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While most existing loading algorithms for xDSL-DMT systems strive for the optimal energy distribution to maximize their rate,
the amounts of bits loaded to subcarriers are constrained to be integers and the associated granularity losses can represent a
significant percentage of the achievable data rate, especially in the presence of the peak-power constraint. To recover these losses,
we propose a fine-granularity loading scheme using joint optimization of adaptive modulation and flexible coding parameters
based on programmable Reed-Solomon (RS) codes and bit-error probability criterion. Illustrative examples of applications to
VDSL-DMT systems indicate that the proposed scheme can offer a rate increase of about 20% in most cases as compared to
various existing integer-bit-loading algorithms. This improvement is in good agreement with the theoretical estimates developed
to quantify the granularity loss.
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1. INTRODUCTION

Discrete multitone (DMT) modulation [1] has been widely
used in xDSL applications such as asymmetric DSL (ADSL)
[2] by the American National Standards Institute (ANSI) and
the European Telecommunications Standard Institute (ETSI)
and more recently for VDSL [3] by ANSI. Loading strat-
egy is used for dynamic subcarrier rate and power allocation
for given channel conditions, system constraints, and perfor-
mance requirements.

For a multichannel total-power constrained problem, the
optimal power distribution has long been known to be the
“water-filling” distribution [4]. However the derivation tac-
itly assumes infinite granularity while most of the known
modulation schemes support the integer number of bits per
symbol. It was initially observed in [5, 6] that most of the
granularity losses due to the integer number of bits per sym-
bol could be recovered by rounding off rates to integers and
scaling energies accordingly after starting with a water-filling
[6] or flat on/off [5] energy distribution. However the free-
dom for such rescaling is considerably reduced in the pres-
ence of peak-power constraint.

Peak-power constraint [7, 8] arises from spectrum com-
patibility requirements to enable coexistence amongmultiple
users and diverse services. When the peak-power constraint
is far stricter than the total-power constraint, as is often the
case in VDSL-DMT, there is hardly any room left for ma-
neuverability (or rescaling) in the energy domain (to recover

lapses in the bit-domain) and significant losses in achievable
data rates of integer-bit algorithms are observed.

These losses accounting to be a significant percentage
of the supported information rate compel us to tackle the
integer-bit granularity problem through bit-error-rate-based
joint optimization of adaptive modulation and flexible
RS(n, k) coding on each subcarrier that can provide a wide
range of fine choices in code rate and error-correction capa-
bility.

The remainder of the paper is organized as follows.
Section 2 presents the overall optimization problem formu-
lation and inferences from related literature about gran-
ularity. Section 3 develops a quantification of granularity
loss based on relative strictness of peak-power and total-
power constraints. Section 4 describes the proposed adap-
tive Reed-Solomon-based fine-granularity loading (ARS-
FGL) scheme. Section 5 presents the illustrative results for
various VDSL-DMT scenarios and concluding remarks are
made in Section 6.

2. POWER, INTEGER-BIT CONSTRAINTS,
AND GRANULARITY LOSS

Consider a xDSL-DMT system with N subcarriers. Let εj be
the controllable transmitted power spectral density (PSD)
and ρj be the normalized channel signal-to-noise ratio when
εj = 1 over the jth subcarrier, that is, ρj is the ratio of the
squared channel transfer function to the noise PSD over the
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jth subcarrier. The noise includes both crosstalk and ther-
mal additive white Gaussian noise (AWGN). The intercarrier
spacing Δ f is assumed to be small enough for all the afore-
mentioned PSDs to be nearly flat over each subcarrier.

The subcarrier rate function b(σj) is defined as the max-
imum information rate in bits per symbol that can be sup-
ported at the received SNR of σj = ρjε j to maintain the con-
ceded error probability not exceeding a specified target value.
The object function of the overall ratemaximization problem
is the total supported rate:

R =
N∑

j=1
b
(
ρjε j

)
. (1)

The traditional total-power constraint for the nontrivial
power distribution can be expressed as

Δ f ·
N∑

j=1
εj ≤ Ebudget for εj ≥ 0, 1 ≤ j ≤ N. (2)

In addition, many practical systems have limitation on the
maximum transmit PSD. This implies the peak-power con-
straints:

