EURASIP Journal on Applied Signal Processing 2005:10, 1554—1565
(© 2005 Hindawi Publishing Corporation

Time-Frequency (Wigner) Analysis of Linear and
Nonlinear Pulse Propagation in Optical Fibers

José Azana

Institut National de la Recherche Scientifique, Energie, Matériaux et Télécommunications, 800 de la Gauchetiére Ouest,

bureau 6900, Montréal, QC, Canada H5A 1K6
Email: azana@emt.inrs.ca

Received 12 April 2004; Revised 7 June 2004

Time-frequency analysis, and, in particular, Wigner analysis, is applied to the study of picosecond pulse propagation through
optical fibers in both the linear and nonlinear regimes. The effects of first- and second-order group velocity dispersion (GVD)
and self-phase modulation (SPM) are first analyzed separately. The phenomena resulting from the interplay between GVD and
SPM in fibers (e.g., soliton formation or optical wave breaking) are also investigated in detail. Wigner analysis is demonstrated to
be an extremely powerful tool for investigating pulse propagation dynamics in nonlinear dispersive systems (e.g., optical fibers),
providing a clearer and deeper insight into the physical phenomena that determine the behavior of these systems.
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1. INTRODUCTION

The study of optical pulse propagation in optical fibers is
interesting from both fundamental and applied perspec-
tives. Understanding the physics behind the processes that
determine the evolution of optical pulses in single-mode
fibers is essential for the design and performance analysis
of optical fiber communication systems. As an example, it
is well known that in intensity-modulated direct-detection
(IM/DD) systems, the combined effects of source chirping,
group velocity dispersion (GVD) and, for long-haul or high-
power systems, self-phase modulation (SPM) cause distor-
tion of the propagating signals [1]. This distortion essentially
limits the maximum achievable bit rates and transmission
distances. The influence of fiber GVD and fiber nonlinear-
ities (e.g., SPM) on the performance of communication sys-
tems is becoming more critical in view of the expected evo-
lution of fiber optics communications systems [2], in partic-
ular, (i) the channel data rates are expected to continue in-
creasing, with 40 and 80 Gbps rate systems now under devel-
opment; and (ii) the communication strategies (e.g., dense-
wavelength-division-multiplexing, DWDM, strategies) tend
to increase the number of channels and information (i.e., the
signal power) launched into a single fiber.

For the study of the dynamics of pulse propagation in
fibers, the involved signals (optical pulses) can be repre-
sented in either the temporal or the frequency domains.
However, since these signals are intrinsically nonstationary
(i.e., the spectrum content changes as a function of time),
these conventional one-dimensional representations provide

only partial information about the analyzed signals and, con-
sequently, about the system under study. In this paper, we
analyze linear and nonlinear pulse propagation in optical
fibers using joint time-frequency (TF) representations [3].
Our analysis is based on the representation of the events
of interest (optical pulses propagating through the fiber) in
the joint TF plane, that is, the signals are represented as
two-dimensional functions of the two variables time and
frequency, simultaneously. For the TF representation, we
will use the well-known Wigner distribution function. The
Wigner distribution exhibits a lot of mathematical properties
that make this approach especially attractive for the prob-
lem under consideration. For instance, as compared with
other well-known methods for the TF representation of op-
tical pulses (e.g., spectrograms [3]), the Wigner distribution
provides an improved joint TF resolution. Note that this is a
critical aspect for extracting detailed information about the
events under analysis from the resultant images. The discus-
sion of other attractive properties of the Wigner distribution
is out of the scope of this work but the interested reader can
find a good review article on the fundaments and applica-
tions of Wigner analysis by Dragoman in this same special
issue or can refer to other classical papers in the subject [4].
TF representations in general, and Wigner analysis in
particular, have been used in the past for the analysis of
(ultra-) short light pulses and, in particular, these meth-
ods have been applied to investigating (i) simple linear
optical systems (e.g., Fabry-Perot filters, fiber Bragg grat-
ings) [5, 6], (ii) soliton waveforms [5, 7], and (iii) optical
pulse-compression operations [8]. TF techniques have been
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also evaluated as alternative methods for measuring optical
fiber dispersion (linear regime) [9]. More recently, TF repre-
sentations (spectrograms) have been applied to the analysis
of specific phenomena (e.g., continuum generation) in non-
linear optical fiber devices [10, 11] but these recent works
deal with optical pulses in the femtosecond range, a regime
which is of less interest in the context of fiber optics commu-
nications (optical pulses in the picosecond range).

