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This paper proposes a new strategy to separate astrophysical sources that are mutually correlated. This strategy is based on second-
order statistics and exploits prior information about the possible structure of the mixing matrix. Unlike ICA blind separation ap-
proaches, where the sources are assumed mutually independent and no prior knowledge is assumed about the mixing matrix, our
strategy allows the independence assumption to be relaxed and performs the separation of even significantly correlated sources.
Besides the mixing matrix, our strategy is also capable to evaluate the source covariance functions at several lags. Moreover, once
the mixing parameters have been identified, a simple deconvolution can be used to estimate the probability density functions of
the source processes. To benchmark our algorithm, we used a database that simulates the one expected from the instruments that
will operate onboard ESA’s Planck Surveyor Satellite to measure the CMB anisotropies all over the celestial sphere.
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1. INTRODUCTION

Separating the individual radiations from the measured sig-
nals is a common problem in astrophysical data analysis [1].
As an example, in cosmic microwave background anisotropy
surveys, the cosmological signal is normally combined with
foreground radiations from both extragalactic and galactic
sources, such as the Sunyaev-Zeldovich effects from clusters
of galaxies, the effect of the individual galaxies, the emis-

sion from galactic dust, the galactic synchrotron and free-
free emissions. If one is only interested in estimating the
CMB anisotropies, the interfering signals can just be treated
as noise, and reduced by suitable cancellation procedures.
However, the foregrounds have an interest of their own, and
it could be useful to extract all of them from multichannel
data, by exploiting their different emission spectra.

Some authors [2, 3] have tried to extract a number of
individual radiation data from measurements on different
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frequency channels, assuming that the physical mixture
model is perfectly known. Unfortunately, such an assump-
tion is rather unrealistic and could overconstrain the prob-
lem, thus leading to unphysical solutions. Attempts have
been made to avoid this shortcoming by introducing crite-
ria to evaluate a posteriori the closeness to reality of the mix-
ture model and allowing individual sources to be split into
separate templates to take spatial parameter variability into
account [4, 5].

A class of techniques capable of estimating the source sig-
nals as well as identifying the mixture model has recently
been proposed in astrophysics [6, 7, 8, 9]. In digital signal
processing, these techniques are referred to as blind source
separation (BSS) and rely on statistical assumptions on the
source signals. In particular, mutual independence and non-
Gaussianity of the source processes are often required [10].
This totally blind approach, denoted as independent com-
ponent analysis (ICA), has already given promising results,
proving to be a valid alternative to assuming a known data
model. On the other hand, most ICA algorithms do not per-
mit to introduce prior information. Since all available in-
formation should always be used, semiblind techniques are
being studied to make astrophysical source separation more
flexible with respect to the specific knowledge often available
in this type of problem [11]. Moreover, the independence as-
sumption is not always justified; if there is evidence of cor-
relation between pairs of sources, it should be made possible
to take this information into account, thus abandoning the
strict ICA approach.

The first blind technique proposed to solve the separation
problem in astrophysics [6] was based on ICA, and allowed
simultaneous model identification and signal estimation to
be performed. The independence requirement was fulfilled
by taking the statistics of all orders into account, as in all ICA
methods presented in the literature (see, e.g., [10, 12, 13]).

The problem of estimating all the model parameters and
source signals cannot be solved by just using second-order
statistics, since these are only able to enforce uncorrelation.
However, this has been done in special cases, where ad-
ditional hypotheses on the spatial correlations or, equiva-
lently, on the spectra of the individual signals are assumed
[9, 14, 15]. As will be clear in the following, within the
framework of any noisy linear mixture model, the data co-
variance matrix at a particular lag is related to the source
covariance matrix at the same lag, the mixing matrix, and
the noise covariance matrix. If there is a sufficient num-
ber of lags for which the source covariance matrices are
not null, then it is possible to identify the model parame-
ters by estimating the data covariance matrices from the ob-
served data. Indeed, if we know the noise covariance matrix,
we are able to write a number of relationships from which
the unknown parameters can be estimated. This is what is
done by the second-order blind identification (SOBI) algo-
rithm presented in [15]. SOBI, however, relies on joint di-
agonalization of covariance matrices at different lags, which
is only applicable in the case of uncorrelated source signals.
In our approach, we assumed that the mixing matrix can be
parametrised. This allows us to relax the independence as-

sumption, and to pursue identification by optimisation of
a suitable function. A further advantage of this strategy is
that the relevant correlation coefficients between pairs of
sources can also be estimated. In our particular case, more-
over, being able to parametrise the mixing matrix allows us
to substantially reduce the number of unknowns. This per-
mits to improve the performance of our technique. We will
show that a very fast model learning algorithm can be de-
vised by matching the theoretical and the observed covari-
ance matrices, even if all the cross-covariances are nonnegli-
gible.

