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One of great challenges in unsupervised hyperspectral target analysis is how to obtain desired knowledge in an unsupervised means
directly from the data for image analysis. This paper provides a review of unsupervised target analysis by first addressing two
fundamental issues, “what are material substances of interest, referred to as targets?” and “how can these targets be extracted from
the data?” and then further developing least squares (LS)-based unsupervised algorithms for finding spectral targets for analysis.
In order to validate and substantiate the proposed unsupervised hyperspectral target analysis, three applications in endmember
extraction, target detection and linear spectral unmixing are considered where custom-designed synthetic images and real image
scenes are used to conduct experiments.

1. Introduction

Hyperspectral imaging has become an emerging technique
in remote sensing analysis. With high spectral resolution
many material substances which are not known a priori
or cannot be visualized by inspection can now be revealed
by hyperspectral imaging sensors for data exploitation.
Consequently, two main issues are investigated in this paper.
One is what are material substances of interest? Once targets
of interest are defined, the next is how to find these targets
directly from the data in an unsupervised manner without
prior knowledge. In order to address the first issue, we first
explore a new concept of so-called “spectral” targets which
is developed to differentiate targets commonly addressed in
traditional image processing. With no spectral bands used
in traditional image processing the targets of interest are
generally identified by their spatial properties such as size,
shape, and texture. In this case, targets to be recognized based
on their spatial properties can be considered as “spatial”
targets and the techniques developed to recognize such

spatial targets are referred to as spatial domain-based image
processing techniques. On the other hand, due to use of spec-
tral bands specified by a range of wavelengths a multispectral
or hyperspectral image pixel is actually a column vector, of
which a pixel of spectral band is produced by a particular
wavelength. As a consequence, a single image pixel vector
of a hyperspectral image already contains abundant spectral
information provided by hundreds of contiguous spectral
bands that can be used for data exploitation. Such spectral
information within a single image pixel vector is referred to
as intrapixel spectral information. A target analyzed based on
its spectral properties characterized by the intrapixel spectral
information on a single image pixel vector basis is called
“spectral target” as opposed to “spatial target” analyzed by
interpixel spatial information provided by spatial correlation
among sample pixels. More specifically, three major types of
spectral targets are of particular interest in this paper. One is
endmembers whose spectral signatures are idealistically pure
[1]. Endmembers do not usually appear in multispectral
images due to low spatial and spectral resolution but have
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become increasingly important in hyperspectral imaging
because an endmember can be used to identify a spectral
class. Another is subpixel targets which do not fully occupy
a pixel but rather are completely embedded in a single image
pixel vector [2]. This type of targets cannot be visualized
spatially and can be only recognized based on their spectral
properties. Subpixel targets occur when their spatial extent
is smaller than pixel resolution. A third type of targets
is mixed targets whose spectral signatures are linearly or
nonlinearly mixed by a number of target spectral signatures
with appropriate portions of fractions present in a single
image pixel vector [2]. The occurrence of a mixed target is
a result of low spatial and spectral resolution and it may
partially occupy more than one pixel vector. Apparently,
none of these three types of spectral targets can be effectively
analyzed by spatial domain-based techniques.

With a spectral target defined as above what we are
particularly interested in this paper from an aspect of sta-
tistical signal processing are two types of spectral targets, one
characterized by 2nd order sample intrapixel Spectral Infor-
mation Statistics (SIS) and the other by sample intrapixel SIS
of order higher than 2, referred to as high-order SIS. It should
be noted that the term of sample intrapixel SIS is defined as
correlation of intrapixel SIS among samples. In the context of
sample spectral information statistics we assume that back-
ground (BKG) pixels are those spectral targets characterized
by 2nd sample intrapixel SIS while the target pixels of interest
are those high-order sample intrapixel SIS. In hyperspectral
image analysis this seems a reasonable assumption since the
spectral targets of interest in hyperspectral data exploitation
are those which either (1) occur with low probability or
(2) have small populations when they are present. In other
words, these types of spectral targets are usually relatively
small, appear in small population and also occur with
low probabilities, for example, special spices in agriculture
and ecology, toxic wastes in environmental monitoring,
rare minerals in geology, drug/smuggler trafficking in law
enforcement, combat vehicles in the battlefield, landmines
in war zones, chemical/biological agents in bioterrorism,
weapon concealment and mass graves. These spectral targets
are generally considered as insignificant objects because of
their very limited spatial information but they are actually
critical and crucial for defense and intelligence analysis since
they are insignificant compared to targets with large sample
pools and generally hard to be identified by visual inspection
and, from a statistical point of view, the spectral information
statistics of such special targets cannot be captured by 2nd
order sample intrapixel SIS but rather by high-order sample
intrapixel SIS.

Once image pixel vectors are categorized into BKG and
target classes according to sample intrapixel SIS, a follow-
up task is how to find them in which case two issues need
to be addressed. One is how many of them. The other
is how to extract them. The first issue can be resolved
by a new concept, virtual dimensionality (VD) recently
developed [2, Chapter 17], [3]. The idea of VD is based
on the assumption that if a signal source is presenting in
the data, it will contribute energy to 1st order statistics.
In doing so, both the eigenvalues of sample correlation

matrix, {̂λl} and the eigenvalues of covariance matrix, {λl}
are calculated. If ̂λl − λl is greater than zero resulting from
the lth component sample mean, it implies that there is a
signal source; otherwise, no signal is present. To materialize
this idea, a binary composite hypothesis testing problem is
formulated in a way that the null and alternative hypotheses,

H0 and H1 represent two scenarios, H0 : ̂λl − λl = 0 and

H1 : ̂λl − λl > 0, respectively. The Neyman Pearson detection
theory [4] is then applied to find how many times the test
fails running over all spectral bands for a given false alarm
probability, PF. It is the number of test failures that indicates
the number of signal sources assumed to be in the data. The
beauty of VD lies on the fact that its value is completely
determined by the PF. By varying the value of PF , the number
of spectrally distinct signatures estimated by the VD varies.
For example, if PF is set low, fewer tests will fail and thus
fewer targets are assumed to be in the data and vice versa.
To address the second issue an unsupervised spectral target
finding algorithm (USTFA) is developed which is based
on three least squares (LS)-based algorithms, automatic
target generation process (ATGP) [5], unsupervised non-
negativity constrained least squares (UNCLS) method [6]
and unsupervised fully constrained least squares method
(UFCLS) [7]. In order for these unsupervised methods to
extract and distinguish spectral targets of 2nd order sample
intrapixel SIS from high-order sample intrapixel SIS, two
data sets, original data and its sphered data are used. It
assumes that the BKG in a hyperspectral image is most
likely characterized by 2nd order sample intrapixel SIS while
hyperspectral targets will be more likely to be captured by
high-order sample intrapixel SIS as outliners due to their
small spatial presence. In this case, high-order spectral targets
are referred to as desired targets to be used for image analysis,
while 2nd order spectral targets are considered as undesired
targets for which we would like to annihilate or suppress
prior to data processing so as to improve image analysis.

In order to validate the utility of VD and the pro-
posed unsupervised spectral target analysis for hyperspectral
imagery, custom-designed synthetic image experiments with
complete ground truth are conducted to show that the VD
indeed provides a reasonable estimate of the true dimen-
sionality for qualitative and quantitative analysis for three
applications, endmember extraction, unsupervised spectral
target detection and unsupervised LSU-based target classifi-
cation. These same experiments are further substantiated by
real image data.

As summarized, several contributions are made in this
paper. First and the foremost is to introduce the concept of
sample intrapixel SIS to define BKG and target pixels charac-
terized by 2nd order sample intrapixel SIS s and high-order
sample intrapixel SIS, respectively. A second contribution is
to use the VD to determine the number of BKG and target
pixels, each of which represents a particular spectral class,
either a BKG or a target class. A third contribution is to come
up an idea of using two sets of original data and its sphered
data from which BKG and target pixels can be extracted. A
fourth contribution is to design an USTFA to extract BKG
and target pixels. Finally, a fifth contribution is to custom
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design synthetic image experiments to validate the proof of
concept for the unsupervised target analysis developed in this
paper. This is then followed by real image experiments to
substantiate its utility in real applications.

2. Unsupervised Least
Squares-Based Algorithms

In this section, we present three least squares (LS)-based
algorithms for finding spectral targets of interest using
a posteriori knowledge which can be obtained directly from
the data.

To accomplish this task, a designed least squares-based
algorithm is first applied to the original data to extract
data sample vectors characterized by 2nd order SIS. Then,
the same algorithm is further applied to the data which is
sphered by removing the data sample mean and covariances
while making data variances ones so that all 2nd order SIS-
characterized data samples will be on the sphere and all other
data sample vectors that are characterized by high-order
SIS are either inside (sub-Gaussian samples) or outside the
sphere (super-Gaussian samples). As a consequence of such a
sphering process, the resulting data has the 1st and 2nd order
SIS removed from the original data because of zero mean and
constant variance one so that samples characterized by SIS of
orders higher than 2 can be extracted from inside or outside
the sphere. Interestingly, despite that the idea of using the
same algorithm in two passes, one pass for the original data
and another pass for the sphered data to extract two types of
targets of interest, 2nd order targets and high-order targets
for data analysis seem simple, it is by no means a trivial
matter because its novelty has never been explored in the
open literature. In what follows, we design and develop three
LS-based algorithms for this purpose.

The first algorithm of interest was previously proposed
by Ren and Chang in [5], called Automatic Target Gen-
eration Process (ATGP) which can be considered as an
unsupervised version of the orthogonal subspace projection
(OSP) algorithm in [8]. Its relationships with LS-based linear
spectral unmixing (LSU) were also explored in [9, 10]. With
this interpretation, the ATGP can be also viewed as an
unsupervised version of an unconstrained LS LSU method.
The 2nd and 3rd LS-based algorithms are an unsupervised
version of a partially abundance-constrained least squares
LSU, referred to as Unsupervised Non-negativity Con-
strained Least Squares (UNCLS) [6] and an unsupervised
version of fully abundance least squares LSU, referred to
as unsupervised fully constrained least squares (UFCLS)
[7].