In this paper, the Wigner distribution is applied to the
study of the dynamics of linear and nonlinear picosecond
pulse propagation in optical fibers. By means of a few ex-
amples, we demonstrate that the Wigner analysis offers a
simple and easy-to-interpret representation of the linear and
nonlinear dynamics in fibers within the picosecond regime,
providing in fact a profound insight into the physics behind
the phenomena that determine the optical pulse evolution
through the fibers. The information provided by the Wigner
technique complements that given by other analysis meth-
ods and offers a clearer and deeper understanding of the
phenomena under study. It should be also mentioned that
the discussion in this present work is restricted to the case
of completely coherent light distributions. The Wigner for-
malism has been previously applied to the analysis of prop-
agation of partially coherent light through nonlinear media,
leading in fact to the description of phenomena not discussed
here [12].

The remainder of this paper is structured as follows. In
Section 2, the theoretical fundaments of our analysis are es-
tablished. In particular, the nonlinear Schrodinger equation
(NLSE) for modeling picosecond pulse propagation in op-
tical fibers is briefly reviewed and the Wigner distribution
function used throughout the work is defined as well. In
Section 3, we conduct Wigner analysis of picosecond op-
tical pulse propagation through optical fibers operating in
the linear regime. The impact of first- and second-order
dispersions are analyzed in detail. Section 4 is devoted to
the Wigner analysis of picosecond optical pulse propagation
through nonlinear optical fibers. The interplay of GVD and
SPM is analyzed in both the normal and anomalous disper-
sion regimes. Finally, in Section 5, we conclude and summa-
rize.

2. THEORETICAL FUNDAMENTS

The propagation of optical pulses in the picosecond range
through a lossless single-mode optical fiber can be described
by the well-known NLSE [1]:

AT P 0°A(z,T)

T PG =0, (1)

where A(z, 7) is the complex envelope of the optical pulse
(pulse centered at the frequency wy), z is the fiber length, and
7 represents the time variable in the so-called retarded frame
(i.e., temporal frame with respect to the pulse group delay),
B2 = [0*B(w)/0w?]y=u, is the first-order GVD (B(w) is the
propagation constant of the single-mode fiber), and y is the
nonlinear coefficient of the fiber. In most cases, (1) and its

modifications cannot be solved analytically and one has to
use numerical approaches. Here we will use the most com-
monly applied numerical scheme for solving the NLSE, the
so-called split-step Fourier transform (SSFT) method [13].

In order to characterize the fiber distances over which
dispersive and nonlinear effects are important, two param-
eters are usually used, namely, the dispersion length Lp and
the nonlinear length Ly, [1]

2
L= 15

2

] (2)
Ly = m,

where Ty and Py are the time width and peak power of the
pulse launched at the input of the fiber A(0, 7). Depending
on the relative magnitudes of Lp, Ly, and the fiber length z,
the propagation behavior is mainly determined by dispersive
effects, by nonlinear effects or by interplay between both dis-
persive and nonlinear effects (when both contributions are
significant).

Once the NLSE in (1) is solved for the specific prob-
lem under study, our subsequent study will be based on
the detailed analysis of the obtained pulse complex envelope
A(z, 7). For a given fiber length (z = constant), this signal
can be represented either in the temporal domain (as directly
obtained from (1)) or in the spectral domain,

A(z,w) = 3[A(z,1)] = (\/%_ﬂ> L:A(z, 1) exp(—jwr)dr,
(3)

where J is the Fourier transform operator. A more profound
insight into the nature of the pulse under analysis can be ob-
tained if this pulse is represented in the joint time-frequency
phase space. For this purpose, we will use the time-resolved
Wigner distribution function, W, (7, w), which will be calcu-
lated as follows [3]:

+00 T, T/
W, (1, w) = J A(z,r + 5)A* (z,r - E) exp|—iwt’]dT’.
(4)

The Wigner distribution allows us to represent the signal
propagating through the fiber A(z,7) in the two domains,
time and frequency, simultaneously, that is, the signal is
mapped into a 2D image which essentially represents the
signal’s joint time-frequency energy distribution. This 2D
image displays the link between the temporal and spectral
pulse features in a very simple and direct way, thus providing
broader information on the signal and system under analysis.