εj ≤ εmax
j , 1 ≤ j ≤ N , (3)

where {εmax
j }Nj=1 is specified by the admissible transmit PSD

mask, for example, SMClass3 in [8] or M1FTTCab in [3].
The subcarrier specific rate function can be expressed as

b
(
σj
) = r j

⌊
log2

(
1 +

σj
Γ j

)⌋
, (4)

where r j is the coding rate and Γ j is the SNR gap determined
by the performance of the modulation and coding schemes
in use. The floor operation (i.e., �x� = m for the largest
integer m ≤ x) arises from the integer-bit constraint, since
we try to find the largest integer number of bits per symbol
that would satisfy the error rate target at SNR of σj . When
the same FEC coding is applied for all subcarriers, that is,
r j = r, this floor operation restricts the subcarrier rate to
have steps of nr where n is integer (i.e., integer-bit constraint)
and R = r

∑N
j=1 �log2(1 + (σj/Γ j))�.

Loading algorithms with objective to maximize rate (1)
are called rate-adaptive (RA) loading algorithms. The total-
power only (TPO) constrained problem specified by (1) and
(2) leads to the classical water-filling solution. Most RA al-
gorithms [5, 6, 9, 10] addressed the TPO problem with
integer-bit constraint. The more practical total and peak-
power (TPP) constrained problem, that is, (1), (2), and (3),
with integer-bit constraint was considered in [5, 7, 11].

Both the greedy method in [9] and the Lagrangean
method in [10] lead to the optimal solution for the integer-
bit TPO problem, the latter being much more computation-
ally effective than the former. In [5, 6], a SNR-gap function-
[1] based method is proposed, which, in the initial stage,
gives a continuous bit distribution resulting from a flat on/off
and water-filling energy distribution, respectively. The differ-
ence between the rates resulting from these two energy distri-
butions was seen to be only 2%. To achieve negligible degra-
dation due to the integer-bit constraint, both methods use

bit-rounding and proper energy adjustment only for the TPO
case.

In [5, Section 4.3.4], an Ad hoc extension for the TPP
problem is presented by capping the bit round-off and the
final energy rescaling with a maximal bit distribution and
the peak energy constraint, respectively. Amore formal treat-
ment of the problem is presented in [7]. At first, the problem
is solved without the integer-bit constraint for the general
case of a continuously differentiable, strictly increasing, and
strictly concave rate function. This solution is reproduced be-
low with minor notational changes for easy reference,

if Δ f ·
N∑

i=1
εmax
i ≤ Ebudget, then εj = εmax

j . (5)

If Δ f ·
N∑

i=1
εmax
i > Ebudget,

then εj = εj(λ)

= εmax
j , if λ ≤ ρjbσ

(
ρjε

max
j

)

= 1
ρj
b−1σ

(
λ

ρj

)
, if ρjbσ

(
ρjε

max
j

)

≤ λ ≤ ρjbσ(0)

= 0, if λ ≤ ρjbσ(0),

(6)

where bσ(σ) = ∂b(σ)/∂σ and b−1σ (·) is the inverse of bσ(·).
The parameter λ is the solution to

Δ f ·
N∑

j=1
εj(λ) = Ebudget. (7)

When (5) is satisfied, the energy distribution is indepen-
dent of the rate function. Consequently, the peak-power con-
straint completely dominates and total-power constraint is
trivially satisfied. In the rest of this paper, we will refer to this
case as the peak-power only (PPO) case and by TPP we will
mean the case when the inequality in (6) is satisfied, that is,
both total-power and peak-power constraints play a role. A
suboptimal algorithm for the TPP case with integer-bit con-
straint is presented in [7, Table IV]. The optimal algorithm
(in terms of rate achieved) for the TPP case with integer-bit
constraint is presented in [11].

The granularity loss in [7] is reported to be between 6–
12% of the rate conveyed for the ADSL-TPP case, which is
significant as compared to the variation of only 0.2–4% in
the achievable rates of most existing integer-bit algorithms
for the TPO case [12, Figure 4]. It is also higher than what
would be expected from the 0.2 dB margin difference due to
granularity reported for the ADSL-TPO case in [5, 13]. This
leads us to believe that granularity losses would grow with
strictness in the peak-power constraint. Hence, we examine
the case of VDSL-DMT for which the peak-power constraint
is known to be particularly strict and also the number of sub-
carriers is large.
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3. QUANTIFICATION OF GRANULARITY LOSS