The paper is organised as follows. In Section 2, we for-
malise the problem and introduce the relevant notation.
In Section 3, we describe how the mixing matrix can be
parametrised in our case. In Sections 4 and 5, we describe the
methods we used to learn the mixing model and to estimate
the original sources, respectively. In Section 6, we present
some experimental results, with both stationary and nonsta-
tionary noises. In the final section, we give some remarks and
future directions.

2. PROBLEM STATEMENT

As usual [2, 6], we assume that each radiation process
s̃c(ξ,η, ν) from the microwave sky has a spatial pattern
sc(ξ,η) that is independent of its frequency spectrum Fc(ν):

s̃c(ξ,η, ν) = sc(ξ,η)Fc(ν). (1)

Here, ξ and η are angular coordinates on the celestial sphere,
and ν is frequency. The total radiation observed in a certain
direction at a certain frequency is given by the sum of a num-
ber N of signals (processes, or components) of the type (1),
where subscript c has the meaning of a process index. As-
suming that the effects of the telescope beam on the angu-
lar resolution at different measurement channels have been
equalised (see [16]), the observed signal at M different fre-
quencies can be modelled as

x(ξ,η) = As(ξ,η) + n(ξ,η), (2)

where x = {xd, d = 1, . . . ,M} is theM-vector of the observa-
tions, d being a channel index, A is anM×N mixing matrix,
s = {sc, c = 1, . . . ,N} is theN-vector of the individual source
processes, and n = {nd, d = 1, . . . ,M} is theM-vector of in-
strumental noise. The elements of A are related to the source
spectra and to the frequency responses through the following
formula:

adc =
∫
Fc(ν)bd(ν)dν, (3)

where bd(ν) is the instrumental frequency response in the dth
measurement channel, which is normally known very well. If
we assume that the source spectra are constant within the
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passbands of the different channels, (3) can be rewritten as

adc = Fc
(
νd
) ∫

bd(ν)dν. (4)

The element adc is thus proportional to the spectrum of the
cth source at the center frequency νd of the dth channel.
The separation problem consists in estimating the source
vector s from the observed vector x. Several estimation al-
gorithms have been derived assuming a perfect knowledge
of the mixing matrix. As already said, however, this ma-
trix is related to both the instrumental frequency responses,
which are known, and the emission spectra Fc(ν), which are
normally unknown. For this reason, relying on an assumed
mutual independence of the source processes sc(ξ,η), some
blind separation algorithms have been proposed [6, 7, 17],
which are able to estimate both the mixing matrix and the
source vector. Assuming that the source signals are mutually
independent, the MN mixing coefficients can be estimated
by finding a linear mixture that, when applied to the data
vector, nullifies the cross-cumulants of all orders. If, how-
ever, some prior information allows us to reduce the num-
ber of unknowns, the identification problem can be solved
by only using second-order statistics. This is the case with
our approach, which is based on a parametrisation of ma-
trixA. This approach, described in Section 4, does not need a
strict mutual independence assumption. Logically, any blind
separation algorithm is divided into two phases: using the
notation introduced here, the estimation of A will be re-
ferred to as system identification (or model learning), and the
estimation of s will be referred to as source separation. In
this paper, we first address aspects related to learning, and
then give some details on source separation strategies de-
rived from standard reconstruction procedures. Before de-
scribing our algorithm in detail, we recall here some applica-
bility issues.

Source and noise processes

To estimate the covariance matrices from the available data,
the source and the noise processes must necessarily be as-
sumed stationary. While CMB satisfies this assumption, the
foregrounds are not stationary all over the celestial sphere.
This assumption can be made for small sky patches. How-
ever, depending on the particular sky scanning strategy, noise
is normally nonstationary, even within small patches, and
can also be autocorrelated. The noise covariance function
should be known for any shift and for any angular coordi-
nate in the celestial sphere. Provided that the noise nonsta-
tionarity and cross-correlation between sources can be ne-
glected, various methods are available, both in space and fre-
quency domains, to estimate samples of the noise covari-
ance function or, equivalently, of noise spectrum [9]. Tack-
ling the space-variant nature of the noise process is difficult,
and no simple method has been proposed so far to this pur-
pose. In [11] the noise variance at each pixel is assumed to be
known and a method is proposed to estimate the mixing ma-
trix and the probability density function of each component.

In the present approach, we found experimentally that, if a
noise covariance map is known, even nonstationary noise
can be treated.