3. WIGNER ANALYSIS OF LINEAR PULSE
PROPAGATION IN OPTICAL FIBERS

When the fiber length z is such that z < Ly and z < Lp,
then neither dispersive nor nonlinear effects play a signifi-
cant role during pulse propagation and as a result, the pulse
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maintains its shape during propagation A(z,7) = A(0, 7).
This case is obviously out of the interest of this work. When
the fiber length is such that z <« Lyy but z = Lp, then the
pulse evolution is governed by GVD and the nonlinear effects
play a relatively minor role. More specifically, the dispersion-
dominant regime is applicable when the following condition
is satisfied:

Lp _ yPT;
Ly |l

< 1. (5)

In this case, the last term in the left-hand side of the NLSE in
(1) (i.e., the nonlinear term) can be neglected and the optical
fiber can be modeled as a linear time-invariant system (i.e.,
as a filter). Specifically, the fiber operates as a phase-only fil-
ter which only affects the phase of the spectral content of the
signal propagating through it. This phase-only filtering pro-
cess is in fact determined by the GVD characteristic of the
optical fiber and, in particular,

Az, w) o< A(0, w) exp ( - i%zwz), (6)

where the symbol oc indicates that the two terms are propor-
tional.

The propagation regime where nonlinearities can be ne-
glected is typical of optical communication systems when the
launched signals exhibit a relatively low power. As a rough es-
timate, in order to ensure operation within the linear regime,
the peak power of the input pulses must be Py < 1W
for 1-picosecond pulses in conventional single-mode fiber
operating at the typical telecommunication wavelength of
A = 1.55pum (wo = 27 X 193.4 THz).

3.1. First-order dispersion of a transform-limited
optical pulse

In the first example (results shown in Figure 1), the prop-
agation of an optical pulse through a first-order dispersive
fiber in the linear regime is analyzed. In particular, we as-
sume a fiber with a first-order dispersion coefficient 3, =
—20 ps*’Km™! (typical value in a conventional single-mode
fiber working at A = 1.55um). This regime is usually re-
ferred to as anomalous dispersion regime (f3, < 0). Figure 1
shows the Wigner representation of the optical pulse en-
velope A(z, ) evaluated at different fiber propagation dis-
tances, z = 0 (input pulse), z = 0.5Lp, z = 2Lp, and
z = 6Lp (Lp = 450 m). For each representation, the plot at
the left shows the spectral energy density of the optical pulse
|A(z, w)|?, the plot at the bottom shows the average optical
intensity of the pulse |A(z, 7)|?, and the larger plot in the up-
per right of the representations shows the Wigner distribu-
tion of the pulse W,(7, w). Note that this distribution is plot-
ted as a 2D image where the relative brightness levels of the
image represent the distribution intensity and, in particular,
darker regions in the image correspond to higher intensities.

This 2D image provides information about the temporal lo-
cation of the signal spectral components or in other words, it
shows which of the spectral components of the signal occur
at each instant of time.

The input pulse is assumed to be a transform-limited
super-Gaussian pulse, A(0,7) = /Pgexp[(—1/2)(z/Ty)*"],
where m = 3, Ty = 3 picoseconds and the peak power P
is low enough to ensure operation within the linear regime
(i.e., to ensure that the fiber nonlinearities are negligible). In
this paper, super-Gaussian pulses will be used as input sig-
nals because they are more suited than for instance Gaus-
sian pulses to illustrate the effects of steep leading and trail-
ing edges while providing similar information on the physics
behind the different linear and nonlinear phenomena to be
investigated. The Wigner distribution of this input pulse is
typical of a transform-limited signal where all the spectral
components exhibit the same mean temporal delay. Since the
fiber operates as a phase-only filter, the energy spectrum of
the pulse is not affected by the propagation along the optical
fiber. In other words, the optical pulse propagating through
the fiber retains identical spectral components to those of the
incident pulse. However, due to the GVD introduced by the
fiber, these spectral components are temporally realigned ac-
cording to the group delay curve of the fiber. This temporal
realignment of the pulse spectral components is responsible
for the distortion and broadening of the temporal shape of
the pulse as it propagates along the fiber and can be easily un-
derstood and visualized through the Wigner representations
shown in Figure 1. The dispersion-induced pulse temporal
broadening is a detrimental phenomenon for optical com-
munication purposes. As a result of this temporal broaden-
ing, the adjacent pulses in a sequence launched at the input
of the fiber (this pulse sequence can carry coded information
to be transmitted through the fiber) can interfere with each
other and this interference process can obviously limit the
proper recovering of the information coded in the original
sequence [2].