Let Ω � { j ∈ {1, 2, . . . ,N} : εj > 0} = Ω1 ∪ Ω2 where

Ω1 ∩ Ω2 = ∅, Ω1 � { j ∈ Ω : b−1(
b(ρjε j)�) > ρjε
max
j },

Ω2 � { j ∈ Ω : b−1(
b(ρjε j)�) ≤ ρjε
max
j }, and 
x� represents

the ceiling operation (i.e., 
x� = n where n is the smallest in-
teger such that x ≤ n). It follows that NΩ = NΩ1 +NΩ2 where
NΩ, NΩ1, and NΩ2 are the cardinality of the sets Ω, Ω1, and
Ω2, respectively. Ω represents the set of nontrivially loaded
subcarriers and Ω1 is the set of subcarriers in which ceil-
ing the noninteger-bit b(ρjε j) would cause the correspond-
ing energy allocation to violate the peak-power constraint,
that is, εj > εmax

j . Thus the only possibility to satisfy both the
integer-bit and peak-power constraints in such a scenario is
using the floor operation �b(σj)�. Hence the granularity loss
for the jth subcarrier is,

∂bGj = b
(
σj
)− ⌊b(σj

)⌋
, ∀ j ∈ Ω1. (8)

For subcarriers, where rounding is possible without violation
of peak-power constraint:

∂bGj = b
(
σj
)− round

(
b
(
σj
))
, ∀ j ∈ Ω2. (9)

In both cases ∂bGj can be treated as a quantization error with
a quantization step of 1. Since the variable to be quantized,
b(σj), has a much larger range (up to 15 bits/symbol) than
the quantization step, the granularity loss ∂bGj can be con-
sidered as a uniformly distributed random variable (see [14,
page 194]),

∂bGj ∼ U[0, 1), ∀ j ∈ Ω1;

∂bGj ∼ U

[
− 1

2
,
1
2

]
, ∀ j ∈ Ω2.

(10)

The random variable representing the total granularity loss
is ∂bG =∑i∈Ω ∂bGi with its average

∂bG = E
(
∂bG

) =
∑

i∈Ω1

E
(
∂bGi

)
+
∑

i∈Ω2

E
(
∂bGi

)

= NΩ1 · 12 +NΩ2 · 0 = NΩ1

2

= ηNΩ

2
, where 0 ≤ η = NΩ1

NΩ
≤ 1,

(11)

where E(·) in (11) represents the stochastic expectation op-
erator. The ratio η can be estimated as follows.

(i) TPO Case: In this case, by definition, there is no peak-
power constraint or εmax

j = ∞; for all j, that is,Ω1 = ∅
and NΩ1 = 0, η = 0. Also, due to the denominator
being ∞, Ebudget/Δ f ·∑N

i=1 ε
max
i = 0. Thus the average

granularity loss is nearly zero, as observed in [5, 6, 13].
(ii) PPO Case: In this case, εj = εmax

j ; for all j ∈ Ω, that is,

Ω1 = Ω and Ω2 = ∅. Thus NΩ1 = NΩ and ∂bGPPO =
NΩ/2, η = 1. NΩ is fairly large in xDSL applications
(e.g., more than 1000 in VDSL-DMT). Also from (5),
Ebudget/Δ f ·∑N

i=1 ε
max
i ≤ 1.

(iii) TPP Case: For the TPP case, the analysis of η is more
involved and depends on the specific scenario. How-
ever, observing the values of η in TPO and PPO cases,
which act as the boundaries of the TPP case and its
monotonic nature, we can consider the following ap-
proximation:

η ≈
⌈

Ebudget
Δ f ·∑i∈Ω εmax

i

⌉1
,

⌈
x
⌉l �

⎧
⎨
⎩
l, x > l,

x, x ≤ l.
(12)

η represents the relative strictness of the total-to-peak-power
constraint and we can expect that as η increases due to
stricter peak-power constraint, granularity losses will be
higher. It is worthwhile to note that for a general TPP case, as
channel conditions worsen, Ω shrinks, thereby reducing the
denominator of η. Eventually η will increase to 1 and the TPP
case will reduce to a PPO case and all previous inferences will
apply. In VDSL-DMT application, η is seen too fairly close to
1 inmost cases andNΩ is large, thus the granularity loss is ex-
pected to be a fairly significant percentage of the supported
rate.

4. ADAPTIVE REED-SOLOMON-BASED
FINE-GRANULARITY LOADING SCHEME

In the current VDSL1 system [3], as shown in Figure 1, there
is only one fixed-rate RS(n, k) encoder with n = 255 and k =
239 in the PMS-TC layer and the bit and energy allocation
are carried out only in the PMD layer.