Assume that m1,m2, . . . ,mp are spectral signatures used
to unmix the data sample vectors. Let L be the number
of spectral bands and r be an L-dimensional data sample
vector which can be modeled as a linear combination
of m1,m2, . . . ,mp with appropriate abundance fractions
specified by α1,α2, . . . ,αp.More precisely, r is an L×1 column
vector and M is an L × p target spectral signature matrix,
denoted by �m1m2 · · ·mp�, where m j is an L × 1 column
vector represented by the spectral signature of the jth target
resident in the pixel vector r. Let α = (α1,α2, . . . ,αp)T

be a p × 1 abundance column vector associated with r
where αj denotes the fraction of the jth target signature m j

present in the pixel vector r. A classical approach to solving a
mixed pixel classification problem is linear unmixing which
assumes that the spectral signature of the pixel vector r is
linearly mixed by m1,m2, . . . ,mp as follows:

r =Mα + n, (1)

where n is noise or can be interpreted as a measurement or
model error.

Equation (1) represents a standard signal detection
model where Mα is a desired signal vector needed to be
detected and n is a corrupted noise. Since we are interested in
detecting one target at a time, we can divide the set of the p
target signatures,m1,m2, . . . ,mp into a desired target, say mp

and a class of undesired target signatures, m1,m2, . . . ,mp−1.
In this case, a logical approach is to eliminate the effects
caused by the undesired targets m1,m2, . . . ,mp−1 that are
considered as interferers to mp before the detection of
mp takes place. With annihilation of the undesired target
signatures the detectability of mp can be therefore enhanced.
In doing so, we first separate mp from m1,m2, . . . ,mp in M
and rewrite (1) as

r = dαp + Uγ + n, (2)

where d =mp is the desired spectral signature ofmp andU =
�m1m2 · · ·mp−1� is the undesired target spectral signature
matrix made up of m1,m2, . . . ,mp−1 which are the spectral
signatures of the remaining p−1 undesired targets. Using (2)
we can design an orthogonal subspace projector to annihilate
U from the pixel vector r prior to detection of tp. One of such
desired orthogonal subspace projectors was the orthogonal
subspace projection (OSP) derived in [8] and given by

P⊥U = I−UU#, (3)

where U# = (UTU)
−1
UT is the pseudo-inverse of U. The

notation ⊥
U in P⊥U indicates that the projector P⊥U maps the

observed pixel vector r into the orthogonal complement of
〈U〉, denoted by 〈U〉⊥. By means of (3) a linear optimal
signal detector for (2), denoted by δOSP(r) was developed in
[8] and given by

δOSP(r) = dTP⊥Ur. (4)

2.1. Automatic Target Generation Process (ATGP). The ATGP
can be considered as an unsupervised and unconstrained
OSP technique which performs a succession of orthogonal
subspace projections specified by (3) to find a set of
sequential data sample vectors that represents targets of
interest as follows.

Automatic Target Generation Process (ATGP) Algorithm.

(1) Initial condition:

Let ε be a prescribed error threshold and t0 be a pixel
with brightest intensity value, that is, largest gray level
value. Set k = 0.
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(2) Let k ← k + 1 and apply P⊥t0
via (3) to all image pixels

r in the image and find the kth target tk generated
at the kth stage which has the maximum orthogonal
projection as follows:

tk = arg
{

maxr

⌊

(

P⊥[Uk−1tk]r
)T(

P⊥[Uk−1tk]r
)

⌋}

. (5)

(3) If m(tk−1, tk) > ε where m(·, ·) can be any target
discrimination measure, for example, Spectral Angle
Mapper (SAM) in [2], then go to step (2). Otherwise,
the algorithm is terminated. At this point, all the
generated target pixels t0, t1, . . . , tk−1 are considered
as the desired targets.

2.2. Unsupervised Non-Negativity Least Squares (UNCLS)
Method. The UNCLS is an unsupervised version of the
abundance Non-negativity Constrained Least squares
(NCLS) where the NCLS is a partially abundance
unconstrained OSP technique that imposes the abundance
non-negativity constraint (ANC), α ≥ 0, that is, αj ≥ 0 for
all on the linear mixing model specified by (1). It can be
implemented in the following.

UNCLS Algorithm.

(1) Initial condition:

Select ε to be a prescribed error threshold and let t0 =
arg{maxr[rTr]} where r is run over all image pixel
vectors, and set k = 0.

(2) Let LSE(0)(r) = (r− α̂(1)
0 (r)t0)

T
(r − α̂(1)

0 (r)t0) and
check if maxrLSE(0)(r) < ε. If yes, the algorithm is
terminated; otherwise continue.

(3) Let k ← k + 1 and find tk = arg{maxr[LSE(k−1)(r)]}.
(4) Apply the NCLS method with the signature matrix

M(k) = [t0t1 · · · tk−1] to estimate the abundance
fraction of t0, t1, . . . , tk−1, α̂(k)

1 (r), α̂(k)
2 (r), . . . , α̂(k)

k−1(r).

(5) Find the kth maximum least squares error defined by

maxr
{

LSE(k)(r)
}

= maxr

⎧

⎪

⎨

⎪

⎩

⎛

⎝r−
k−1
∑

j=1

α̂(k)
j t j

⎞

⎠

T⎛

⎝r−
k−1
∑

j=1

α̂(k)
j t j

⎞

⎠

⎫

⎪

⎬

⎪

⎭

.
(6)

(6) If maxrLSE(k−1)(r) < ε, the algorithm is terminated;
otherwise go to step (3).

2.3. Unsupervised Fully Least Squares (UFCLS) Method. The
UFCLS is an unsupervised abundance Fully Constrained
Least Squares (FCLS) where the FCLS is a partially abun-
dance unconstrained OSP technique that imposes both
Abundance Sum-to-one Constraint (ASC), that is,

∑p
j=1 αj =

1 and Abundance Non-negativity Constraint (ANC), α ≥
0, that is, α j ≥ 0 on the linear mixing model (1). Its
implementation is provided below.

UFCLS Algorithm.

(1) Initial condition:

Select ε to be a prescribed error threshold and let t0 =
arg{maxr[rTr]} where r is run over all image pixel
vectors, and let k = 0.

(2) Let LSE(0)(r) = (r− α̂(1)
0 (r)t0)

T
(r − α̂(1)

0 (r)t0) and
check if maxrLSE(0)(r) < ε. If yes, the algorithm is
terminated; otherwise continue.

(3) Let k ← k + 1 and find tk = arg{maxr[LSE(k−1)(r)]}.
(4) Apply the FCLS method with the signature matrix

M(k) = [t0t1 · · · tk−1] to estimate the abundance
fraction of t0, t1, . . . , tk−1, α̂(k)

1 (r), α̂(k)
2 (r), . . . , α̂(k)

k−1(r).

(5) Find the kth maximum least squares error defined by

maxr
{

LSE(k)(r)
}

= maxr

⎧

⎪

⎨

⎪

⎩

⎛

⎝r−
k−1
∑

j=1

α̂(k)
j t j

⎞

⎠

T⎛

⎝r−
k−1
∑

j=1

α̂(k)
j t j

⎞

⎠

⎫

⎪

⎬

⎪

⎭

.
(7)

If maxrLSE(k−1)(r) < ε, the algorithm is terminated;
otherwise go to step (3).

3. Unsupervised Spectral Target
Finding Algorithms

When the above-mentioned three unsupervised LS-based
algorithms are implemented, a prescribed error ε which is
determined by various applications is required to terminate
the algorithms. In general, it is done by visual inspection on
a trial-and-error basis and is not practical for our purpose.
Therefore, instead of using ε as a stopping rule, we use the
VD as an alternative rule to determine how many targets are
required for our designed LS algorithms to generate.

In order for the proposed LS-based algorithms to be
successful, we assume that the most image BKG is charac-
terized by a very large number of un-interesting data sample
vectors which can be characterized by 2nd order statistics
as opposed to target pixels which can be captured by high-
order statistics due to a small number of target pixels. By
virtue of this assumption we can consider two sets of data
for processing. One is the original data and the other is the
sphered data which has the mean and covariance removed
from the original data for consideration. We then apply
the three unsupervised LS-based algorithms to these two
data sets to extract 2nd order BKG pixels as well as high-
order target pixels. However, if a sample pixel show strong
signal statistics in both original and sphered data sets, it is
considered as a target pixel and can be removed from the
BKG category.

A detailed implementation of an LS-based unsupervised
spectral target finding algorithm (USTFA) can be briefly
described as follows where the LS-based unsupervised
algorithm used in the USTFA can be one of the three LS
unsupervised algorithms described in Section 2.
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LS-Based Unsupervised Spectral Target Finding Algorithm.

(1) Find the VD for the image data to determine the
number of targets required to be generated, nVD.

(2) Apply an LS-based algorithm to the original image
data and find nVD BKG pixels SBKG = {bLS

j }
nVD

j=1
.

(3) Apply the LS-based algorithm to the sphered data and
find nVD target pixels, Starget = {tLS

j }
nVD

j=1
.

(4) Since there may be some pixels in SBKG whose spectra
are very close to those also showing up in Starget,
a spectral measure such as SAM [2] is applied to
extract these pixels which will be removed from SBKG.
Let the resulting BKG sample set be denoted by
˜S

BKG = {˜bLS
i }

nBKG

i=1 where nBKG is the total number
of remaining BKG pixels in SBKG after the pixels in
Starget ∩ SBKG are removed.

(5) Form a signature matrix M by merging ˜S
BKG

and

Starget, that is, finding pixels in {˜bLS
i }

nBKG

i=1 ∪ {tLS
j }

nVD

j=1
.

It should be noted that the number of pixels in M is
between nVD and 2nVD, that is, nVD ≤ nVD + nBKG ≤
2nVD.