We remind the reader that the group delay in a first-
order dispersive fiber is a linear function of frequency and de-
pends linearly on the fiber distance z as well. This is in good
agreement with the temporal realignment process that can
be inferred from the Wigner distributions shown in Figure 1.
More specifically, the pulse spectral components separate
temporally from each other as they propagate through the
fiber. In fact, as the Wigner representation of the pulse at
z = 6Lp shows, for a sufficiently long fiber distance, the
temporal realignment process of the pulse spectral compo-
nents is sufficiently strong so that only a single dominant fre-
quency term exists at each given instant of time. This can be
very clearly visualized in the corresponding Wigner represen-
tation: the signal distributes its energy along a straight line in
the TF plane. In this case, there is a direct correspondence
between time and frequency domains or in other words,
the temporal and spectral pulse shapes are proportional,
|A(z,7)| o< |A(z, w) lw=/p,z- This frequency-to-time con-
version operation induced by simple propagation of an op-
tical pulse through a first-order dispersive medium (e.g.,
an optical fiber) is usually referred to as real-time Fourier
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F1GURE 1: Wigner analysis of linear pulse propagation in an optical fiber (first-order dispersion).

transformation (RTFT) [14]. The exact condition to ensure
RTFT of the input optical pulse is the following [15]:

TZ
z> —. 7
3715 | 7

RTFT has been demonstrated for different interesting
applications, including real-time optical spectrum analysis,
fiber dispersion measurements [14], and temporal and spec-
tral optical pulse shaping [15, 16]. An interesting applica-
tion of the phenomenon for monitoring channel crosstalk in
DWDM optical communication networks is also described
in detail in the paper by Llorente et al. in this present special
issue.

3.2. First-order dispersion of a chirped optical pulse

In the second example (results shown in Figure 2), the prop-
agation of a nontransform-limited optical pulse through
the same optical fiber as in the previous example is ana-
lyzed. In this case, we assume a chirped super-Gaussian input
pulse A(0,7) = /Pyexp[(—[1+iC]/2)(z/Ty)*"], where m =
3, Ty = 3 picoseconds, and the peak power Py is again as-
sumed to be low enough to ensure operation within the lin-
ear regime. The new parameter C is referred to as the chirp
of the pulse and is used to model a phase variation across the
temporal profile of the pulse. In our example, we fix C = 3.
Pulses generated from semiconductor or mode-locked laser
are typically chirped and that is why it is important also to
evaluate the effect of pulse chirp on the dispersion process.
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FIGURE 2: Wigner analysis of linear propagation of a chirped optical pulse through an optical fiber (first-order dispersion).

Figure 1 analyzes the optical pulse envelope A(z, ) eval-
uated at different fiber propagation distances, z = 0 (in-
put pulse), z = 0.05Lp, z = 0.2Lp, and z = 2Lp. As
shown in the plot corresponding to the input pulse (z = 0),
the temporal shape (amplitude) of this pulse is identical
to that of the corresponding unchirped (transform-limited)
pulse (example shown in Figure 1) but the energy spectrum
differs significantly from that of the unchirped case. Sim-
ilarly, the Wigner distribution clearly corresponds with a
nontransform-limited pulse as the different pulse spectral
components exhibit now a different mean time delay. In
particular, the frequencies in the low-frequency and high-
frequency sidelobes lie in the leading and trailing edges of

the temporal pulse, respectively, whereas the frequencies in
the main spectral lobe are associated with the central, high-
energy part of the temporal pulse. The effect of propaga-
tion of the chirped pulse through the initial section of the
first-order dispersive fiber is essentially different to that ob-
served for the case of a transform-limited pulse. The effect
of the fiber medium on the optical pulse can be again mod-
eled as a phase-only filtering process as that described by
(6). However, in the initial section of the fiber, the GVD in-
troduced by the fiber will compensate partially the intrinsic
positive chirp of the original pulse so that the pulse will un-
dergo temporal compression (instead of temporal broaden-
ing as it is typical of transform-limited pulses). For a specific
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fiber length, the pulse will undergo its maximum temporal
compression (approximately for z = 0.05 Lp, in the exam-
ple shown here) when total chirp compensation is practi-
cally achieved. The Wigner distribution of the pulse confirms
that in the case of maximum compression this pulse is ap-
proximately a transform-limited signal (where all the spec-
tral components have the same mean time delay). Ideal chirp
compensation with a first-order dispersive medium can be
only achieved if the original pulse exhibits an ideal linear
chirp (in our case, the input pulse exhibits a quadratic chirp).
The described compression process of chirped optical pulses
using propagation through a suitable dispersive medium has
been extensively applied for pulse-compression operations
aimed to the generation of (ultra-) short optical pulses [17].
In fact, optical pulse-compression operations have been an-
alyzed in the past using Wigner representations [8]. As the
plots corresponding to z = 0.2 Lp and z = 2 Lp show, fur-
ther propagation in the optical fiber after the optimal com-
pression length has a similar effect to that described for the
case of transform-limited pulses. Briefly, the spectral com-
ponents of the pulse are temporally separated thus causing
the consequent distortion and broadening of the temporal
pulse shape. For sufficiently long fiber distance, a frequency-
to-time conversion process (RTFT) can be also achieved (e.g.,
z=2 LD)