Frequency-dependent telescope beams

The model assumed in (2) is valid if the telescope radiation
patterns are the same in all the frequency channels. As the
beams are frequency-dependent, a way to tackle the problem
is to preprocess the observed data in order to equalise the res-
olution on all themeasurement channels, as in [16]. This also
changes the autocorrelation function of each noise process,
but in a way that can be exactly evaluated. A different way to
tackle the problem has been to approach it in the frequency
domain [2, 9]. Also in these cases, the validity of the solution
relies on a number of simplifiying assumptions, such as the
perfect circular symmetry of the telescope beams. Moreover,
the actual capability of extrapolating the spectrum at spatial
frequencies where reduced information is available has still to
be assessed, especially in the cases where the signal-to-noise
ratio is particularly low.

Structure of the source covariancematrices

In the Planck experiment, the sources of interest are the
CMB signal and the foregrounds. While no correlation is ex-
pected between the CMB signal and foregrounds, some sta-
tistical dependence between pairs of foregrounds has to be
taken into account. The off-diagonal entries of the source co-
variance matrices related to pairs of correlated sources will
thus be nonzero, whereas all the remaining off-diagonal ele-
ments will be zero. When it is known that some of the cross-
covariances are close to zero, these can be kept fixed at zero,
thus further reducing the total number of unknowns. For in-
stance, in a 3 × 3 case, if we assume the following structure
for the source covariance matrix at zero shift:

Cs(0, 0) =

σ11 0 0

0 σ22 σ23
0 σ32 σ33


 , (5)

this means that we assume zero or negligible correlations be-
tween sources 1 and 2 and sources 1 and 3, and the remaining
cross-covariance σ23 = σ32 between sources 2 and 3 is an un-
known of the problem, along with the autocovariances σii.
Note that, for the typical scaling ambiguity of the blind iden-
tification problem, the absolute values of both the diagonal
and off-diagonal elements of matrices Cs(τ,ψ) have no phys-
ical significance, while, by calculating ratios of the type

(
σi j
)2

σiiσ j j
, (6)

we can actually estimate the correlation coefficients between
different sources, whatever the values of the individual co-
variances.
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3. PARAMETRISATION OF THEMIXINGMATRIX

While in a general source separation problem the elements
adc are totally unknown, in our case we have some knowl-
edge about them. In fact, the integral in (4) is related to
known instrumental features and to the emission spectra
of the single source processes, on which we do have some
knowledge. As an example, if the observations are made in
the microwave and millimeter-wave range, the dominant ra-
diations are the cosmic microwave background, the galactic
dust, the free-free emission and the synchrotron (see [18]).
Another significant signal comes from the extragalactic point
sources. It is not possible to treat the point sources as a sin-
gle signal to be separated from the others on the basis of its
emission spectrum, since each source has its own spectrum.
Since the brightest point sources are the ones that affect more
strongly the study of the CMB [19], the usual approach is to
remove them from the data before separating the other fore-
grounds. Bright resolved point sources can be removed by us-
ing some of the specific techniques proposed in the literature
[19, 20, 21]. Faint unresolved point sources are usually con-
sidered as an additional noise term in (2) (referred to as “con-
fusion noise” in the radio astronomy literature). For simplic-
ity, we will not consider extragalactic point sources in our test
examples. Moreover, although other sources (such as SZ and
free-free) could be taken into account, in our experiments
we only considered the synchrotron and dust foregrounds,
which are the most significant in the Planck frequency range.

The emission spectrum of the cosmic microwave back-
ground is perfectly known, being a blackbody radiation. In
terms of antenna temperature, it is

Fcmb(ν) = ν̃2 exp(ν̃)[
exp(ν̃)− 1

]2 , (7)

where ν̃ is the frequency in GHz divided by 56.8. From (4)
and (7), the column of A related to the CMB radiation is thus
known up to an unessential scale factor. For the synchrotron
radiation, we have

Fsyn(ν)∝ ν−ns . (8)

Thus, the column of A related to synchrotron only depends
on a scale factor and the spectral index ns. For the thermal
galactic dust, we have

Fdust(ν)∝ ν̄m+1

exp(ν̄)− 1
, (9)

where ν̄ = hν/kTdust, h is the Planck constant, k is the Boltz-
mann constant, and Tdust is the physical dust temperature. If
we assume a uniform temperature value, the frequency law
(9), that is, the column of A related to dust emission, only
depends on a scale factor and the parameterm.

The above properties enable us to describe the mixing
matrix by means of just a few parameters. As an example, if
we assume to have a perfectly known source spectrum (such
as the one of CMB) and N − 1 sources with one-parameter
spectra, the number of unknowns in the identification prob-
lem is N − 1 instead of NM.