(6) Apply an LSU method such as abundance-uncon-
strained classifier LSOSP, abundance Non-negativity
constrained classifier NCLS and abundance fully
constrained classifier FCLS to perform mixed pixel
classification where only the target pixels in Starget

will be classified by their corresponding abundance

fractions while the target pixels in ˜S
BKG = {˜bLS

i }
nBKG

i=1
will be used for BKG suppression. It should be
noted that in order for an LSU to perform pure-
pixel classification we need a value to threshold
the LSU-estimated abundance fractions of each of
targets for making hard decisions. In this case, finding
an appropriate threshold value is generally very
challenging. In our experiments conducted in this
paper, only LSU is performed to produce abundance
fraction estimates for target pixels. So, when a specific
LS-based algorithm is used, the superscript “LS”
in the above algorithm will be replaced with this
particular algorithm. For example, if ATGP is used for
the USTFA, it is then called ATGP-USTFA.

4. Synthetic Image Simulated Scenarios

The success of the three proposed LS-based algorithms in the
unsupervised target analysis hinges on two made hypotheses,
(1) targets of interests can be characterized by their spectral
statistics, 2nd order targets corresponding to BKG pixels and
high-order targets assumed to be desired targets; (2) the VD
can be used to estimate the number of targets of interest
present in the data. Since neither can be verified by real image
scenes where obtaining full scene ground truth is impossible,
this section presents two scenarios using a set of controllable
parameters to simulate synthetic images via a real Cuprite
image data shown in Figure 1 which is available at the USGS

BKG

(a)

A

M

K

C

B

(b)

Figure 1: (a) Cuprite AVIRIS image scene, (b) spatial positions of
five pure pixels corresponding to minerals: alunite (A), budding-
tonite (B), calcite (C), kaolinite (K), and muscovite (M).

website [11]. This scene is a 224-band image with size of
350 × 350 pixels and was collected over the Cuprite mining
site, Nevada, in 1997. It is well understood mineralogically.
As a result, a total of 189 bands were used for experiments
where bands 1–3, 105–115, and 150–170 have been removed
prior to the analysis due to water absorption and low SNR
in those bands. Although there are more than five minerals
in the data set, the ground truth available for this region
only provides the locations of the pure pixels: Alunite (A),
Buddingtonite (B), Calcite (C), Kaolinite (K), and Muscovite
(M). The locations of these five pure minerals are labeled
by A, B, C, K, and M, respectively, and shown in Figure 1.
Available from the image scene is a set of reflectance spectra
shown in Figure 2 which will be used to simulate synthetic
images. An area marked by “BKG” at the upper right corner
of Figure 1(a) was selected to find its sample mean, that is,
the average of all pixel vectors within the area “BKG”, denoted
by b to be used to simulate the BKG for image scene in
Figure 3 also plotted in Figure 2. The reason for this BKG
selection is empirical since the selected area “BKG” seemed
more homogeneous than other regions. Nevertheless, other
areas can be also selected for the same purpose.

As we can see from the spectral profiles in Figure 2, the
Muscovite is the most spectrally distinct signature among all
the five signatures and the signature of the Calcite is the most
similar to the BKG signature. These two particular signatures
will have significant impact on data analysis as demonstrated
in the following experiments.

The synthetic image to be simulated for experiments has
a size of 200×200 pixel vectors with 25 panels of various sizes
which are arranged in a 5×5 matrix and located at the center
of the scene shown in Figure 3(a).

The 25 panels in Figure 3(a) were simulated as follows.
The five mineral spectral signatures, {mi}5

i=1 in Figure 2 are
used to simulate these 25 panels where each row of five
panels was simulated by the same mineral signature and each
column of 5 panels has the same size. Among 25 panels are
five 4 × 4 pure-pixel panels, pi4×4 for i = 1, . . . , 5 lined up
in five rows in the 1st column and five 2 × 2 pure-pixel
panels, pi2×2 for i = 1, . . . , 5 lined up in five rows in the
2nd column for pure pixel classification; the five 2× 2-mixed
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Figure 2: Five mineral reflectance spectra and BKG signature—
which is the average of area BKG in the top right of Figure 1(a).

pixel panels, {pi3, jk}
2,2

j=1,k=1
for i = 1, . . . , 5 lined up in five

rows in the 3rd column for mixed pixel classification and
both the five subpanel pixels, pi4,1 for i = 1, . . . , 5 lined up
in five rows in the 4th column and the five subpixel panels,
pi5,1 for i = 1, . . . , 5 lined up in five rows in the 5th column
for subpixel classification. The purpose of introducing the 5
panels in the 3rd column and subpanel pixels in the 4th and
5th columns was designed to conduct a study and analysis on
five mineral signatures with different mixing in a pixel and
five mineral signatures embedded in single pixels at subpixel
scale.

Tables 1 and 2 tabulate the mixing details of the five
mineral composition in the 20 mixed pixels in the 3rd
column in Figure 3 and the 5 subpanel pixels with 50%
abundance of mineral signatures in the 4th column and the
5 subpanel pixels with 25% abundance of mineral signatures
in the 5th columns in Figure 3(a), respectively.

So, in Figure 3(a) there are a total of 130 panel pixels
present in the scene, 80 pure panel pixels in the 1st column,
20 pure panel pixels in the 2nd column, 20 mixed panel pixels
in the 3rd column, five 50%-abundance subpanel pixels in
the 4th column and five 25%-abundaunce subpanel pixels in
the 5th column.

The image BKG was simulated by the signature b in
Figure 2 corrupted by an additive Gaussian noise to achieve a
certain signal-to-noise ratio (SNR) which was defined as 50%
signature (i.e., reflectance/radiance) divided by the standard
deviation of the noise in [8]. Once target pixels and BKG are
simulated, two types of target insertion can be designed to
simulate experiments for various applications.

4.1. Target Implantation (TI). The first type of target inser-
tion is referred to as Target Implantation (TI) which inserts
the above 130 panel pixels into the image by replacing
their corresponding BKG pixels. So, the resulting synthetic
image has clean panel pixels implanted in a noisy BKG
with an additive Gaussian noise of SNR = 20 : 1 for this
scenario as shown in Figure 3(b). The TI is primarily

Table 1: Mixed panel pixels in the 3rd column for simulations.

row 1
p1

3,11 = 0.5A + 0.5B p1
3,12 = 0.5A + 0.5C

p1
3,21 = 0.5A + 0.5K p1

3,22 = 0.5A + 0.5M

row 2
p2

3,11 = 0.5A + 0.5B p2
3,12 = 0.5B + 0.5C

p2
3,21 = 0.5B + 0.5K p2

3,22 = 0.5B + 0.5M

row 3
p3

3,11 = 0.5A + 0.5C p3
3,12 = 0.5B + 0.5C

p3
3,21 = 0.5C + 0.5K p3

3,22 = 0.5C + 0.5M

row 4
p4

3,11 = 0.5A + 0.5K p4
3,12 = 0.5B + 0.5K

p4
3,21 = 0.5C + 0.5K p4

3,22 = 0.5K + 0.5M

row 5
p5

3,11 = 0.5A + 0.5M p5
3,12 = 0.5B + 0.5M

p5
3,21 = 0.5C + 0.5M p5

3,22 = 0.5K + 0.5M

Table 2: Subpanel pixels in the 4th and 5th columns for simula-
tions.

50% subpixel panels
in 4th column

25% subpixel panels
in 5th column

row 1 p1
4,1 = 0.5A + 0.5b p1

5,1 = 0.25A + 0.75b

row 2 p2
4,1 = 0.5B + 0.5b p2

5,1 = 0.25B + 0.75b

row 3 p3
4,1 = 0.5C + 0.5b p3

5,1 = 0.25C + 0.75b

row 4 p4
4,1 = 0.5K + 0.5b p4

5,1 = 0.25K + 0.75b

row 5 p5
4,1 = 0.5M + 0.5b p5

5,1 = 0.25M + 0.75b

designed to simulate scenarios with pure pixels implanted
as pure signatures to represent endmembers to evaluate the
performance of endmember extraction.

4.2. Target Embeddedness (TE). The second type of target
insertion is referred to as Target Embeddedness (TE) which is
the same as the TI described above except the way the panel
pixels were inserted. The BKG pixels were not removed to
accommodate the inserted panel pixels as they were done
in TI but were rather superimposed with the inserted panel
pixels. So, in this case, the resulting synthetic image shown in
Figure 3(c) has clean panel pixels embedded in a noisy BKG.
The TE is particularly designed to simulate signal detection
models [12] with two hypotheses, null hypothesis corre-
sponding to noise and BKG and the alternative hypothesis
specify the embedded target pixels. Under this circumstance,
the abundances of the pixels containing inserted targets were
not normalized to one in which case the abundance sum to
one constraint imposed on FCLS was violated. Nevertheless,
it is worth noting that the TE scenario can be also used for
endmember extraction to test if an endmember extraction
algorithm to be able to extract most purest pixels in case there
are no pure pixels present in the data.

Two remarks on scenarios TI and TE are noteworthy.

(1) From Figure 3, one may argue that it is so obvious by
visual inspection that most panel pixels in Figure 3
are visible. This may lead to a belief that these two
scenarios may not be useful or appropriate. The truth
is that what we see from images is generally not what
we will expect. Specifically, what we see is only qual-
itative and not quantitative, a task that a computer
algorithm can do well while human being cannot.
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(a) 25 simulated panels (b) Scenario TI (c) Scenario TE

Figure 3: 25 simulated panels according to Tables 1 and 2 and two scenarios for target insertion, TI and TE.

This is exactly what we need these scenarios to show
that can an algorithm accomplish what human eyes
can or do better? Unfortunately, on many occasions
misconception of human inspection usually mislead
to something incorrect. This phenomenon will be
demonstrated in some experiments conducted in
Section 5.

