
resolution image (in each dimension) from a set of aliased
images. After the image alignment, bicubic interpolation
was used to reconstruct the high-resolution image. This
algorithmwas compared to some other frequency and spatial
domain methods in simulations and practical experiments.
Both proved the validity and high precision of our algorithm.
If the low-resolution images are sufficiently large and have di-
rectionality, our algorithm outperforms the other algorithms
and accurate aliasing-free high-resolution images can be re-
constructed.
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[2] P. Vandewalle, S. E. Süsstrunk, and M. Vetterli, “Super-
resolution images reconstructed from aliased images,” in Pro-
ceedings of SPIE/IS&T Visual Communications and Image Pro-
cessing Conference, T. Ebrahimi and T. Sikora, Eds., vol. 5150
of Proceedings of SPIE, pp. 1398–1405, Lugano, Switzerland,
2003.
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Sabine Süsstrunk received the B.S. degree
in scientific photography from the Swiss
Federal Institute of Technology, Zurich,
Switzerland, and the M.S. degree in graphic
arts publishing, concentration in electronic
publishing, from the Rochester Institute of
Technology, Rochester, NY, and the Ph.D.
in computer science from the University of
East Anglia, Norwich, UK in 1987, 1993,
and 2005, respectively. She is an Adjunct
Professor with the Audiovisual Communications Laboratory at
the Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne,

http://www.nd.edu/~sborman/publications/
http://www.soe.ucsc.edu/~milanfar/SR-Software.htm
http://lcavwww.epfl.ch/reproducible_research/VandewalleSV05/
http://lcavwww.epfl.ch/reproducible_research/VandewalleSV05/


14 EURASIP Journal on Applied Signal Processing

Switzerland. Her research interests are in digital photography, color
image processing, and image quality.

Martin Vetterli received his Engineering
degree from ETH Zurich, Switzerland, his
M.S. degree from Stanford, and his Ph.D.
degree from Ecole Polytechnique Fédérale
de Lausanne. In 1986, he joined Columbia
University in New York, first with the Cen-
ter for Telecommunications Research and
then with the Department of Electrical En-
gineering where he was an Associate Pro-
fessor of electrical engineering. In 1993, he
joined the University of California at Berkeley, where he was a Full
Professor until 1997. Since 1995, he is a Professor at the Ecole
Polytechnique Fédérale de Lausanne (EPFL), Switzerland, where
he headed the Communication Systems Division (1996/1997) and
heads the Audiovisual Communications Laboratory. From 2001 to
2004, he directed the National Competence Center in research on
mobile information and communication systems. He is also a Vice-
President for International Affairs at EPFL since October 2004. He
has held visiting positions at ETHZ (1990) and Stanford (1998).
His research interests include sampling, wavelets, multirate signal
processing, computational complexity, signal processing for com-
munications, digital video processing, and joint source/channel
coding. His work won him several prizes (Best Paper Awards from
EURASIP in 1984 and of the IEEE Signal Processing Society in 1991
and 1997) and he is the coauthor with J. Kovacevic of the book
Wavelets and Subband Coding (Prentice-Hall, 1994).


	Introduction
	State of the art
	Planar motion estimation
	Rotation estimation
	Shift estimation
	Aliasing

	Reconstruction
	Results
	Simulation
	Practical experiment

	Discussion
	Conclusions
	Acknowledgments
	REFERENCES