The RS(255, 239) coding is applied to bits that can be
transmitted in various subcarriers. The coding channel is
assumed to be a binary symmetric channel (BSC) with the
crossover bit-error probability, Pe,ch and Pe,ch represents the
BER averaged over all N subcarrier DMT modems. The fi-
nal system performance is represented by the post-decoding
bit-error probability of the RS(n, k) code over GF(2m) [15,
Equations 4.23, 4.24]:

Pe,dec
(
Pe,ch,n, k

) ≤ 2m−1

2m − 1

n∑

i=t+1

i + t

n

(
n
i

)
Pi(1− P)n−i,

where P = 1− (1− Pe,ch
)m

, t =
⌊
n− k

2

⌋
.

(13)

The above upper bound is less than 0.1dB away from the ex-
act BER [16].

For RS(255, 239) with m = 8, n = 255, k = 239, and t =
8, to achieve Pe,dec ≤ 10−7, we need Pe,ch < 10−3 (5.65× 10−4

to be precise). This is ensured indirectly and approximately
using the SNR gap method. Since only M-QAM is used, the
uncoded SNR gap for Pe,dec ≤ 10−7 is nearly 9.75 dB for a
large range of M and also the RS(255, 239) code is assumed
to provide a uniform coding gain γc=3.75dB. Thus Γ j = Γ =
9.75− γc [17] and the code rate r j = r = 239/255 in (4).

1 ADSL has a similar structure.
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Figure 1: Functional diagram of PMD and PMS-TC sublayers in current VDSL-DMT system.
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Figure 2: Subcarrier transmission model.

In the proposed adaptive RS-based fine-granularity load-
ing (ARSFGL) scheme, instead of using a fixed-rate RS(n,
k) code for all subcarriers, we assume a variable rate RS(n,
ki) code for each subcarrier #i. This can be implemented
by replacing the fixed-rate RS codec in Figure 1 with a
single programmable RS(255, k) codec [18, 19], which
operates on a per-subcarrier basis. Framing and buffer-
ing in MUX/DEMUX (Figure 1) will be modified accord-
ingly to support this per-subcarrier RS codec operation and

interleaving may not be required since independence of er-
ror patterns is maintained before decoding unlike in [3]. The
loading algorithm provides the allocated rates (i.e., ki, and
the number of bits/symbol) and power as follows.

4.1. Rate allocation

Figure 2 depicts the equivalent model representing the trans-
mission operation for each subcarrier. The complex symbol
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output of the M-QAM modulator is scaled to an in-
put PSD level of εj to achieve the overall received SNR,
σj = εjρj , corresponding to the Mj-QAM demodulator
and RS(n, kj) decoder bit-error probabilities of Pe,ch(Mj , σj)
and Pe,dec[Pe,ch(Mj , σj),n, kj], respectively. Our optimization
problem is formulated as follows:

maximize
kj ,Mj

b
(
σj
) = kj

n
× log2Mj , (14)

constraints : k = 1, 3, 5, . . . ,n,

log2Mj = 1, 2, 3, . . .

Pe,dec
[
Pe,ch

(
Mj , σj

)
,n, kj

] ≤ 10−7.

(15)

Pe,dec[Pe,ch(Mj , σj),n, kj] is obtained from (13) with k =
kj and Pe,ch = Pe,ch(Mj , σj).

Pe,ch(Mj , σj) is the BER ofMj-QAM in AWGN channels,
that is, for log2Mj : odd with cross-QAM using impure Gray
encoding [20],

Pe,ch(M, σ) ≈ Gp,MNM

log2M
·Q
(√

2σ
Cp,M

)
, (16)

where Gp,M , NM , and Cp,M , represent the Gray penalty,
number of nearest neighbors and packing coefficients, re-
spectively. For validation purposes, we simulated cross-
constellations constructed from the above scheme and we
observe that (16) gives an accurate estimate of BER for all
cross-constellations from 25, 27, . . . , 215 for BERs below 0.07,

For even log2Mj with square-QAM using perfect Gray
encoding [21],

for square-QAM [21]: Pe,ch(M, σ) = 2
log2M

log2
√
M∑

s=1
P(s, σ),

(17)

where

P(s, σ) = 1√
M

×
(1−2−s)√M−1∑

i=1
(−1)�i·2s−1/

√
M�
[
2s−1 −

⌊
2s−1i√
M

+
1
2

⌋]

× erf c

(
(2i + 1)

√
3σ

2(M − 1)

)
.