(2) In hyperspectral imagery noise is generally non-
Gaussian. This is mainly due to the fact that many
unknown subtle substances such as clutters, interfer-
ers uncovered by hyperspectral imaging sensors are
actually interference and not noise, in which case
these unwanted interferers should be considered as
structure noise to represent bias instead of random
noise. If all such unknown substances are absent
in the image data which is the case of these two
scenarios, it leaves only random noise. Under this
circumstance, the Gaussian noise is most appropri-
ate, which is exactly the case that it is assumed in
communications. In light of this interpretation, it is
reasonable to simulate Gaussian for the scenarios TI
and TE because the simulated image BKG is clean.

5. Synthetic Image Experiments

This section presents three applications, endmember extrac-
tion, unsupervised target detection, and LSU-based tar-
get classification to show that each application requires
a different level of a posteriori information to perform
target analysis. Among these applications the endmember
extraction is one that needs the least information with
only the number of endmembers, p required to be known.
The value of the p can be determined by the VD. To the
contrary, the LSU-based target classification requires the
most information including a posteriori information to be
used to form the linear mixture model for LSU.

Assume that no prior knowledge about the scenarios TI
and TE is provided. In both scenarios the VD-estimated
value, nVD was 6 as long as the false alarm probability
PF ≤ 10−1. Therefore, nVD = 6 was used for the value
of p throughout the experiments conduced in this section.
Figures 4(a)–4(d) and 5(a)–5(d) show the target pixels in
TI and TE found by the 3 LS-based methods, referred to

as ATGP-USTFA, UNCLS-USTFA, and UFCLS-USTFA using
nVD = 6 where (a) the 2nd order BKG pixels obtained by
applying an LS-based unsupervised algorithm to the original
data; (b) high-order target pixels obatined by applying the
same algorithm to the sphered data; (c) the remaining BKG
pixels in (a) after removing BKG pixels which were also
found as target pixels; (d) total desired pixels obtained by
combining the pixels in (b) and (c). According to the results
obtained for the scenarios TI and TE in Figures 4 and 5, target
pixels and BKG pixels overlapped the total number of pixels
of interest have been found to be either 6 or 7 with five pure
panel pixels plus one or two pixels corresponding to either
subpanel pixels or BKG pixels. These found target and BKG
pixels can be used a posteriori target information for further
follow-up various tasks in image analysis.

5.1. Endmember Extraction. In this section, two well-known
endmember extraction algorithms, PPI [13] and N-finder
algorithm (N-FINDR) [14] were implemented for end-
member extraction. According to the ground truth used to
simulate the two scenarios TI and TE, the p for TI and TE
are 5 and 0, respectively, but the VD estimated for both
scenarios TI and TE was 6, nVD = 6. Since both require data
dimensionality reduction prior to endmember extraction,
the maximum noise fraction MNF [15] was to reduce data
dimensionality to 5 and 6, that is, the number of dimensions
needed to be retained for analysis, q = 5 and 6. Figure 6(a)
shows endmember extraction results by the PPI using 200
skewers by letting q = 5 and 6 for both scenarios TI
and TE. Due to the fact that the PPI does not have prior
knowledge about the value of p and provides no guideline
to select endmembers, all the data sample vectors with their
PPI counts greater than 0 were extracted for endmember
extraction to ensure that no pure panel pixels were left out.
But, it does not mean that all the data sample vectors were
endmembers. As shown in Figure 6(a) all the 100 panel pixels
in the first 2 columns were among many hundreds of pixels
extracted by the PPI in the TI and TE scenarios. As a matter
of fact, some pure panel pixels in these experiments had their
PPI counts with the smallest value 1. This implies that it is
generally not true that a data sample vector with a higher
PPI count is a more likely endmember. In this case, the PPI
required human intervention to choose an appropriate value



8 EURASIP Journal on Advances in Signal Processing

1

2
3

4

5

6

1

2

3

4

5
6

1

1

2

3

4

5
6

7

(a) 6 BKG pixels (b) 6 target pixels (c) 1 BKG pixel (d) 7 pixels in (b+c)

(i) ATGP-USTFA and UNCLS-USTFA

1

2
3

4

5

6

1

2

3

4

5

6
71

1

2

3

4

5

6

(a) 6 BKG pixels (b) 6 target pixels (c) 1 BKG pixel (d) 7 pixels in (b+c)

(ii) UFCLS-USTFA

Figure 4: Target pixels extracted by three unsupervised algorithms ATGP-USTFA, UNCLS-USTFA, and UFCLS-USTFA for scenario TI.
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Figure 5: Target pixels extracted by three unsupervised algorithms ATGP-USTFA, UNCLS-USTFA, and UFCLS-USTFA for scenario TE.

q = 5 q = 6 q = 5 q = 6
TI TE

(a) PPI using 200 skewers for TI and TE

p = 5 p = 6 p = 5 p = 6
TI TE

(b) Endmembers extracted by N-FINDR for TI and TE

Figure 6: Endmember extraction results by PPI and N-FINDR for
TI and TE.

to threshold PPI counts to find desired endmembers despite
that it does not need to know p. This shows that the human
manipulation is a key factor to make the PPI successful and
effective.

Unlike the PPI the N-FINDR did require the knowledge
of the p in which case we assumed that p = nVD = 5 and 6 for
both scenarios. Figure 6(b) shows the endmember extraction
results where the N-FINDR successfully extracted the first
panel pixels in each of five different rows that corresponded
to the five distinct mineral signatures as endmembers for
TI with p = 5 and 6. However, it is interesting to note that
this was not true for TE with p = 5 where it missed the
panel pixels in the 3rd row. In order to extract a panel pixel
in the 3rd row the p must be assumed to be at least 6 as
shown in the experiment. This was due to the fact that there

were no endmembers present in the scenario TE and the N-
FINDR tried to extract the most purest panel pixels from the
data. When the value of p was set to low such as 5, the N-
FINDR extracted a mixed BKG pixel instead of panel pixels
in the 3rd row as an endmember in which case the BKG pixel
exhibited more purity than the panel pixels in the 3rd row.
This also explained that the endmembers did not necessarily
have higher PPI counts in Figure 6(a). This phenomenon
was also well demonstrated in Figure 5(i) where the first
panel pixel in the 3rd row was extracted as the sixth target
pixels. If we further compare the results in Figure 6 to those
in Figure 4, it is clear that the three LS-based algorithms
performed as if they were endmember extraction algorithms
which were able to extract all the five endmembers from
both the original data and the sphered data for TI as the
PPI and N-FINDR did in Figures 6(a) and 6(b). However,
for the TE experiments in Figure 5, only the UFCLS-USTFA
missed one endmember in the 3rd row due to the fact that the
TE did not satisfy the abundance sum-to-one constraint and
the UFCLS was a fully abundance-constrained algorithm.
Nevertheless, the three LS-based algorithms were also able to
extract pixels that corresponded to most purest signatures.
The experiments demonstrated by Figures 4 and 5 showed
that the three LS-based algorithms can be also used for the
purpose of endmember extraction provided that nVD is set to
p in which case some of extracted targets pixels may not be
endmembers, particularly, for the TE scenario. This makes
sense since a spectrally distinct signature is not necessarily
an endmember and nVD is generally greater than or equal
to p. In the scenarios of TI and TE, the p is supposed to be
5 and 0, respectively. The reason that nVD = 6 > p = 5
is because the BKG spectral signature b in Figure 2 used to
simulate the image BKG is very distinct from the other five
mineral signature in which case it must be considered as a
signature even it is a mixed signature. However, if we use a
BKG signature equally mixed by the five mineral signatures to
replace the b in Figure 2 to simulate the image BKG, the nVD
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Figure 7: CEM detection results for TI.
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Figure 8: CEM detection results for TE.

turns out to be 5 which is exactly the same as p = 5. Since
the result was reported in [16] with more details, it is not
included here.

5.2. Unsupervised Target Detection. Unlike endmember ex-
traction the unsupervised target detection extracts targets
regardless of whether or not they are endmembers. As
defined previously, the targets of interest to be considered
in this paper are specified by their statistical properties
in spectral characterization and were extracted in Figures
4(d) and 5(d) by three LS-based algorithms. Then these
found targets of interest were further as a posteriori target
information to perform unsupervised target detection by the
constrained energy minimization (CEM) developed in [17]
where Figures 7 and 8 show their CEM-detection results for
TI and TE, respectively.

As shown in Figures 7 and 8, the unsupervised CEM-
based target detection performed well using each of the
found targets of interest as a desired target signature.

Comparing the result in Figure 8 to that in Figure 7 it seemed
that the CEM performed better in TE than in TI due to the
fact that the target panels were superimposed atop the BKG
pixels.

One comment on differentiating the above unsupervised
target detection from anomaly detection is noteworthy.
While the former requires a posteriori target knowledge to
detect specific targets, the latter performs target detection
without any target knowledge whatsoever. In this case, it
does not know what targets it detects. The following simple
example provides a clue of how controversial this issue is.

Figures 9(a) and 9(b) shows a set of the same various
target panels with four different sizes implanted in two
uniform image BKGs with sizes of 64 × 64 pixel vectors and
200 × 200 pixel vectors, respectively, where the 5 panels in
the 1st column are size of 6 × 6 pixel vectors, the 5 panels in
the 2nd column are size of 3× 3 pixel vectors, the 5 panels in
the 3rd column are size of 2× 2 pixel vectors, and then the 5
panels in the 4th column are size of 1× 1 pixel vectors.
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(a) Image of 64×
64 pixels

(b) Image of 200× 200 pixels

Figure 9: Target panels with four various sizes implanted in two
uniform image BKGs with sizes of 64×64 pixel vectors and 200×200
pixel vectors.

(a) Image of 64× 64 pixels (b) Image of 200× 200 pixels

Figure 10: Results of operating RXD on images in Figures 9(a) and
9(b).