4. A SECOND-ORDER IDENTIFICATION ALGORITHM

Let us consider the source and noise signals in (2) as realisa-
tions of two stationary vector random processes. The covari-
ance matrices of these processes are, respectively,

Cs(τ,ψ) =
〈[
s(ξ,η)− µs

][
s(ξ + τ,η + ψ)− µs

]T〉
,

Cn(τ,ψ) =
〈[
n(ξ,η)− µn

][
n(ξ + τ,η + ψ)− µn

]T〉
,

(10)

where 〈·〉 denotes expectation under the appropriate joint
probability, µs and µn are the mean vectors of processes s and
n, respectively, and the superscript T means transposition.
As usual, the noise process is assumed signal-independent,
white, and zero-mean, with known variances. Thus, for both
τ and ψ equal to zero, Cn is a known diagonal matrix whose
elements are the noise variances in all the measurement
channels, whereas for any τ or ψ different from zero Cn is
the nullM ×M matrix.

As already proved [15, 22], covariance matrices, that
is, second-order statistics, permit blind separation to be
achieved when the sources show a spatial structure, namely,
when they are spatially correlated. Thus, themutual indepen-
dence requirement of ICA can be replaced by an equivalent
requirement on the spatial structure of the signal, and the
identifiability of the system is assured. In other words, find-
ing matrices A and Cs is generally not possible from covari-
ances at zero shift alone; to identify the mixing operator, ei-
ther higher-order statistics or the covariance matrices at sev-
eral nonzero shift pairs (τ,ψ) must be taken into account. Of
course, this is also a requirement on the sources, since if the
covariance matrices are null for any pair (τ,ψ), identification
is not possible. This aspect will become clearer below.

Let us now see our approach to system identification. By
exploiting (2), the covariance of the observed data can be
written as

Cx(τ,ψ) =
〈[
x(ξ,η)− µx

][
x(ξ + τ,η + ψ)− µx

]T〉
=ACs(τ,ψ)AT + Cn(τ,ψ),

(11)

where Cx(τ,ψ)can be estimated from

Ĉx(τ,ψ) = 1
Np

∑
ξ,η

[
x(ξ,η)− µx

][
x(ξ + τ,η + ψ)− µx

]T
,

(12)

where Np is the number of pixels. Equation (11) provides a
number of independent nonlinear relationships that can be
used to estimate both A and Cs. Obviously, this possibility
does not rely on mutual independence between the source
signals, as required by the ICA approach: the only require-
ment is having a sufficient number of nonzero covariance
matrices. In other words, spatial structure can be used in the
place of mutual independence as a basis for model learning
and signal separation. As assumed in the previous section,
in this particular application the number of unknowns is re-
duced by parametrising the mixing matrix. This allows us to
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solve the identification problem from the relationships made
available by (11) by only using the zero-shift covariance ma-
trix, even if some of the sources are cross-correlated. We in-
vestigated this possibility in [23]. In a general case, matrices
A and Cs(τ,ψ) can be estimated from

(
Γ,Σ(:, :)

) = argmin
∑
τ,ψ

∥∥∥A(Γ)Cs
(
Σ(τ,ψ)

)
AT(Γ)

− Ĉx(τ,ψ)− Cn(τ,ψ)
∥∥∥. (13)

The minimisation is performed over vectors Γ and Σ(:, :),
where Γ is the vector of all the parameters defining A (pos-
sibly consisting of all the matrix elements), and Σ(:, :) is the
vector containing all the unknown elements of matrices Cs

for every shift pair. The matrix norm adopted is the Frobe-
nius norm. Our present strategy to find theminimiser in (13)
is to perform a stochastic minimisation in Γ, considering that
Cs(Σ(τ,ψ)), for each (τ,ψ), can be calculated exactly once
A(Γ) is fixed. A more accurate minimisation strategy is now
being studied.