(18)

Note that b(σj) is a monotonously increasing with kj and
Mj , Pe,ch(Mj , σj) and Pe,dec[Pe,ch(Mj , σj),n, kj] are mono-
tonously increasing with Mj and kj , respectively. Thus we
can search for Mj and kj in a sequential manner. At first,
Mj is found to be within the limits specified by the uncoded
case and the ideal Shannon limit, that is, 
log2(1 + σj/Γ)� ≤
log2Mj ≤ �log2(1 + σj)�. We then search for kj in de-
scending order, that is, from n to (n − 2), (n − 5), . . ., until
Pe,dec[Pe,ch(Mj , σj),n, kj] ≤ 10−7. The optimum values for kj
andMj for given σj can also be precalculated and stored in a
table such as Table 1 so that the search for kj and Mj can be
done by the table lookup technique.

Table 1: Example of rate lookup table.

σ (dB) Optimum kj (1–255) Optimum log2(Mj)
30.0 245 8
30.5 247 8
31.0 249 8
31.5 251 8
32.0 229 9
32.5 235 9
33.0 239 9
33.5 223 10
34.0 229 10
34.5 235 10
35.0 239 10

The optimized rate function (14) of the proposed AR-
SFGL is plotted along with that of the integer-bit-loading
for VDSL in Figure 3. The finer granularity and inherent
gains2 in rate can be clearly seen. The gains stem from the
fact that while k, and hence Pe,ch, are fixed in the exist-
ing VDSL schemes, the proposed ARSFGL scheme varies
Pe,ch(Mj , σj), jointly optimizing the adaptive coding and
modulation schemes to achieve the maximum information
rate. The gain in rate offered by the proposed ARSFGL is
larger at higher SNR due to the fact that the proposed AR-
SFGL uses the bit-error probability (BER) criterion while
the existing VDSL loading scheme is based on symbol-error
probability (SER) [1]. As SNR increases, higher M can be
used and the difference between BER and SER becomes sig-
nificant. Hence the BER-based ARSFGL is closer to the con-
straint Pe,dec ≤ 10−7. Another reason for choosing the BER-
based scheme is that for the choice of RS(255, kj) on each
subcarrier, the input BER Pe,ch(Mj , σj) is a more meaningful
quantity than theMj-ary SER(see (13)).

4.2. Energy allocation

As can be seen from Figure 3, the ARSFGL rate function is
nondecreasing and can provide near-continuous rate adap-
tation. These conditions are sufficient for (5) to be satisfied3.
Thus, for the PPO case, the optimal power allocation will be
the PSD constraint. For the TPP case, however, the energy
allocation depends on the rate function. Note that the solu-
tion for a continuously differentiable, strictly increasing, and
strictly concave ratefunction is already available in (6) and
(7). Furthermore, the ARSFGL rate function is close to the
above properties. Therefore, we consider the rate function

2 Based on [3], no other code than RS is assumed in Figure 3. When addi-
tional or higher-performance coding is used, the gap between the Shan-
non limit and both curves in Figure 3 would be reduced by the same
amount due to the additional coding gain. However, the granularity loss
would remain the same.

3 It is straightforward to verify (5) to hold for a continuous and increas-
ing case. For the continuous and nondecreasing case, the only change is
that (5) is no longer the unique optimum and solutions with smaller total
energy might exist.
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Figure 3: ARSFGL performance: rate versus SNR.

approximated by

be(σ) = α log2(βσ + γ
)
. (19)

The approximation4 is achieved by curve-fitting and the
values of α = 0.9597, β = 0.2736, and γ = 0.8232 yield a
mean-squared error of less than 0.0076 bits.

From (6) and (7) with be(σ) as the rate function, the final
solution to the TPP energy allocation problem is

εj =
[
B − γ

βρj

]εmax
j

0

, (20)

where

[x]ml �

⎧
⎪⎪⎨
⎪⎪⎩

m, x ≥ m,

x, 0 < x < m,

l, x ≤ l,

(21)

and B is the solution to

Δ f ·
N∑

j=1

[
B − γ

βρj

]εmax
j

0

= Ebudget. (22)

Here B relates to λ in (6) and (7) as B = α/λ ln 2. Thus
the energy allocation problem reduces to the evaluation of
B. This is done by using the low cost secant-based search

4 The approximation is done only for the purpose of energy allocation so
that (5)–(7) can be directly used. However, the rate allocation following
this energy allocation is done using the lookup table.