The target panels in Figures 9(a) and 9(b) were implanted
by replacing the BKG pixels with target panel pixels as the TI
scenario does. Figures 10(a) and 10(b) shows the results of
operating a widely used anomaly detector developed by Reed
and Yu [18], called RX detector (RXD) on the two images in
Figures 9(a) and 9(b), respectively, where RXD has struggled
with finding panel pixels in 3rd–5th columns in Figure 10(a)
and also missed most of subpanel pixels in the 4th and
5th columns in Figure 10(b). In addition, the results in
Figures 10(a) and 10(b) did not discriminate target pixels it
detected.

An immediate finding by comparing the results in
Figure 10(b) to that in Figure 10(a) leads to an interesting
observation: the target panels of sizes 2 × 2 and 1 × 1
that are detected by the RXD in Figure 10(b) as anomalies
now become undetectable and are no longer anomalies in
Figure 10(a) where two images in Figures 10(a) and 10(b) are
shown in the same size for clear and better visual assessment.
Moreover, the target panels of sizes 6 × 6 and 3 × 3 detected
in Figure 10(a) also become smeared and blurred compared
to their counterparts in Figure 10(b) which are detected
clearly as anomalies. Why does the same RXD produce so
different results for the same set of target panels? This simple
example sheds light on several issues resulting from the RXD.
As shown in [3] the image size had tremendous effect on

the RXD performance in which case one target detected as
an anomaly in a large image size may not be an anomaly
in a smaller image size. Another issue is determination
of number of anomalies detected by the RXD. Since the
RXD generates real values of all image pixels which can be
considered as detected abundance fractions, it requires an
appropriate threshold to determine which pixel is anomaly
and which pixel is not. A third main issue is well-illustrated
in Figure 10 where the RXD cannot discriminate among all
pixels it detected. All of these issues present challenges for
image analysts. It is interesting to note that our proposed
LS-based approach provides solutions to all these three
issues.

5.3. Linear Spectral Unmixing for Target Classification. A key
to the success in LSU is to find an appropriate signature
matrix M to form a linear mixing model r = Mα + n where
r is an image pixel and n is a model correction term. In
the supervised LSU (SLSU), this matrix M is assumed to be
known a priori. However, when it comes to unsupervised
LSU (ULSU) the knowledge of the signature matrix M
is not available and must be obtained directly from the
data. The unsupervised LS-based target finding algorithm
presented in Section 2 provides a means of finding such

matrix M. More specifically, let {˜bLS
i }

nBKG

i=1 and {tLS
j }

nVD

j=1
be

BKG and target signatures found by an LS-based target
finding algorithm. Then we can form a desired signature

matrix M = [tLS
1 tLS

2 · · · tLS
nVD
˜bLS

1
˜bLS

2 · · · ˜bLS
nBKG

] to unmix all
image pixels r. Figures 11 and 12 show the unmixed results
which classified the entire image into n VD spectral classes
via target pixels,{tLS

j }
nVD

j=1
found by the USTFA for scenarios

TI and TE, respectively where the ATGP, UNCLS, and UFCLS
were used as the USTFA and the classification was performed
by three linear spectral unmixing methods, Least Squares
Orthogonal Subspace Projection (LSOSP), referred to as
signature subspace projection (SSP) in [2, pages 144–146]
and [19], Non-negativity Constrained Least Squares (NCLS)
[6] and Fully Constrained Least Squares (FCLS) [7].

The results in (i), (ii), and (iii) of Figures 11 and 12 were
obtained by using LSOSP, NCLS, and FCLS to unmix data
samples in the TI and TE scenarios via the signature matrix
M formed by the target pixels found in Figures 4(d) and 5(d),
respectively, where target pixels were identified by the ground
truth along with their quantification results for comparison.
It should be noted that each figure was arranged in the order
extracted by the unsupervised target algorithm in Figures
4(d) and 5(d). Since the whole process is unsupervised
we must unmix the data using all target pixels including
the BKG pixels. Figure 12 shows the linear unmxing results
performed on the scenario TE using the target pixels found
in Figure 5(d). Due to the use of a subpanel pixel p3

5,1 in
Figure 5(d) as one of the target signatures to unmix TE the
resulting abundance fractions for the two subpanel pixels
were 100% in Figure 12(b) by all the three LSU methods
compared to the case in Figure 12(a) where the target and
BKG pixels found by ATGP and UNCLS were used for
unmixing and the two subpanel pixels were unmixed to
their correct abundance fractions of 50% and 25% Calcite,
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Figure 11: Results of using LSOSP, NCLS, and FCLS to unmix TI via the target pixels found in Figure 4(d).

respectively. Since LSOSP is unconstrained, the 20 pure panel
pixels in row 3 were overestimated in Figures 12(b)–12(i) by
using the subpanel pixel p3

5,1for unmixing.
In order to further investigate this intriguing finding, we

conducted experiments to use the five mineral signatures
plus the BKG signature plotted in Figure 2 to form the
signature matrix M and then perform SLSU for scenarios TI
and TE using the same three LSU methods. Figures 13(a)–
13(c) and 14(a)–14(c) show their unmixed results for all
the 130 panel pixels along with their detected abundance
fractions for TI and TE, respectively. Comparing the results

in Figures 13 and 14 obtained by SLSU and Figures 11 and
12 obtained by USLU the results were comparable in terms
of quantification for both scenarios TI and TE except one
case of the TE scenario where FCLS was used to perform
SLSU and the resulting abundance fractions for every single
panel pixel in row 5 were estimated to be 100% as opposed to
zero for every pixel in rows 1–4 as shown in Figure 14(c). The
main reason is that the panel pixels in the TE scenario were
added to the BKG pixels such that the abundance fractions
of panel pixels and BKG pixels were not summed up to one.
However, even though the abundance sum-to-one constraint
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Figure 12: Results of using LSOSP, NCLS, and FCLS to unmix TE via the target pixels found in Figure 5(d).

assumption is violated in TE, the FCLS still tried to impose
the constraint by giving all abundance fractions to the most
distinct spectral signature which is Muscovite in this image
used to simulate panel pixels in row 5. For this particular
case the ULSU was superior to the SLSU because USLU
obtains target knowledge directly from the data which may
be more realistic and accurate than the prior knowledge used
by the SLSU. However, in the scenario TI the panel pixels
are implanted into the BKG with the corresponding BKG
pixels removed in which case the abundance sum-to-one
assumption still holds. As a result, the FCLS performed well

regardless of whether the LSU is performed supervised or
unsupervised. Since the LSOSP and NCLS did not impose
the abundance sum-to-one constraint they performed well
for both TI and TE scenarios. These experiments also provide
strong evidence of the advantages of using synthetic images
because it is nearly impossible to conduct such experiment
using real image data where no complete ground truth is
available that can be used for quantitative and qualitative
data analyses.

By concluding this section two comments are worth-
while.



EURASIP Journal on Advances in Signal Processing 13

0
1

5
15

25
1 2

3
4 5

Quantification

(a) LSOSP

0
1

5
15

25
1 2

3
4 5

Quantification

(b) NCLS

Panels in row 1 Panels in row 2 Panels in row 3 Panels in row 4 Panels in row 5

0
1

5
15

25
1 2

3
4 5

Quantification

(c) FCLS

Figure 13: Results using LSOSP, NCLS, and FCLS to unmix TI with assuming signature knowledge in Figure 2.
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Figure 14: Results using LSOSP, NCLS, and FCLS to unmix TE with assuming signature knowledge in Figure 2.

(1) Although the two synthetic image scenarios seem
simple, the value of the experiments should be
appreciated. These scenarios provide an objective val-
idation of any designed algorithm under a fully con-
trollable environment with complete ground truth.

A good example is illustrated by Figure 14(c) where
the FCLS completely failed in the scenario TE because
the sum-to-one abundance constraint is violated. If
it had been applied to real data we would not have
known that a fully abundance constrained LSU could
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Figure 15: (a) A HYDICE panel scene which contains 15 panels; (b) Ground truth map of spatial locations of the 15 panels; (c) five panel
signatures p1, p2, p3, p4, p5.

not be used as a signal detection technique when
the linear mixing model was used as a signal/noise
detection model in which case a signal is embedded
in a pixel corrupted by an additive noise like the
scenario TE so that the abundance fractions of the
signal and noise were not summed up to one. If
an algorithm does not pass the synthetic image
experiments, it will be very likely that it may not work
in real data.

(2) Due to significantly improved spectral resolution
provided by hyperspectral imaging sensors hyper-
spectral imaging generally performs “target”-pixel-
based spectral analysis rather than “class-map/pat-
tern”-based spatial analysis as conduced in traditional
image processing. Therefore, BKG pixels are usually
not of major interest and no BKG analysis is necessary
for hyperspectral imaging. Instead, they are only used
for BKG suppression to improve target detection and
classification. Because of that the scenarios TI and
TE suffice to serve the purpose where only complete
knowledge of target panel pixels is required for target
analysis and BKG pixels can be made as simple as
possible by adding Gaussian noise for suppression.

6. Real Image Experiments

In the previous section the synthetic image experiments
were used to show the unsupervised target analysis in three
applications where the ground truth was used to substantiate
the results. In this section, we further conduct real image
experiments to demonstrate that unsupervised target anal-
ysis is indeed superior to supervised target analysis. The
reason for this is that the prior knowledge used by the
supervised target analysis generally does not represent true
knowledge about the real data because of many unknown
factors such as interference, noise, and so forth present in
the data that may contaminate the prior knowledge. The
required true knowledge must be acquired and obtained
directly from the real data itself. Two sets of real data are used
for experiments.