From the above scheme, it is clear that for each indepen-
dent element of the matrices Cx(τ,ψ) we have an indepen-
dent equation for the estimation of vector Γ and of all the vec-
tors Σ(τ,ψ). Since for (τ,ψ) = (0, 0) matrix Cx is symmetric,
for zero shift we have M(M + 1)/2 independent equations.
For any other shift pair, Cx is a general matrix and thus, pro-
vided that it is not zero, we haveM2 additional independent
equations. If Ns is the total number of nonzero shift pairs
generating nonzero data covariance matrices, we thus have a
total number ofM(M+1)/2+Ns ·M2 =M[(2Ns+1)M+1]/2
independent equations. The number of unknowns is at most
NM+N(N +1)/2+Ns ·N2, in the case where all the elements
of A are unknown and all the source covariance matrices are
full, that is, all the sources at any shift are correlated to each
other. Note that, in this worst case situation, if it is M = N ,
we always haveN2 more unknowns than equations, indepen-
dently of Ns. As soon as we have M > N , there are always a
number of nonzero shift pairs for which we have more in-
dependent equations than unknowns to be estimated. This
observation gives an idea of the amount of information we
have available for our estimation problem. The number of
independent equations affects the behaviour of the nonlin-
ear optimization landscape in (13). Qualitatively, we can af-
firm that the more independent equations we have, the more
well-posed the optimization problem will be. In particular,
it is likely that, in absence of any prior information about
the structure of A and Cs(τ,ψ), having a number of observed
channels equal to the number of sources always leads to in-
sufficient information, independently of the number of shift
pairs chosen. If, instead, the number of the available obser-
vations is larger than the number of sources, the possibility
of estimating the unknowns relies on the number of shift
pairs for which the data covariancematrices are nonzero. The
availability of prior information, as in the application con-
sidered here, can of course alleviate these requirements. For
example, if we have a 4 × 4 mixing matrix only depending
on four parameters and only two sources significantly corre-

lated, the unknowns to be determined are 4 + 5 + Ns · 6, by
using a maximum of M(M + 1)/2 + Ns ·M2 equations. This
means that in this case, as soon asM = 4, the number of in-
dependent equations is larger than the number of unknowns
even for Ns = 0.

5. SIGNAL SEPARATION STRATEGY

Model learning is only the first step in solving the problem
of source separation. Although, in principle, one could sim-
ply use multichannel inverse filtering to recover the source
maps, this approach is not feasible in practice, for the pres-
ence of noise. In our treatment, the data are assumed to be
an ergodic process, in order to be able to evaluate its statistics
from the available sample. This entails a space invariant noise
process. The estimation of the individual source maps should
be made on the basis of all the products of the learning stage.
In our case, we have estimates of the mixing matrix and of
the source covariance matrices at several shift pairs. In the
hypothesis of stationary noise, we could exploit this infor-
mation to implement a multichannel Wiener filter for source
reconstruction. If the noise is not stationary, a generalized
Kalman filter should be used. Our point here is on model
learning, and thus we do not address the separation issues in
detail. We only observe that a possible Bayesian separation
scheme would make use of the source probability densities,
and these can be estimated from our mixing matrix. Indeed,
let us assume that our learning procedure has given a good
estimate ofA. Let B be itsMoore-Penrose generalised inverse.
In our case, we haveM ≥ N , thus, as is known,

B = (ATA
)−1

AT. (14)

From (2), we have

Bx = s + Bn. (15)

Let us denote each of the N rows of B as an M-vector bi,
i = 1, . . . ,N , and consider the generic element yi of the N-
vector Bx,

yi := bTi · x = si + bTi · n := si + nti . (16)

The probability density function of yi, p(yi), can be esti-
mated from bi and the data record x(ξ,η), while the prob-
ability density function of nti , p(nti), is a Gaussian, whose
parameters can be easily derived from Cn and bi. The pdf of
yi is the convolution between p(si) and p(nti):

p
(
yi
) = p

(
si
)∗ p

(
nti
)
. (17)

From this relationship, p(si) can be estimated by deconvo-
lution. As is well known, deconvolution is normally an ill-
posed problem and, as such, it lacks a stable solution. In our
case, we can regularise it by enforcing smoothness, positivity,
and the normalisation condition for pdfs.
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Any Bayesian estimation approach should exploit the
knowledge of the source densities to regularise the solution,
but these are normally unknown. In the case examined here,
the source distributions can be efficiently estimated as sum-
marised above, and the computational cost of otherwise ex-
pensive Bayesian algorithms can be reduced. As an exam-
ple, in [11], the source densities are modelled as mixtures
of Gaussians, and the related parameters are estimated by
an independent factor analysis approach (see [24, 25]). The
method we propose here could well be used to fix the source
densities, thus reducing the overall cost of the identification-
separation task.

From (15), it can be seen that the generalised inverse so-
lution is already an estimate of the sources, since it is com-
posed of the original source vectors corrupted by amplified
noise. Thus, a simple source estimation strategy could be first
to apply (15) and then to reduce the influence of noise by fil-
tering the result. In next section, we show some experimental
results obtained by pseudoinversion of the estimated mix-
ing matrix, followed by Wiener filtering of each individual
source. This strategy would be strictly valid with stationary
noise and high signal-to-noise ratio, however, interesting re-
sults have been found even with strong nonstationary noise.
Multichannel Wiener filtering for stationary noise and an ex-
tended Kalman filter for the nonstationary case are now be-
ing developed.