method proposed in [7] with the following minor changes
to suit our notation and special usage of (19), f (B) = Δ f ·
∑N

j=1[B − γ/βρj]
εmax
j

0 − Ebudget, b0 ≡ min1≤i≤N{γ/βρj}, and
b1 ≡ max1≤i≤N{εmax

j + γ/βρj}. b0 and b1 are the limits of the
secant-based search. After incorporating these changes, the
pseudocode in [7, Table I] can be directly used. It is worth-
while to note that by virtue of providing near-continuous
rate adaptation, a secondary iterative procedure characteris-
tic to integer-bit algorithms (e.g., bit-rounding and energy-
adjustment in [5, 6] or bisection search in [7]) is not neces-
sary. Thus the energy allocation for ARSFGL is simpler.

5. ILLUSTRATIVE EXAMPLES FOR APPLICATION TO
VDSL-DMT SYSTEMS

We consider the 4 transmit PSDs specified for VDSL-DMT
[3, Section 7.1.2] in both upstream (US) and downstream
(DS) and total-power budget over the same band [3, Table
7.1], to evaluate if the inequality in (5) holds and thereby
classify the case as PPO or TPP. As shown in Table 2, all 5
shaded sections (including all US cases and the M1 FTTCab
DS case) are under PPO constraint and the remaining 3 cases
under TPP constraint. The TPO case does not occur in prac-
tice because admissible spectral masks for virtually every ap-
plication have been specified [3, 8], but has been presented
here for the sake of completeness.

5.1. Evaluation of PPO case

For PPO cases, (5) indicates that the energy allocation is in-
dependent of the rate allocation function. Thus all existing
algorithms would result in the same solution because they
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Table 2: Occurrence of PPO and TPP cases in VDSL-DMT.

PSD
Upstream Downstream

Δ f ·∑i ε
max
i (dBm) Ebudget(dBm) Δ f ·∑i ε

max
i (dBm) Ebudget (dBm)

M1 FTT Cab 6.94 14.5 8.39 11.5
M2 FTT Cab 13.26 14.5 14.47 11.5
M1 FTT Ex 6.94 14.5 20.54 14.5
M2 FTT Ex 13.26 14.5 21.52 14.5

Table 3: Simulation parameters.

Number of subcarriers: 4096
Cyclic prefix length: 640 samples
US carriers: U1: 870–1205, U2: 1972–2782
DS carriers: D1: 33–869, D2: 1206–1972
Loop and basic noise: Loop 1 with AWGN(−140dBm/Hz) + 20 VDSL xTalkers

PPO TPP
Direction: Upstream Downstream
Total-power constraint: 14.5 dBm 11.5 dBm
Tx PSD constraint: M1 FTTCab M2 FTTCab
Additional noise: + Alien noise A + Alien noise F

strive for optimization in the energy domain and in this case
the energy distribution is completely decided by the peak-
power constraint. The received the SNR profile as a result of
any loading algorithm would be σj = εmax

j ρ j .
The general simulation parameters and those specific to

the PPO case are presented in Table 3. This configuration
resembles Test case-1 in [22] except that we do not fix the
data rate at 10Mbps, and study its variation over a wide
range of loop lengths. The received SNR profile {σi}Ni=1 and
rate allocation over the subcarriers for this configuration at
2400 ft are presented in Figures 4(a) and 4(b), respectively.
The resulting data rates offered by the integer-bit-loading
algorithm and proposed ARSFGL schemes are 10.94Mbps
and 13.41Mbps5, respectively. In other words, the proposed
ARSFGL scheme provides an increase in rate of 22.6% (=
13.41/10.94-1). The rate-reach curves for different schemes
are presented in Figure 4(c). Any integer-bit-loading algo-
rithm would result in this same distribution as shown for
the coded and uncoded cases. The proposed ARSFGL offers
a much better reach-rate curve than the integer-bit-loading
algorithm. The “theoretical expectation” curve is generated

by adding ∂bGPPO, that is, (11) with η = 1, to the reach-
rate curve of the integer-bit-loading algorithm for the coded
case at each reach value. The ARSFGL curve closely fol-
lows the “theoretical expectation” for distances longer than
1800 ft. However, for distances shorter than 1800 ft, it is no-
ticeable that the ARSFGL curve is better due to the im-
provements arising from a BER-based loading. Shorter dis-
tances allow higher SNR and hence higher Mj . Therefore,
the BER-based improvement is more pronounced as pre-
viously discussed (Figure 3). The improvements offered by

5 It is worth noting that to achieve this increased rate with the integer-bit-
loading algorithm, a coding gain of 8.6 dB would be required, assuming
1 bit redundancy per-subcarrier characteristic of TTCM schemes [23].

the proposed ARSFGL are 23.6%, 27.5%, and 70% at loop
lengths of 2500 ft, 3600 ft and 4000 ft, respectively.