6.1. HYDICE Data. The first data is a real HYperspec-
tral Digital Image Collection (HYDICE) scene shown in
Figure 15(a) and has a size of 64 × 64 pixel vectors with
15 panels in the scene and the ground truth map in
Figure 15(b). It was acquired by 210 spectral bands with a
spectral coverage from 0.4 μm to 2.5 μm. Low signal/high
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Figure 16: ATGP-generated BKG and target pixels (a) 9 BKG pixels in original data; (b) 9 target pixels in sphered data; (c) 5 BKG pixels not
identified as target pixels; (d) 14 pixels obtained by combining the pixels in (b)–(c).

noise bands: bands 1–3 and bands 202–210; and water
vapor absorption bands: bands 101–112 and bands 137–153
were removed. So, a total of 169 bands were used in the
experiments. The spatial resolution and spectral resolution of
this image scene are 1.56 m and 10 nm, respectively. Within
the scene in Figure 15(a) there is a large grass field BKG,
and a forest on the left edge. Each element in this matrix
is a square panel and denoted by pi j with rows indexed by
i and columns indexed by j = 1, 2, 3. For each row i =
1, 2, . . . , 5, there are three panels painted by the same paint
but with three different sizes. The sizes of the panels in the
first, second, and third columns are 3 m × 3 m, 2 m × 2 m,
and 1 m × 1 m, respectively. Since the size of the panels in
the third column is 1 m × 1 m, they cannot be seen visually
from Figure 15(a) due to the fact that its size is less than
the 1.56 m pixel resolution. For each column j = 1, 2, 3,
the 5 panels have same sizes but in five different paints.
However, it should be noted that the panels in rows 2 and
3 were made by the same material with two different paints.
Similarly, it is also the case for panels in rows 4 and 5.
Nevertheless, they were still considered as different panels
but our experiments will demonstrate that detecting panels
in row 5 (row 3) may also have effect on detection of panels
in row 4 (row 2). The 1.56 m-spatial resolution of the image
scene suggests that most of the 15 panels are one pixel in
size except that the panels in the 1st column with the 2nd,
3rd, 4th, 5th rows which are two-pixel panels, denoted by
p211, p221, p311, p312, p411, p412, p511, p521. As a result, there are
a total 19 panel pixels. Figure 15(b) shows the precise spatial
locations of these 19 panel pixels where red pixels (R pixels)
are the panel center pixels and the pixels in yellow (Y pixels)
are panel pixels mixed with the BKG. Figure 15(c) shows the
spectra of five panel signatures p1, p2, p3, p4, p5 obtained
by averaging the center R panel pixels for each of five
rows.

First of all, the VD estimated for this scene, nVD was
9 with the false alarm probability PF ≤ 10−3. Figure 16(a)
shows the 9 target pixels which were extracted directly from
the original data by the ATGP and can be considered as a set

of BKG (BKG) pixels SBKG = {bATGP
j }9

j=1
and in which three

panel pixels from rows 1, 3, and 5 were included. Figure 16(b)
shows the 9 target pixels extracted from the sphered data by
the ATGP which included five panel pixels extracted from

each of five rows and can be considered as a set of target

pixels Starget = {tATGP
j }9

j=1
. Figure 16(c) singled out the 5

pixels which were identified as BKG pixels ˜S
BKG = {˜bATGP

i }
by removing the 4 target pixels with a similarity measure such
as SAM and Figure 16(d) shows a total number of 14 pixels

obtained by combining the BKG set ˜S
BKG

in Figure 16(c) with
the target set Starget in Figure 16(b) into a BKG-target merged

set ˜S
BKG ∪ Starget to be used for spectral unmixing where

the numbers in the figures indicated the orders of pixels
extracted by the ATGP.

Similarly, Figures 17(d)–18(d) also show the results
produced by the UNCLS with 9 target pixels and 5 BKG
pixels extracted and by the UFCLS with 9 target pixels and
6 BKG pixels extracted. Since the target pixels of interest are
those extracted by the three LS-based algorithms in Figures
16(b), 17(b), and 18(b) from the sphered data they should
have included five pure targets pixels that corresponded to
all the five pure panel signatures which was exactly the
case where these five pure target pixels, p11, p221, p312, p411,
and p521 were found and identical in Figures 16(b), 17(b),
and 18(b). Additionally, among these five pure target pixels,
p11, p312, and p521 were the only three target pixels extracted
as BKG pixels in the original data in Figures 16(a), 17(a),
and 18(a). This was due to the fact that the panel pixels
in rows 2 and 4 have very similar signatures to those in
rows 3 and 5, respectively, according to the ground truth
in which case they were not extracted as endmembers.
Interestingly, these three pure target pixels will be the
only endmembers extracted by any endmember extraction
algorithms except the dimensionality reduction is performed
by the independent component analysis (ICA) as shown in
the following section.

6.1.1. Endmember Extraction. Once again experiments were
also conducted for endmember extraction using the PPI and
N-FINDR to extract endmembers from the HYDICE scene
in Figure 15(a). Figures 19(a) and 20(a) show the pixels with
their PPI counts greater than 0 extracted by PPI with using
500 skewers and 6 endmembers extracted by the N-FINDR
where both used MNF to reduce data dimensionality to 9.
As we can see from Figure 20(a) the N-FINDR could only
extract two pure panel pixels, p312, and p521 corresponding
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Figure 17: UNCLS-generated BKG and target pixels (a) 9 BKG pixels in original data; (b) 9 target pixels in sphered data; (c) 5 BKG pixels
not identified as target pixels; (d) 14 pixels obtained by combining the pixels in (b)–(c).
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Figure 18: UFCLS-generated BKG and target pixels, (a) 9 BKG pixels in original data; (b) 9 target pixels in sphered data; (c) 6 BKG pixels
not identified as target pixels; (d) 15 pixels obtained by combining the pixels in (b)–(c).

(a) MNF on original data (b) ICA on original data (c) Sphered data

Figure 19: Endmember extraction results by PPI using 500 skewers.

to endmembers which are among the 9 BKG pixels extracted
in Figures 16(a), 17(a), and 18(a).

However, if we used the ICA instead of MNF to perform
dimensionality reduction prior to endmember extraction,
the PPI and N-FINDR were able to extract four pure target
pixels, p11, p312, p411, and p521 in Figures 19(b) and 20(b).
As a matter of fact, as shown in [20], the PPI and N-
FINDR would fail to extract all the five endmembers if
the dimensionality reduction was performed by 2nd order
statistics transforms such as principal components analysis
(PCA), MNF, or singular value decomposition (SVD). With
an interesting twist by applying the PPI and N-FINDR

to the sphered data without dimensionality reduction as
the USTFAs did for Figures 16–18, both were also able
to extract all the five endmembers as shown in Figures
19(c) and 20(c). In other words, the only way for an
endmember extraction algorithm to succeed in extracting all
the five endmembers is either to use ICA for dimensionality
reduction or to use the sphered data instead of the original
data where in both cases the data characterized by 1st and
2nd order statistics have been removed prior to endmember
extraction. This intriguing finding showed that using the ICA
as dimensionality reduction has the same effect as applying
endmember extraction algorithms such as PPI, N-FINDR, or
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(a) MNF on original data (b) ICA on original data (c) Sphered data

Figure 20: 9 endmembers extracted by N-FINDR.

(a) CEM in conjunction with ATGP-USTFA or with UNCLS-USTFA

(b) CEM in conjunction with UFCLS-USTFA

Figure 21: CEM detection results using the 9 targets of interest generated by the ATGP, UNCLS, and UFCLS in Figures 16(b), 17(b), and
18(b).

the three USTFAs to the sphered data where both ICA and
sphered data retain targets of interest characterized by high-
order statistics. As a result, the proposed three USTFAs can
be also used for endmember extraction.

6.1.2. Unsupervised Target Detection. This section conducts
experiments for unsupervised target detection performed by
the CEM using a posteriori target knowledge produced by the
three USTFAs from the sphered data. The results are shown
in Figures 21(a) and 21(b) where the desired target signatures
used by the CEM were the targets of interest extracted in
Figures 16(b), 17(b), and 18(b).

In order to further make comparison with anomaly
detection, the RXD was implemented and its result is shown
in Figure 22.

By visually comparing Figure 22 to Figure 21, the RXD
missed all the five subpxiel panels in the 3rd column while the
CEM was able to extract all these five subpixel panels using
the a posteriori target information provided by the three
USTFAs. Most importantly, the RXD could not discriminate
the targets it detected. This is not the case for the CEM which
used each of a posteriori target knowledge to discriminate
among targets found by a USTFA.

6.1.3. Linear Spectral Unmixing. In the unsupervised target
detection discussed above the targets of interest were those
found by an USTFA from the sphered data so as to achieve

Figure 22: RXD result.

unsupervised target detection rather than target classifica-
tion. In this section, we further perform target classification
by LSU. In order for LSU to perform effectively, the targets
signatures used to form the signature matrix M must include

all the targets pixels {tLS
j }

nVD

j=1
and BKG pixels {˜bLS

i }
nBKG

i=1 to

represent the entire data where the target pixels {tLS
j }

nVD

j=1
are

the target signatures we would like to classify and the BKG

pixels {˜bLS
i }

nBKG

i=1 are considered as undesired signatures which
can be removed to enhance target classification performance.
The three LSU methods, LSOSP, NCLS, and FCLS were used



18 EURASIP Journal on Advances in Signal Processing

(a) LSOSP

(b) NCLS

(c) FCLS

Figure 23: 9 target classes obtained by LSOSP, NCLS, and FCLS using the target pixels generated by ATGP-USTFA.

(a) LSOSP

(b) NCLS

(c) FCLS

Figure 24: 9 target classes obtained by LSOSP, NCLS, and FCLS using the target pixels generated by UNCLS-USTFA.

to unmix high-order target pixels {tLS
j }

nVD

j=1
extracted from

the sphered data, each of which is considered to represent
one specific target class. Figures 23(a)–23(c) and 25(a)–25(c)
show their corresponding results where figures labeled by
(a), (b), and (c) were unmixed results by LSOSP, NCLS, and
FCLS, respectively.

Obviously, the results obtained by the NCLS and
the FCLS performed better than that by the LSOSP in
Figures 23–25 due to the imposed constraints on abundance
fractions.