3.3. Second-order dispersion of a transform-limited
optical pulse

The contribution of second-order dispersion on optical
pulses can be introduced in the previous NLSE equation by
including the corresponding term as follows:

0A(z,T) B 0?A(z, T) N B3 Az, 1)
! 0z 2 or? ! 6 or 8)

+y|A(z, 1) |2A(z, 7) =0,

where 83 = [0°B(w)/0w?]y-w, is the second-order GVD.
The contribution of the second-order dispersion induced by
the fiber medium on optical pulses in the picosecond range
can be normally neglected as compared with the contribu-
tion of the first-order dispersion factor. For optical pulses
in the picosecond range, this second-order dispersion con-
tribution becomes important only when the fibers are op-
erated in the vicinity of the so-called zero-dispersion wave-
length, where the first-order dispersion coefficient is null.
Operating around the fiber zero-dispersion wavelength can
be of interest for applications where fiber dispersion must
be minimized, for example, to exploit some nonlinearities
in the fiber [9]. Conventional single-mode fiber (such most
of the fiber currently deployed for optical communication
purposes) exhibits zero dispersion around 1.3 ym (the dis-
persion problem described above is still present at 1.55 ym
in this kind of fibers) but especial fiber designs allow shift-
ing the zero-dispersion wavelength to the desired value (e.g.,
1.55 ym).
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FIGURE 3: Wigner analysis of linear pulse propagation in an optical
fiber (second-order dispersion).

If the first-order dispersion coefficient is null, then the
effect of second-order dispersion must be taken into account.
In order to evaluate the impact of second-order dispersion on
an optical pulse, we will assume that the fiber nonlinearities
are negligible as well. In this case, the second and fourth term
in the left-hand side of (8) can be neglected and as a result,
the optical fiber operates as a linear time-invariant system
(i.e., as a filter). In particular,

A(z, w) < A0, w) exp ( - jﬁ2—32w3>. 9)

In Figure 3, the propagation of a super-Gaussian optical
pulse similar to that shown in Figure 1 (z = 0) through a
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second-order dispersive fiber with 83 = —0.1 ps’Km™! (typ-
ical value in a conventional single-mode fiber working at
A = 1.3 pm) is analyzed. In particular, the pulse envelope is
analyzed at the fiber distances z = 0.04 L}, and z = 0.15L},
where L, = T;/IB5| ~ 270 Km. As expected, the original
pulse spectrum is not affected during propagation through
the fiber. The Wigner distributions show that these spectral
components undergo however a temporal realignment ac-
cording to the GVD characteristic of the device which in turn
causes the observed distortion in the temporal pulse shape.
This temporal realignment of the pulse spectral components
is very different from that observed in the case of first-order
dispersion (compare with Figure 1) as the GVD characteris-
tics in both fibers are different. In the case of second-order
dispersion, the original pulse evolves towards a nonsym-
metric temporal shape which consists of two components,
a main high-energy pulse followed by a secondary compo-
nent (quasiperiodic sequence of short low-intensity pulses).
The oscillatory temporal structure following the main tem-
poral component is a typical result of second-order disper-
sion. The Wigner distribution provides very useful informa-
tion about the origin of each one of the components in the
obtained temporal signal. In particular, the main temporal
pulse in the resulting signal is essentially caused by the fre-
quencies in the main spectral lobe which undergo a similar
delay along the fiber (in fact, the Wigner distributions allow
us to infer that this main temporal component is closely a
transform-limited signal). The subsequent temporal oscilla-
tions have their origin in a spectral beating between two sep-
arated frequency bands, each one associated with each of the
spectral sidelobes of the signal, which appear overlapped in
time (i.e., the two beating spectral bands undergo a similar
temporal delay during the fiber propagation). Note that the
spectral main lobe is affected by a delay shorter than that of
the spectral sidelobes (as determined by the fiber GVD). The
period of the temporal oscillations is fixed by the frequency
separation of the beating bands and as it can be observed,
the fact that beating bands are more separated for longer de-
lays translates into the observed oscillation period decreasing
with time.