5.2. Evaluation of TPP cases

In TPP cases, the peak-power constraint is less stringent
than the PPO case, and hence there is some room for
maneuverability in the energy domain to recover some of the
granularity losses.

The simulation parameters specific to the TPP case are
presented in Table 3. This configuration resembles test case-
25 in [22] except that we do not fix the data rate at 22Mbps,
and study its variation over a wide range of loop lengths. The
channel SNR ρj for the above configuration and a loop length
of 2100 ft is shown in Figure 5(a). In Figure 5(b), the PSD-
constraint in the form ofM2FTTCabmask is presented along
with the transmit PSD allocated by the ARSFGL scheme and
integer-bit scheme by Baccarelli [7]. The integer-bit scheme
leads to a sawtooth distribution, which deviates on both
sides of the smooth distribution of the ARSFGL scheme. In
Figure 5(c), the resulting bit distributions are presented. Un-
like in the PPO case (whereΩ2 = ∅), here we observe sets of
subcarriers (belonging toΩ2) where the integer-bit scheme is
able to allocatemore bits than the ARSFGL scheme due to the
sawtooth nature of the energy distribution. This is what we
have referred to as recovery of granularity loss through en-
ergy readjustment in earlier parts of the paper. It can be seen
that, in the subcarrier 33-300 where the M2 mask is particu-
larly stringent at−60dBm/Hz, the ARSFGL scheme is always
able to allocate more bits just like in PPO cases. These sub-
carriers form a part of set Ω1.

The rate-reach curves are presented in Figure 6(a). The
rates achieved by the ARSFGL scheme for TPP case is
compared with 3 integer-bit algorithms—Chow’s TPP algo-
rithm [5, Section 4.3.4], Baccarelli’s (suboptimal) integer-bit
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Figure 4: ARSFGL performance for PPO case. (a) Channel signal-to-noise ratio, ρ, at 2400 ft, (b) sample rate allocation, b(σj), at 2400 ft,
and (c) rate versus reach.
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Figure 5: ARSFGL performance for TPP case. (a) Channel signal-to-noise ratio, ρ, at different subcarriers for 2100 ft, (b) transmit PSD εj at
different subcarriers for 2100 ft, and (c) bit distribution b(ρjε j) at different subcarriers for 2100 ft.

algorithm, and the matroid optimal integer-bit algorithm6

[11]. For easier comparison of schemes, the percentage
improvements over Chow’s algorithm have been presented

6 In [11], an optimal solution to the integer-bit TPP problemwas proposed.
The optimality was proven using the matroid structure of the underly-
ing combinatorial optimization problem. The optimality of the algorithm
makes it valuable for benchmarking (in the context of our paper for the
ARSFGL scheme), because this is the best any integer-bit scheme (simple
or complicated) can do. However, wemust also note that the rate achieved
by the algorithm in [7], though suboptimal is very close to the optimal
rate achieved by [11]. This is observed in Figure 6 for VDSL cases and was
also seen in [11, Table 4].

in Figure 6(b). From Figure 6(a), we can see that on average,
the ARSFGL scheme provides about 2Mbps improvement
over the integer-bit schemes for loops shorter than 5500 ft.
As expected from (12), for loops longer than 4700 ft, η be-
comes 1 and this case reduces to a PPO case as shown in
Figure 6(b), with all the 3 integer-bit schemes giving exactly
the same performance. As reach increases, both granularity
loss (that depends onNΩ) and rate are reduced. However, the
reduction in rate is much faster than that in NΩ(and hence
granularity loss). Since the proposed ARSFGL draws most of
its improvement from the granularity loss, its percentage of
improvement increases with reach as shown in Figure 6(b).
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Figure 6: Performance of various schemes for TPP. (a) Rate-reach curves and (b) percent increase in data rate as compared to Chow’s
algorithm.

The theoretical curves are generated by adding ∂bG from (12)
to the rate provided by the matroid optimal integer-bit algo-
rithm at different reach values. It is observed that the rate-
reach curve of the ARSFGL closely follows the theoretical ex-
pectations and thereby the assumption on η in Section 3 is
validated.