Interestingly, while the results in Figures 23(b) and 23(c)
were similar to the results obtained in Figures 24(b)-24(c)
and 25(b)-25(c), the umixed results obtained by the LSOSP
in Figure 25(a) were slightly better than those in Figures
23(a) and 24(a) in terms of detection of 15 panels in five

rows. This improvement was mainly due to the fact that
the UFCLS produced 6 BKG pixels rather than 5 BKG pixels
produced by the ATGP and UNCLS to perform better BKG
suppression.

Since the evaluation of the above unmixed results was
performed qualitatively by visual assessment, the conclu-
sions may not be objective. Table 3 further tabulates their
quantitative results where the abundance fractions of the
19 panel pixels estimated by the NCLS and FCLS were
very close and both the NCLS and the FCLS outperformed
the unconstrained LSOSP, even though the NCLS is only a
partially abundance constrained method.

Finally, in order to demonstrate that the performance
of unsupervised linear hyperspectral unmixing using the
designed USTFA is superior to that of supervised linear
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(a) LSOSP

(b) NCLS

(c) FCLS

Figure 25: 9 target classes obtained by LSOSP, NCLS, and FCLS using the target pixels generated by UFCLS-USTFA.

Interferer

Grass

Tree

Road

Figure 26: Four BKG classes obtained by marked areas.

spectral unmixing, we further conducted experiments for
supervised linear spectral unmxing where the five panel
signatures were obtained from Figures 15(b) and 15(c)
and the other four BKG signatures were obtained by prior
knowledge as the areas marked in Figure 26 as interferer, tree,
grass, road to make up 5 target classes representing five panel
signatures and 4 BKG signatures. These signatures represent
exactly 9 signatures estimated by the VD. This fact provides
further evidence that VD is an effective estimation method
to estimate the number of image endmembers for spectral
unmixing.

Figures 27(a)–27(c) show the unmixed results of 19 panel
pixels by the three unmixing methods, LSOSP, NCLS, and
FCLS where the unmixed results for 4 BKG classes were not
displayed because the BKG classes were not of major interest.
Also, it should be noted that there are more BKG pixels that
can be used for this purpose. As a matter of fact, in [7] there
were 34 pixels found by the unsupervised FCLS for spectral
unmixing. The results were similar to those presented in our
experiments using only 9 image endmembers. In this case,

“9” is probably sufficiently enough for spectral unmixing to
perform well.

If we compare the results in Figure 27 to Figures 23–25, it
is obvious that the ULSU performed significantly better than
its supervised counterparts. Table 4 also tabulates the quanti-
tative results obtained in Figures 27(a)–27(c) in comparison
with the results in Table 3 where it clearly showed that
the abundance fractions estimated by unsupervised linear
unmixing in Table 3 were much more accurate than those
obtained by its supervised counterpart in Table 4.

An interesting finding from Table 4 is that the abundance
fractions of panel pixels p412 estimated by the NCLS and
p411, p412 estimated by the FCLS were zero. This was caused
by the fact that the five panel signatures p1, p2, p3, p4, p5

in Figure 15(c) used for spectral unmixing were not really
pure signatures because the panel pixels in the 3rd column
that were included for averaging were actually subpixels and
not pure signatures. If we conducted the same experiments
by using the panel signatures p1, p2, p3, p4, p5 that were
obtained by averaging only R panel center pixels in the 1st
and 2nd columns for spectral unmixing, Table 5 tabulates the
abundance fractions of 19 panel pixels by the LSOSP, NCLS,
and FCLS where the abundance fractions of panel pixels p411

and p412 were corrected and no longer zero.
A comment on Table 5 is noteworthy. According to the

ground truth p411 and p412 are the panel center pixels.
However, from our extensive experience with the HYDICE
scene, they are in fact not as pure pixels of 100% abundance
purity as we expect. As a result, even though the NCLS is par-
tially abundance-constrained, it was very comparable to the
fully abundance-constrained FCLS in terms of abundance
estimation. Nevertheless, both performed significantly better
than the abundance-unconstrained LSOSP.

Comparing the results in Table 5 against those in Table 4,
it apparently shows that using contaminated or inaccurate
prior knowledge may result in significant distortion in
quantification of abundance fractions. If we further compare
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Table 3: Abundance fractions of 19 panel pixels estimated by LSOSP, NCLS, and FCLS using BKG and target pixels found in Figures 23–25
by ATGP-USTFA, UNCLS-USTFA, and UFCLS-USTFA.

{˜bATGP
i } ∪ {tATGP

j }9

j=1
{˜bUNCLS

i } ∪ {tUNCLS
j }9

j=1
{˜bUFCLS

i } ∪ {tUFCLS
j }9

j=1

LSOSP NCLS FCLS LSOSP NCLS FCLS LSOSP NCLS FCLS

p11 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

p12 0.4096 0.4332 0.4120 0.3562 0.4165 0.4001 0.4085 0.4148 0.3850

p13 0.0002 0.0887 0.0841 −0.1073 0.0308 0.0465 0.0142 0.0307 0.0250

p211 0.8421 0.8403 0.8404 0.9180 0.8413 0.8209 0.8648 0.8384 0.8453

p221 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

p22 0.6164 0.6257 0.7308 0.6351 0.6607 0.7127 0.6990 0.6126 0.7405

p23 0.5525 0.4774 0.4724 0.3478 0.4168 0.4153 0.3798 0.4471 0.4498

p311 0.8741 0.8674 0.8627 0.9094 0.8674 0.8628 0.8969 0.8671 0.8634

p312 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

p32 0.5027 0.4249 0.4192 0.5906 0.4713 0.4727 0.5925 0.5149 0.4922

p33 0.2516 0.2614 0.2655 0.3541 0.2959 0.2929 0.3388 0.2880 0.2886

p411 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

p412 0.7685 0.3137 0.3876 0.5827 0.3222 0.3605 0.7976 0.3407 0.3923

p42 0.8085 0.6761 0.6657 0.7965 0.7495 0.7485 0.8414 0.7480 0.7477

p43 0.2363 0.1789 0.1473 0.5047 0.2851 0.2633 0.2790 0.1227 0.1542

p511 0.7204 0.7224 0.7215 0.6954 0.7245 0.7198 0.6973 0.7213 0.7235

p521 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

p52 0.7645 0.7770 0.7689 0.7027 0.7460 0.7244 0.7228 0.7753 0.7740

p53 0.1452 0.1545 0.1537 −0.0144 0.0000 0.0017 0.1215 0.1471 0.1554

(a) LSOSP

(b) NCLS

Panels in row 1 Panels in row 2 Panels in row 3 Panels in row 4 Panels in row 5

(c) FCLS

Figure 27: Unmixed results of 15 panels with 19 panel pixels by supervised LSOSP, NCLS, and FCLS using five panel signatures in
Figure 17(c) and 4 BKG signatures obtained by marked areas in Figure 24.

the results in Table 3 against those in Tables 4 and 5, the
USLU outperformed SLSU significantly. These experiments
further demonstrate two facts. One is that SLSU is effective
only if the prior knowledge is accurate such as the synthetic
image experiments conducted for scenarios TI and TE in

Section 5. Unfortunately, this may not be true when it comes
to real world applications where true target knowledge is
generally difficult to obtain, if not impossible. Even in the
case that prior target knowledge is available, it may not
be reliable due to many unknown signal sources that may
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Table 4: Abundance fractions of 19 panel pixels in Figures 27(a)–
27(c) estimated by LSOSP, NCLS, and FCLS.

LSOSP NCLS FCLS

p11 1.4475 0.8309 0.0146

p12 0.9155 0.8510 0.8199

p13 0.6370 0.2735 0.1946

p211 1.2384 0.8115 0.5457

p221 1.3146 0.7945 0.3429

p22 0.8558 0.8558 0.8524

p23 0.5912 0.4843 0.4985

p311 1.2482 0.8809 0.8298

p312 1.4713 0.8953 0.7912

p32 0.8240 0.5935 0.7389

p33 0.4565 0.2761 0.2705

p411 1.2356 0.1617 0.0000

p412 1.1672 0.0000 0.0000

p42 1.2331 0.9555 0.4772

p43 0.3641 0.2393 0.2003

p511 1.1770 0.9599 0.9759

p521 1.4698 0.9551 1.0000

p52 1.0760 0.9925 1.0000

p53 0.2772 0.2029 0.1763

Table 5: Abundance fractions of 19 panel pixels estimated by
LSOSP, NCLS, and FCLS using panel signatures in Figure 15(c).

LSOSP NCLS FCLS

p11 1.2635 0.9551 0.7606

p12 0.7366 0.6226 0.5376

p13 0.4053 0.1302 0.0079

p211 1.0853 0.9929 0.9085

p221 1.1652 0.9530 0.7869

p22 0.7495 0.8130 0.8240

p23 0.4578 0.4018 0.4231

p311 1.0584 0.9139 0.9136

p312 1.2402 0.9292 0.9024

p32 0.7014 0.4699 0.4482

p33 0.3756 0.2072 0.2100

p411 1.0532 0.9104 0.5087

p412 0.9507 0.4329 0.4384

p42 0.9962 0.7863 0.7575

p43 0.2684 0.1896 0.1571

p511 0.9531 0.8304 0.8304

p521 1.1738 1.0295 1.0000

p52 0.8732 0.9354 0.9353

p53 0.2303 0.1596 0.1372

contaminate the knowledge. This leads to the second fact that
to avoid using unreliable prior knowledge ULSU certainly
provides a better alternative to SLSU.

6.2. AVIRIS Data. The second data is an Airborne Visi-
ble InfraRed Imaging Spectrometer (AVIRIS) image scene
shown in Figure 28(a) which is the Lunar Crater Volcanic

Table 6: SAM values of six signatures in Figure 28(b).