4. WIGNER ANALYSIS OF NONLINEAR PULSE
PROPAGATION IN OPTICAL FIBERS

4.1. Self-phase modulation of an optical pulse

When the fiber length is such that z <« Lp but z = Ly, then
the pulse evolution is governed by the nonlinear effects and
the GVD plays a minor role. More specifically, the nonlinear-
dominant regime is applicable when the following condition
is satisfied:

Lp _ yPoT§
Ly [B2]

> 1. (10)

In this case, the second term in the left-hand side of the NLSE
in (1) (i.e., the dispersion term) can be neglected and the
pulse evolution in the fiber is governed by self-phase mod-
ulation (SPM), a phenomenon that leads to spectral broad-

ening of the optical pulse. This propagation regime will only
occur for relatively high peak power when the dispersion ef-
fects can be neglected either because the fiber is operated
around the zero-dispersion wavelength or because the input
pulses are sufficiently wide (in a conventional single-mode
fiber working at A = 1.55 ym, typical values for entering the
SPM regime are T; > 100 picoseconds and Py = 1 W).

SPM has its origin in the dependence of the nonlinear
refractive-index with the optical pulse intensity (Kerr effect),
which induces an intensity-dependent phase shift along the
temporal pulse profile according to the following expression:

A(z,1) = A0, 7) exp (ipnL(z, 7)),
(11)
Nz, 1) = y| A0, 1) |2z.

Equation (11) shows that during SPM the pulse shape re-
mains unaffected as the SPM only induces a temporally-
varying phase shift. This phase shift implies that an addi-
tional frequency chirp is induced in the optical pulse so that
new frequency components are generated along the pulse
profile. In particular, the SPM-induced instantaneous fre-
quency along the pulse duration is

ogni(zT) _ _yza|A(0,1)|2.

or or (12)

dw(z, 1) =

Note that according to (11), the maximum SPM-induced
phase-shift across the pulse is ¢pax = yPoz. Figure 4 analyzes
SPM of a long super-Gaussian pulse (m = 3 and T = 90 pi-
coseconds) for different values of pmax (i-e., evaluated at dif-
ferent fiber lengths or for different pulse peak powers). The
input pulse is also shown (¢pax = 0). The expected spectral
pulse distortion and broadening is observed in the plots. The
Wigner distribution is an ideal tool to visualize the process of
generation of new spectral components as it associates these
new spectral components with the temporal features of the
optical pulse. The Wigner distribution confirms the gener-
ation of new spectral content according to (12). In general,
this spectral content generation process is more significant
as Pmax increases. Specifically, the steeping edge of the pulse
is responsible for the generation of new frequency compo-
nents in the low-frequency sidelobe (negative side) whereas
the trailing edge is responsible for the generation of new fre-
quency components in the high-frequency sidelobe (positive
side). The central part of the pulse, where the intensity keeps
approximately constant, is only responsible for the genera-
tion of new spectral content in the narrow, central frequency
band (spectral main lobe). The Wigner distribution reveals
that this spectral main lobe is not a transform-limited sig-
nal but rather it exhibits a pronounced chirp which becomes
more significant as ¢pax increases. It is important to note
that such important feature of the generated optical pulses
cannot be inferred from the basic SPM theory presented
above or through the representation of the instantaneous fre-
quency of the signals (i.e., by calculating the derivative of the
pulse phase profile).
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FIGURE 4: Wigner analysis of pulse self-phase modulation in an optical fiber.