5.3. Evaluation of TPO case

Though the TPO case does not occur in practice, it has been
presented here for the sake of completeness. The hypothetical
TPO scenario is constructed by removing the PSD constraint
from the TPP configuration shown in Table 3.

The power and rate allocation results of the Leke’s algo-
rithm [6] and proposed ARSFGL scheme are shown in Fig-
ures 7(a) and 7(b), respectively, for a 2400 ft loop.

Figure 8 shows the percentage increase in rate as com-
pared to Chow’s algorithm [5] versus loop lengths offered by
the Leke [6], Baccarelli [7], and the optimal (greedy) integer-
bit Hughes-Hartogs (HH) [9] algorithms and the proposed
ARSFGL scheme. It indicates that the rate increase offered by
the Leke, Baccarelli, and Hughes-Hartogs algorithms is less
than 1% while the proposed ARSFGL scheme can provide
4–6% rate improvement for distances up to 7000 ft. This im-
provement is explained by the fact that though in Section 3,
we have assumed bit-rounding to be an unbiased operation
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Figure 7: Power and rate allocation for TPO case and 2400 ft loop. (a) Transmit PSD εj at different subcarriers, and (b) bit distribution
b(ρjε j) at different subcarriers.
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for simplifying the analysis, rounding up a bit always costs
more in terms of energy than rounding down for the same

difference due to the logarithmic (concave) nature of the rate
function. This bias leads to the granularity loss being positive
even for the TPO case due to Ω2 set of subcarriers. However
in PPO and TPP case, as we observed, this effect is strongly
dominated by loss due to Ω1.

5.4. Applicability to dynamic spectrummanagement

The above results and analysis have been presented for the
case when spectrum management is performed through
specification of spectral masks for all users, which is the cur-
rently standardized form of spectrum management in ADSL
[2, 8] and VDSL [3], known as static spectrummanagement.

Dynamic spectrummanagement (DSM) techniques have
been recently introduced to improve the reach-rate perfor-
mance of xDSL, for example, [24, 25]. In a DSM case, peak-
power constraint still occurs although it is more implicit, and
granularity loss still exists. For example, in [26], it was ob-
served that, for a 24-AWG scenario consisting of 4 loops of
600m and 4 loops of 1200m, when the 1200m loops are
constrained to achieve a minimum of 5Mbps, the 600m
loops using iterated water-filling (IWF) [27] can achieve
3.4Mbps and 7.7Mbps with integer-bit-loading and ideal
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continuous bit-loading, respectively. When optimum spec-
trum management (OSM) is used in the same scenario, the
600m loops achieve 13Mbps and 15Mbps with integer-bit-
loading and ideal continuous bit-loading, respectively. With
its near-continuous bit-loading nature, the proposed ARS-
FGL scheme could be used to recover most of such large
granularity losses, that is, to approach the rates offered by
ideal continuous bit-loading. Furthermore, given the saw-
tooth and discrete nature of integer-bit distribution, multiple
Nash equilibriums might exist and oscillations around these
also seem likely when IWF is used with integer-bit-loading
algorithm. This problem could be also mitigated to a large
extent by using the ARSFGL scheme.

6. CONCLUSIONS

We examined the granularity loss due to the integer-bit re-
striction that can contribute in a significant percentage in
reducing the achievable data rates, especially in peak-power
constrained cases, and developed a fine-granularity BER-
based loading scheme to recover these losses. This is done
by jointly optimizing the coding rate of a programmable
RS(n, k) code and the bit and energy allocation on each sub-
carrier. Illustrative examples of applications to VDSL-DMT
systems indicate that the proposed scheme outperforms var-
ious existing integer-bit-loading algorithms with an increase
in rate of about 20% inmost cases. This is a large rate increase
as compared to the variation in achievable rates of less than
4% between various existing integer-bit-loading algorithms.
This improvement is in good agreement with the theoretical
estimates developed to quantify the granularity loss. The the-
oretical estimates also present an insight into how the granu-
larity losses increase with rising strictness in the peak-power
constraint, in comparison to the total-power constraint and
with the number of subcarriers in use. Although the illustra-
tive results are for the currently standardized static spectrum
management, it is expected that, with its near-continuous
bit-loading nature, the proposed scheme can also be used
to recover potential granularity losses that exist in dynamic
spectrum management (DSM) cases.
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