6. EXPERIMENTAL RESULTS

In this section, we present some results from our extensive
experimentation with the method described above. Our data
were drawn from a data set that simulates the one expected
from Planck (see the Planck homepage).1 The source maps
we considered were the CMB anisotropy, the galactic syn-
chrotron, and thermal dust emissions over the four mea-
surement channels centred at 30GHz, 44GHz, 70GHz, and
100GHz. The test data maps have been generated by ex-
tracting several sky patches at different galactic coordinates
from the simulated database, scaling them exactly accord-
ing to formulas (7), (8), and (9), generating the mixtures
for the channels chosen, and adding realisations of Gaussian,
signal-independent, white noise. Several noise levels have
been used, from a ten percent to more than one hundred per-
cent of the CMB standard deviation. The range chosen con-
tains noise levels within the Planck specifications. Although
our method would be only suited for uniform noise, we also
tried to apply it to data corrupted by nonuniform noise, and
obtained promising results.

Within this section, we will divide the results obtained in
model learning from the results in separation, and the cases
with stationary noise from those with nonstationary noise.
In these latter cases, knowledge of a noise variance map is
assumed, and the additional problem arises of choosing the
appropriate noise covariance matrix.

1http://astro.estec.esa.nl/SA-general/Projects/Planck/.

The results from learning are the mixing matrix and the
source covariance matrices at the shift pairs chosen. From
the estimate of the mixing matrix, it is also possible to de-
rive themarginal source densities, by using relationships (16)
and (17). As already mentioned, the estimates of the mix-
ing matrix and of the source covariance matrices are very
robust against noise. Conversely, the estimates of the source
distributions by means of (16) and (17) are more sensitive
to noise. To obtain satisfactory results, it is necessary to rely
on regularization methods; the choice of regularization pa-
rameters, however, is known to be critical. In our case, we
selected them empirically, by checking the smoothness of the
solutions.

Our separation results are all derived from the applica-
tion of the Moore-Penrose pseudoinverse of the estimated
mixing matrix, followed by a classical Wiener filtering on
each output image. From this processing, estimates of the
source maps are obtained. Also, estimated source power
spectra can be obtained from either the maps or the source
autocorrelation matrices. In particular, the results we show
here are derived from the unfiltered pseudoinverse solutions,
showing that, although the reconstructed images are heavily
affected by noise, the derived power spectra can be corrected
for the theoretical noise spectrum and thus estimated quite
accurately.

The results presented here will all be related to a single
data record, derived from a simulated 15◦ × 15◦ sky patch
centered at 40◦ galactic longitude and 0◦ galactic latitude.
It is to be noted that in such a patch, located on the galac-
tic plane, the measured data will be affected by strong fore-
ground interference, thus making the problem very difficult
to solve. Indeed, many separation approaches experimented
so far simply fail in proximity of the galactic plane, and they
are normally applied after masking the all-sky data in the
high-interference regions. Here, the dust emission is stronger
than CMB, and separation is strictly necessary if CMB is to be
distinguished from the foregrounds. Our method performed
very well with these data, and all the relevant parameters were
satisfactorily estimated even with the strongest noise com-
ponents. The noise standard deviation we adopted in the
case shown here is 30% the standard deviation of CMB at
100GHz. The noise level in the other channels has been sim-
ply obtained by scaling the level at 100GHz in accordance
with the expected Planck sensitivity at those frequencies. For
each patch considered, we tried different noise levels, up to
more than 100% of the CMB level at 100GHz, and for each
noise level, we performed a Monte Carlo simulation with
hundreds of different noise realizations. This analysis is not
reported in detail here, but we can say that no significant bias
has been found in the results.

It is to remark that, at high galactic latitudes, the CMB ra-
diation is dominant at our frequencies, and the foregrounds
are well below the noise level assumed in our experiments.
Thus, the CMB is almost the only measured radiation, and
is estimated very well with all the assigned signal-to-noise
ratios. Conversely, as expected with these noise levels, the
foregrounds cannot be estimated correctly. Assuming much

http://astro.estec.esa.nl/SA-general/Projects/Planck/
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(a) (b) (c)

Figure 1: Source maps from a 15◦ × 15◦ patch centered at 0◦ galactic latitude and 40◦ galactic longitude, at 100GHz: (a) CMB;
(b) synchrotron; (c) thermal dust.

lower noise levels, our method, as other techniques such as
ICA (see [6]), allows the foregrounds to be estimated satis-
factorily.