4.2. Dynamics of temporal soliton formation
in the anomalous dispersion regime

When the fiber length z is longer or comparable to both Lp
and Ly, then dispersion and nonlinearities act together as
the pulse propagates along the fiber. The interplay of the
GVD and SPM effects can lead to a qualitatively different
behavior compared with that expected from GVD or SPM
alone. In particular, in the anomalous dispersion regime
(B2 < 0) the fiber can support temporal solitons (bright
solitons). Basically, if an optical pulse of temporal shape
A(0, 1) = /Py sech(1/Ty) is launched at the input of the fiber
and the pulse peak power is such that it satisfies exactly the

following condition Lp = Lyi, then the pulse will propa-
gate undistorted without change in shape for arbitrarily long
distances (assuming a lossless fiber). It is this feature of the
fundamental solitons that makes them attractive for optical
communication applications. As a generalization, if an opti-
cal pulse of arbitrary shape and a sufficiently high peak power
(peak power higher than that required to satisfy the funda-
mental soliton condition) is launched at the input of an opti-
cal fiber in the anomalous dispersion regime, then a tempo-
ral soliton (sech temporal shape) will form after propagation
through a sufficiently long section of fiber. The analysis of
the dynamics of formation of a temporal soliton is a topic
of paramount importance in understanding the nonlinear
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FIGURE 5: Wigner analysis of fundamental soliton formation in an optical fiber (anomalous dispersion regime).

dynamics in optical fibers and has attracted considerable at-
tention [1, 18, 19]. Wigner analysis has been proposed as a
simple and powerful method for characterizing optical soli-
ton waveforms (e.g., to evaluate the quality of an optical soli-
ton) [7].

Here, we analyze soliton formation dynamics when the
pulse launched at the input of a fiber is not an exact soliton
solution in that fiber (deviation in temporal shape). In the
example of Figure 5, we assume a fiber with parameters
B2 = —20ps’Km™! and y = 2W™'Km™! (typical values for
a conventional single-mode fiber working at A ~ 1.55ym).
The input pulse is assumed to be a super-Gaussian pulse
with m = 3, Ty = 3 picoseconds and the peak power Py

is fixed to satisfy exactly the basic first-order soliton condi-
tion, that is, Py = 1.11 W. The Wigner representation of the
optical pulse envelope A(z, 7) is evaluated at different fiber
propagation distances, z = 0 (input pulse), z = 4Lp, z =
20 Lp, and z = 50 Lp. The representations in Figure 5 show
that for sufficiently long distance (z > 20Lp) the original
super-Gaussian pulse evolves into a signal consisting of (a)
a transform-limited first-order temporal soliton and (b) two
long dispersive tails. These two well-known features (soliton
solution and radiation solution of the NLSE, respectively)
can be visualized very clearly in the corresponding two-
dimensional Wigner representations. For distances shorter
than that required for soliton formation (e.g., z = 4Lp),
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the characteristics patterns of the two mentioned signal com-
ponents (soliton + dispersive tails) can be already distin-
guished in the Wigner representation but this representa-
tion shows that the main component is still a nontransform-
limited (chirped) soliton-like pulse. This component is the
one which finally evolves into a transform-limited soliton
by virtue of the interplay between GVD and SPM. Note
that when the transform-limited soliton is formed, the pulse
spectrum exhibits significant oscillations. These oscillations
are typical of soliton formation when the pulse launched at
the input of the fiber does not satisfy the exact fundamental
soliton conditions (i.e., when the input pulse is slightly dif-
ferent in shape, power, or chirp to the ideal soliton) [18, 19]
and can be detrimental for practical applications. The fact
that the input pulse must satisty exactly the soliton condi-
tions in order to avoid the presence of these and other detri-
mental effects have in part precluded the use of soliton-based
techniques for communication applications. The spectral os-
cillations observed in our plots have been observed exper-
imentally and a physical explanation based on complicated
analytical studies has been also given [19]. The Wigner repre-
sentation provides a simple and direct physical understand-
ing of such spectral oscillations and their more significant
features. In particular, these oscillations can be interpreted
as Fabry-Perot-like resonance effects associated with interfer-
ence between the frequencies lying in the transform-limited
soliton pulse and those in the dispersive tails (i.e., same fre-
quencies with different delays). The period of these oscilla-
tions is then fixed by the temporal delay between the inter-
fering frequency bands. Note that the delay between interfer-
ing bands (horizontal distance in the Wigner plane) increases
for a higher frequency deviation and this translates into the
observed oscillation period decreasing as the frequency de-
viation increases. A similar explanation can be found for
the observed variations in the period of the spectral oscil-
lations as a function of the fiber length. Since the disper-
sive tails are affected by the fiber GVD whereas the soliton
pulse is unaffected, the temporal distance between interfer-
ing bands increases as the fiber distance increases and this
results into the observed oscillation period decreasing with
fiber length.