Cinder Playa Rhyolite Shade Vegetation Anomaly

Cinder 0 0.292 0.207 0.273 0.221 0.397

Playa 0.292 0 0.111 0.141 0.114 0.119

Rhyolite 0.207 0.111 0 0.166 0.041 0.227

Shade 0.273 0.141 0.166 0 0.148 0.189

Vegetation 0.221 0.114 0.041 0.148 0 0.224

Anomaly 0.397 0.119 0.227 0.189 0.224 0

Field (LCVF) located in Northern Nye County, NV. Atmo-
spheric water bands and low SNR bands have been removed
from the data, reducing the image cube from 224 to 158
bands. The image in Figure 28 has 10 nm spectral resolution
and 20 m spatial resolution. The ground truth of this image
scene identifies five areas of interest red oxidized basaltic
cinders, rhyolite, playa (dry lake), vegetation, and shade and
their marked spectral signature are shown in Figure 28(b) for
data analysis. It should be noted that there is a two-pixel size
anomaly which cannot be identified by visual inspection.

The VD estimated for this scene using the HFC method
is 4 for PF ≤ 10−3. Since the ground truth of this image scene
is limited, only the application of LSU was conducted for
experiments. Figures 29(a) and 29(b) show 4 pixels extracted
by ATGP each from the original and sphered image data
where the sample labeled by 1 extracted in Figure 29(a) was
also extracted as the sample labeled by 1 in Figure 29(b).
Interestingly, among the 4 extracted samples in Figure 29(b),
the samples labeled by 1 and 2 were identified by the SAM
to belong to the same target class which actually comprises
of one single target, a two-pixel anomaly. These two pixels
are the only samples that were identified as target pixels.
Therefore, a total of 7 samples (3 for BKG pixels and 4
for target pixels), each of which represents a spectral class,
were used for SLSU. According to the ground truth, samples
1-2, 3, 6, 7 represent anomalies, vegetation, cinder, playa,
and shade, respectively. Figure 30 shows the results unmixed
by the LSOSP, NCLS, and FCLS where FCLS seemed to
perform the best where the two anomalous target pixels
which are supposed to belong to the same class were also
unmixed in two different classes. As expected, two unmixed
anomaly pixels in Figure 30 were very similar. Interestingly,
according to the results in Figure 30, the vegetation and
rhyolite were unmixed into the same class due to the fact
that these two spectral signature shapes are very similar and
close according to their normalized spectra in Figure 28(c).
Table 6 further tabulates the SAM values of six signatures
in Figure 28(b) where the vegetation and rhyolite spectral
signatures are indeed very close. Such subtle difference
can be only seen from the prior knowledge provided in
Figure 28(c).

Similarly, UNCLS-USTFA generated 4 BKG pixels in
Figure 31(a) and 4 target pixels in Figure 31(b) where 2
pixels were in Figure 31(c) were identified as BKG pixels. By
combining pixels in Figures 31(b) and 31(c) a total of 6 pixels
were used by LSU as signatures for unmixing where pixels
1 and 2 are anomalies, pixels 3, 5, 6 represent signatures of
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Figure 28: AVARIS LCVF scene.
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Figure 29: ATGP-USTFA generated BKG and target pixels (a) 4 BKG pixels in original data; (b) 4 target pixels in sphered data; (c) 1 BKG
pixel not identified as target pixels; (d) 7 pixels obtained by combining the pixels in (b)–(c).
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(a) LSOSP

(b) NCLS

Anomaly Anomaly Vegetation/rhyolite Playa Cinder Shade

(c) FCLS

Figure 30: LSOSP, NCLS, and FCLS unmixed results using the samples extracted in Figure 29(d).
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Figure 31: UNCLS-generated BKG and target pixels (a) 4 BKG pixels in original data; (b) 4 target pixels in sphered data; (c) 2 pixels identified
as BKG pixels; (d) a total of 6 pixels obtained by combining the pixels in (b)–(c).

vegetation, playa and cinders, respectively. Figure 32 shows
the unmixed results of each of the 6 signatures by LSOSP,
NCLS, and FCLS where once again FCLS was the best and
the vegetation and rhyolite were also unmixed into the same
class.

Following the treatment of ATGP-USTFA and UNCLS-
USTFA Figure 33 shows UFCLS-USTFA-generated 4 BKG
pixels in Figure 33(a) and 4 target pixels in Figure 33(b)
where 3 pixels in Figure 33(c) were identified as BKG pixels.
By combining pixels in Figures 33(b) and 33(c) a total of 7
pixels were used by LSU as signatures for unmixing where
pixels 1(4), 3, 5, 7 represent anomalies and signatures of
vegetation, playa, and cinders, respectively. Figure 34 shows
the unmixed results of each of the 6 signatures by LSOSP,
NCLS, and FCLS where once again FCLS was the best and
the vegetation and rhyolite were also unmixed into the same
class. Interestingly, without prior knowledge the USTFA

using ATGP, UNCLS, and UFCLS missed the signature of
rhyolite in Figures 29, 31, and 33, but it did pick up
two anomalous pixels which cannot be identified by visual
inspection. The reason of missing rhyolite is because its
spectral signature shape is very similar to that of vegetation
according to the six spectral signatures in Figure 28(c)
and their SAM values in Table 6. In this case, extracting
vegetation also extracts the rhyolite, a fact demonstrated
in Figures 30, 32, and 34. This experiment demonstrates
that spectral signature shapes are more crucial than spectral
signature amplitudes.

In order to see effectiveness of using USTFA-generated
pixels as target pixels to perform ULSU, supervised LSOSP,
NCLS, and FCLS using the five signatures, cinders, playa,
rhyolite, shade, and vegetation in Figure 28(b) were per-
formed for SLSU for comparison and Figure 35 shows their
unmixed results.
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(a) LSOSP

(b) NCLS

Anomaly Anomaly Vegetation/rhyolite Playa Cinder

(c) FCLS

Figure 32: LSOSP, NCLS, and FCLS unmixed results using signatures of samples in Figure 31(d).
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Figure 33: UFCLS-generated BKG and target pixels (a) 4 BKG pixels in original data; (b) 4 target pixels in sphered data; (c) 3 BKG pixels not
identified as target pixels; (d) 7 pixels obtained by combining the pixels in (b)–(c).

By comparing the unmixed results in Figures 30, 32, and
34 to that in Figure 35 three interesting findings are worth
being mentioned.

(1) The unmixed results of cinders, playa, shade pro-
duced by USTFA-based ULSU were much better
than that by SLSU using the prior knowledge in
Figure 28(b).

(2) Due to unavailability of prior knowledge, there is no
way for an unsupervised algorithm to differentiate
rhyolite from vegetation because their spectral sig-
natures are so similar according to Table 6 that the
USTFA considered both signatures belonging to the
same spectral class. As a result, these two signatures
were unmixed in the same class as demonstrated in

Figures 30, 32, and 34. However, with using the prior
knowledge provided in Figure 28(b), Figure 35 was
able to distinguish the rhyolite from the vegetation.

(3) On the other hand, since the two-pixel size anomaly
is not visible by inspection or prior knowledge, this
target was not shown in Figure 35. But its significance
was extracted by all the three unsupervised algo-
rithms, ATGP, UNCLS, and UFCLS. As a matter of
fact, this target was picked up as the first target pixels
from sphered data. This indicated that this unknown
target was crucial and critical for unsupervised
hyperspectral target analysis. Unfortunately, it was
missed in supervised target analysis in Figure 35 since
it cannot be known by visual assessment.
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(a) LSOSP

(b) NCLS

Anomaly Vegetation/rhyolite Anomaly Playa Shade Cinders

(c) FCLS

Figure 34: LSOSP, NCLS, and FCLS unmixed results using signatures of samples in Figure 33(d).
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Cinders Playa Rhyolite Shade Vegetation

(c) FCLS

Figure 35: Unmixed results by unsupervised LSU, supervised LSOSP, NCLS, and FCLS using the five signatures in Figure 28(b).

7. Conclusion

Unsupervised spectral target analysis for hyperspectral data
exploitation is very challenging since many unknown signal
sources which cannot be visually inspected or obtained
by prior knowledge can now be uncovered hyperspectral

imaging sensors. This paper presents unsupervised spectral
target analysis from a statistical signal processing view
point in the sense of intrapixel spectral information across
the acquired wavelength range. The knowledge used to
perform unsupervised spectral target analysis is obtained
directly from the data a posteriori without pre-assumed prior
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knowledge. In particular, the spectral targets of interest in
this paper are specified by sample intrapixel spectral infor-
mation statistics (SIS) which characterizes spectral targets
into two categories, 2nd order spectral targets, referred to as
background pixels and high-order spectral targets, referred
to as target pixels. Additionally, in order to generate spectral
targets in these two categories, an unsupervised spectral
target finding algorithm is developed for this purpose
where three least squares-based unsupervised linear spectral
unmixing techniques, ATGP, UNCLS, and UFCLS are used
for finding spectral targets of interest. Despite the fact
that many algorithms have been designed and developed
for supervised target analysis with the target knowledge
assumed to be known or provided a priori, very little has
been done in unsupervised target analysis. Unfortunately, in
real applications supervised target analysis is generally not
practical because the supervised target knowledge is either
difficult to obtain or may not be reliable by prior knowledge.
Under such circumstance unsupervised target analysis is
more realistic and applicable to real world problems. In
order to validate and substantiate the unsupervised spectral
target analysis three applications are considered where
two sets of experiments using custom-designed simulated
synthetic images as well as real images are conducted for
performance evaluation. The experimental results clearly
show that unsupervised spectral target analysis generally
performs significantly better than supervised target analysis
in real applications. As a concluding remark, it should be
noted that the proposed USTFA-based unsupervised target
analysis is suitable for spectral targets that are characterized
by sample intrapixel spectral information statistics. It is
particularly useful and effective for very high spatial and
spectral resolution hyperspectral images. Nevertheless, it is
not a one-size-fit-all technique for hyperspectral imagery.
For example, it may not be appropriate to use our proposed
technique to analyze urban scenes which are complex and are
heavily mixed by unknown clutters and interferers.
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