In Figure 1, we show the three sourcemaps we used in the
situation described above. In this figure and in all the others
shown here, the grayscale is linear with black correspond-
ing to the maximum image value. We assigned the sources
s1 to CMB, s2 to synchrotron, and s3 to dust, and the sig-
nals x1, x2, x3, and x4 to the measurement channels at 100,
70, 44, and 30GHz, respectively. Therefore, the first, second,
and third columns of the mixing matrix will be related to
CMB, synchrotron, and dust, respectively, and the first, sec-
ond, third, and fourth rows of the mixing matrix will be re-
lated to the 100GHz, 70GHz, 44GHz, and 30GHz channels,
respectively. The mixing matrix, Ao, has been derived from
(7), (8), and (9) with spectral indices ns = 2.9 and m = 1.8
(see, e.g., [26, 27]):

Ao =




1 1 1
1.1353 2.8133 0.5485
1.2241 10.8140 0.2464
1.2570 32.8359 0.1260


 . (18)

In Figure 2, we show the data maps for stationary noise.
Also, note that the case examined does not fit the ICA as-
sumptions. For example, the normalized source covariance
matrix at zero shift is

Cs(0, 0) =

1.0000 0.1961 0.0985
0.1961 1.0000 0.6495
0.0985 0.6495 1.0000


 , (19)

where a significant correlation, of the order of 65%, can be
observed between the dust and synchrotron maps.

For the data described above, we ran our learning al-
gorithm for 500 different noise realisations; for each run,
10 000 iterations of the minimisation procedure described
in the previous section were performed. The unknown pa-
rameters were the spectral indices ns and m, and all the el-
ements of matrices Cs(τ,ψ). The cost defined in (13), as a
function of the iteration number in a particular run, is shown

in Figure 3. The typical elapsed times per runwere a fewmin-
utes on a 2GHz CPU computer, with a Matlab interpreted
code. In the case described here, we estimated ns = 2.8985
andm = 1.7957, corresponding to the mixing matrix

A =




1 1 1
1.1353 2.8118 0.5494
1.2241 10.8009 0.2473
1.2570 32.7775 0.1267


 . (20)

As a quality index for our estimation, we adopted the matrix
Q = (ATC−1n A)−1(ATC−1n Ao), which, in the ideal case, should
be the N ×N identity matrix I. In the present case, we have

Q =

1.0000 −0.0074 −0.0013
0.0000 1.0020 0.0000
0.0000 0.0054 1.0013


 . (21)

The Frobenius norm of matrix Q − I should be zero in the
case of perfect model learning. In this case, it is 0.0096.

These results have been found by considering 25 uni-
formly distributed shift pairs, with 0 ≤ τ ≤ 20 and 0 ≤ ψ ≤
20. As a synthetic index for the quality of the reconstructed
source covariance matrices, we adopted a matrix E, where
each element is the relative error in the same covariance ele-
ment, averaged over all the pairs (τ,ψ):

Ei, j = 1
Ns + 1

∑
τ,ψ

∣∣Ĉsi, j(τ,ψ)− Csi, j(τ,ψ)
∣∣∣∣Csi, j(τ,ψ)

∣∣ , (22)

where Ĉs are the estimated source covariance matrices. Of
course, matrix (22) is only defined when all the denomina-
tors are nonzero. A more accurate analysis of the results can
be made from the element-by-element comparison of the es-
timated and the original matrices, but we do not report these
results here. For the case shown above, we have

E =

0.0274 0.0392 0.0496
0.0472 0.0170 0.0120
0.0917 0.0125 0.0050


 . (23)
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(a) (b)

(c) (d)

Figure 2: Noisy data maps at (a) 100GHz; (b) 70GHz; (c) 44GHz; (d) 30GHz.
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Figure 3: Norm of the residual in (13) as a function of the iteration
number.

The reconstructed probability density functions of the
source processes, estimated from (16) and (17), are shown
in Figure 4.

We separated the sources by multiplying the data ma-
trix by theMoore-Penrose generalised inverse, as in (15), and
then by applying a Wiener filter to the results thus obtained.
As already said, this is not the best choice reconstruction al-
gorithm at all, especially when the data are particularly noisy
and the noise is not stationary. However, the results we ob-
tained are visually very good, as shown in Figure 5. To eval-

uate more quantitatively the results of the whole learning-
separation procedure, we compared the power spectrum of
the CMB map with the one of the reconstructed map. This
comparison is shown in Figure 6, where we also show the
possibility of correcting the reconstructed spectrum for the
known theoretical spectrum of the noise component nt1 , ob-
tained as in (16). As can be seen, the reconstructed spectrum
is very similar to the original within a multipole l = 2000.