4.3. Optical wave breaking phenomena in the normal
dispersion regime

Soliton phenomena can also occur when the optical fiber
exhibits normal dispersion (3, > 0) at the working wave-
length. In this case, a different class of temporal solitons is
possible, that is, the so-called dark soliton, which consists
of an energy notch in a continuous, constant light back-
ground [1]. Although the dark soliton is of similar physi-
cal and practical interest than the bright soliton, in this sec-
tion, we have preferred to focus on other similarly interesting
phenomena that are typical of nonlinear light propagation
in the normal dispersion regime (e.g., optical wave breaking
(20, 21]) and have no counterpart in the anomalous disper-
sion regime.

In Figure 6, we analyze the combined action of disper-
sion and nonlinearities on a Gaussian pulse (m = 1, Tp = 3

picoseconds) along a fiber with normal dispersion (8, =
+0.1 ps?’Km™1). The peak power of the pulse is fixed to en-
sure that the nonlinear effects (self-phase modulation, SPM)
are much more significant than the dispersive effects and,
in particular, Lp = 900 Lyy, = 90Km, so that Py = 5W.
Figure 2 shows the Wigner representation of the optical pulse
envelope A(z, 7) evaluated at different propagation distances,
z = 0 (input pulse), z = 0.02Lp, and z = 0.06 Lp (note
that the figure at the bottom right is a detailed analysis
or “zoom” of the temporal response at z = 0.06Lp). At
short distances (e.g., z = 0.02Lp), the pulse is mainly af-
fected by SPM and as expected, the temporal variation of
the spectral content (i.e., instantaneous frequency) is de-
termined by the temporal function d|A(z, 7)|*/d7, see (12).
The oscillations in the pulse spectrum can be interpreted
again as a Fabry-Perot-like resonance effects (i.e., these os-
cillations have their origin in interference between the same
spectral components located at different instants of time).
For a distance z = 0.06 Lp, the pulse energy is temporally
and spectrally redistributed as a result of the interplay be-
tween dispersion and SPM [20]. The Wigner distribution
provides again a simple understanding of the observed tem-
poral and spectral pulse features. In particular, the Fabry-
Perot resonance effects described above appear again and are
responsible for the observed oscillations in the main spec-
tral band. The temporal pulse evolves nearly into a square
shape slightly broader than the input Gaussian pulse. This
square pulse exhibits a linear frequency chirp practically
along its total duration. This fact has been used extensively
for pulse compression applications [17]. It is also impor-
tant to note that the pulse spectrum exhibits significant side-
lobes. From the Wigner representation, it can be easily in-
ferred that these sidelobes are responsible for the observed
oscillations in the leading and trailing edges of the temporal
pulse. A more detailed analysis of the temporal oscillations
in the trailing (leading) edge of the pulse shows that these
oscillations have their origin in a spectral beating between
two separated spectral bands located in the high-frequency
(low-frequency) sidelobe of the pulse spectrum. The whole
process by virtue of which the temporal pulse develops the
described temporal oscillations in its edges associated with
sidelobes in the spectral domain is usually referred to as
optical wave breaking [20, 21]. Our results show that the
Wigner analysis constitutes a unique approach for visualiz-
ing and understanding the physics behind this well-known
phenomenon.

5. CONCLUSIONS

In summary, the Wigner analysis has been demonstrated to
be a powerful tool for investigating picosecond pulse propa-
gation dynamics in optical fibers in both the linear and non-
linear propagation regimes. This analysis provides a simple,
clear, and profound insight into the nature of the physical
phenomena that determine the pulse evolution in an optical
fiber, in some cases revealing details about these physical phe-
nomena which otherwise cannot be inferred.
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FIGURE 6: Wigner analysis of nonlinear pulse propagation through an optical fiber in the normal dispersion regime.

The examples in this paper demonstrate the efficiency of
the TF (Wigner) techniques for the analysis of linear and
nonlinear optical systems and should encourage the appli-
cation of these techniques to a variety of related problems,
such as the systematic study of femtosecond pulse propaga-
tion in optical fibers (i.e., influence of high-order dispersion
and nonlinear effects) or spatiotemporal dynamics.

In general, the results presented here clearly illustrate
how advanced signal processing tools (e.g., TF analysis) can
be applied to investigating physical systems of fundamen-
tal or practical interest and how the unique information
provided by these advanced analysis tools can broaden our
understanding of the systems under study.
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