Strictly speaking, our algorithm could not be applied
to nonstationary processes. However, let us assume that the
original sources are stationary, and the noise is nonstationary
but still spatially white and uncorrelated. This means that its
pixel-dependent covariance matrices, Rn(τ,ψ; ξ,η), are zero
for any nonzero shift pair (τ,ψ). We tried our method on
nonstationary data, by assuming to know Rn(0, 0; ξ,η), and
using a constant covariance matrix given by

Cn(0, 0) = 1
Np

∑
ξ,η

Rn(0, 0; ξ,η). (24)

The nonstationary data were obtained from a spatial tem-
plate of noise standard deviations expected for typical Planck
observations, shown in Figure 7. The actual standard devi-
ations were adjusted so as to obtain the average signal-to-
noise ratios desired for the different channels. The separa-
tion results for a case where these SNRs were the same as in
the above stationary case are shown in Figure 8, where the
degradation in the reconstruction is apparent in the regions
where the noise is stronger. The results, in terms of recon-
tructed power spectra, are perfectly comparable to the ones
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Figure 4: Real (dotted) and estimated (solid) source density functions for (a) CMB, (b) synchrotron, and (c) dust.
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Figure 5: Wiener-filtered estimated maps: (a) CMB; (b) synchrotron; (c) dust.
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Figure 6: (a) Real (dotted) and estimated (solid) CMB power spectra. The dashed line represents the theoretical power spectrum of the
noise component nt1 in (16), evaluated from the noise covariance and the Moore-Penrose pseudoinverse of the estimated mixing matrix. (b)
Real (dotted) and estimated (solid) CMB power spectra, corrected for theoretical noise.
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Figure 7: Map of noise standard deviations used to generate
nonstationary data.

exemplified in Figure 6. The estimated spectral indices were
ns = 2.8885 and m = 1.7881, corresponding to the mixing
matrix

A =




1 1 1
1.1353 2.8018 0.5509
1.2241 10.7128 0.2488
1.2570 32.3861 0.1279


 . (25)

The average error on covariance matrices is in this case

E =

0.0158 0.1165 0.1930
0.1163 0.0331 0.0254
0.2440 0.0261 0.0144


 . (26)

The Frobenius norm of matrix Q − I is now 0.0736, that is,
slightly worse than for the above stationary case.

7. CONCLUDING REMARKS

By exploiting the spatial structure of the sources, we devel-
oped an identification and separation algorithm that is able
to exploit any available information on possible structure of
the mixing matrix and the source covariance matrices. This
can include the fully blind approach and the case exempli-
fied here, where the mixing matrix is known to only depend
on two parameters. The identification task is performed by
a simple optimization strategy, while the proper separation
can be faced by different approaches. We experimented the
simplest one, but we are also developing more accurate tech-
niques, especially suited to treat nonstationary noise on the
data.

Our method is suitable to work directly with all-sky
maps, but it could be necessary to apply it to small patches,
as is shown in the above experimental section, to cope with
the expected variability of the spectral indices and the noise
variances in different sky regions.

It has been observed that it does not make sense to try
source separation in those regions where the foreground
emissions are much smaller than CMB and well below the
noise level. In any case, the CMB angular power spectrum
has always been estimated fairly well up to a multipole l =
2000, irrespective of the galactic latitude. The estimation
of the source densities has also given good results. Source
separation by our method has been particularly interesting
with data from low galactic latitudes, where the foreground
variance is often higher than the one of the CMB signal.
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(a) (b) (c)

Figure 8: Wiener-filtered estimated maps from nonstationary data: (a) CMB; (b) synchrotron; (c) dust.

Note that many separation strategies, both blind and non-
blind, have failed their goal in this region of the celestial
sphere. As an example, WMAP data analysis (see [28]) was
often performed by using pixel intensity masks that exclude
the brightest sky portion from being considered. Another
interesting feature of our method is that significant cross-
correlations between pairs of foregrounds can be straigh-
forwardly taken into account. Recently, some methods for a
completely blind separation of correlated sources have been
proposed in the literature (see, e.g., [29]). Their effective-
ness in astrophysical map separation has not been proved yet.
Moreover, they have a high computational complexity.

Recently [9], a frequency-domain implementation of the
method in [15] has been proposed. This method allows to
take antenna beam effects into account straightforwardly by
including the effect of the antenna transfer functions in the
model. It also permits to introduce prior information about
the entries of the mixing matrix and the spatial power spec-
tra of the components. An open problem is the extension of
thesemethods to the case of correlated sources. A possible ex-
tended method might be implemented in the space or in the
frequency domain according to convenience. Another prob-
lem that is still open with the expected Planck data is the dif-
ferent resolution of the data maps in some of the measure-
ment channels. The identification part of our method can
work with maps whose resolution has been degraded in or-
der to be the same in all the channels. The result would be
an estimate of the mixing matrix, which can be used in any
nonblind separation approach with channel-dependent reso-
lution, such as maximum entropy [2]. However, the possible
asymmetry of the telescope beam patterns should be taken
into account in verifying this possibility.
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