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Multipath is today still one of the most critical problems in satellite navigation, in particular in urban environments, where
the received navigation signals can be affected by blockage, shadowing, and multipath reception. Latest multipath mitigation
algorithms are based on the concept of sequential Bayesian estimation and improve the receiver performance by exploiting the
temporal constraints of the channel dynamics. In this paper, we specifically address the problem of estimating and adjusting the
number of multipath replicas that is considered by the receiver algorithm. An efficient implementation via a two-fold marginalized
Bayesian filter is presented, in which a particle filter, grid-based filters, and Kalman filters are suitably combined in order to mitigate
the multipath channel by efficiently estimating its time-variant parameters in a track-before-detect fashion. Results based on an
experimentally derived set of channel data corresponding to a typical urban propagation environment are used to confirm the
benefit of our novel approach.

1. Introduction

Within global navigation satellite systems (GNSS), such as
the Global Positioning System (GPS) or the future European
satellite navigation system Galileo, the user position is
determined based upon the code division multiplex access
(CDMA) navigation signals received from different satellites
using the time-of-arrival method [1]. A major error source
for positioning comes from multipath, the reception of
additional signal replicas due to reflections caused by the
receiver environment. The reception of multipath introduces
a bias into the time-delay estimate of the delay-lock loop
(DLL) of a conventional navigation receiver, which finally
leads to a bias in the receiver’s position estimate. Multipath
is today still one of the most critical problems in GNSS, as
the error occurs as a result of the local environment and can
not be corrected through the use of correction data, which is
provided by reference receiver stations or networks.

The advances in the development of signal processing
techniques for multipath mitigation have led to a conti-

nual improvement of performance. Basically, two major
approaches can be distinguished. Firstly, the class of tech-
niques that actually mitigate the effect of multipath by
modifications of the antenna pattern (either by means of
hardware design or with signal processing techniques) or
by aligning the more or less traditional receiver compo-
nents (e.g., the early/late correlator). Secondly, the class
of multipath estimation techniques, which treat multipath
(in particular the delay of the paths) as something to
be estimated from the received signal so that its effects
can be trivially removed at a later processing stage. Most
of the conventional mitigation techniques in some way
align the discriminator/timing error detector of the DLL
to the signal received in the multipath environment. Well-
known examples of this category are, amongst others, the
Narrow Correlator [2], the Strobe Correlator [3], the Gated
Correlator [4], or the Pulse Aperture Correlator [5].

For the estimation techniques, static and dynamic
approaches can be distinguished, according to the underlying
assumption of the channel dynamics. Examples for static
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multipath estimation are those belonging to the family of
maximum likelihood (ML) estimators, where the probably
best-known technique is the multipath estimating delay-
lock loop (MEDLL) [6]. In the ML approach, the signal
parameters that maximize the probability of the received
signal are determined. For this purpose, different maximiza-
tion strategies exist, which basically characterize the different
approaches. Most of these maximization algorithms are
based on iterative techniques such as the Space-Alternating
Generalized Expectation-Maximization algorithm (SAGE)
[7, 8] and Newton-type methods. Newton-type methods
have been considered with analytical [9] and numerical [10]
expressions for the gradient and Hessian terms. Further ML
algorithms have been reported in [11, 12].

During the last years, sequential estimation algorithms
in the form of Bayesian filters [13–16] have gained some
attention in the field of multipath mitigation. These algo-
rithms exploit prior knowledge about the temporal channel
statistics through the use of statistical channel models,
which allows one to improve the multipath performance of
the receiver. Bayesian filters for estimation of time-varying
synchronization parameters in spread spectrum systems have
already been suggested in the field of communications using
the extended Kalman filter [17] as well as the sequential
Monte Carlo approach [18, 19]. For navigation systems, an
estimator based on sequential importance sampling (SIS)
methods (particle filtering) was proposed in [20], which was
shown to successfully mitigate multipath in a static channel
scenario. An adaptation to dynamic multipath channels
capable of coping with a time-variant number of multipath
replicas was presented in [21]. To reduce the complexity of
these approaches, it was proposed in [22] to employ reduced
complexity methods for the computation of the likelihood
function, which previously have been considered for ML
estimation [23]. To improve the efficiency of the particle
filter (PF) approach, a Rao-Blackwellized/marginalized filter
was presented in [24], where the signal amplitudes are
efficiently estimated via Kalman filters and where a novel
proposal density for the particle filter based on a Gaussian
approximation of the likelihood function was introduced.
Furthermore, [24] includes a comprehensive analysis of
the performance of various other Bayesian filters, and also
the corresponding posterior Cramer-Rao bound (PCRB) is
derived.

We believe that a key for successful application of the
Bayesian approach in the future is to determine correctly the
number of actually received replicas, which is unknown in
practice. It is well known for the signal parameter estimation
approaches that it is crucial to properly adjust the order of
the employed signal model, since an improper number of
degrees of freedom in the assumed model may lead to a heavy
performance degradation. In previous work, however, often
a known number of received replicas is assumed, and the
problem of how to determine this number is not addressed
[24]. To tackle this problem, we introduce in this paper a
further structuring of the Bayesian approach by means of
a two-fold marginalized Bayesian filter (TFMBF). The filter
operates in line with filters that were presented previously,
but is capable of simultaneously estimating all possible system

models in terms of the number of received multipath replicas
along with their respective probabilities. We achieve this
by introducing an intermediate step of marginalization,
which estimates the number of impinging replicas and their
parameters in a track-before-detect (TBD) fashion [25, 26].

The paper is organized as follows: first, the Bayesian
approach is reviewed, and the underlying signal and dynamic
models are introduced. After that, we address the imple-
mentation of our two-fold marginalized filter. Subsequently,
we present results based upon a set of experimentally
derived realistic dynamic channel data, which corresponds
to a typical satellite-to-user propagation channel in urban
environments [27]. Finally, we conclude the paper by a
discussion of our findings.

2. The Sequential Bayesian Approach

2.1. The Sequential Bayesian Framework. For the sequential
Bayesian approach, the problem of multipath mitigation
becomes one of sequential estimation of a hiddenMarkov pro-
cess: the unknown channel parameters are estimated based
on an evolving sequence of received noisy channel outputs
zk. Intuitively, this concept not only exploits the observations
to estimate the hidden channel parameters but also exploits
prior knowledge about the statistical dependencies between
successive sets of channel parameters. The reader is referred
to [13], which gives a derivation of the general framework
for optimal estimation of temporally evolving parameters by
means of inference via sequential Bayesian estimation. The
entire history of observations up to the temporal index k can
be written as

Zk=̂
{

zk′ , k′ = 1, . . . , k
}

. (1)

The goal is to determine the a posteriori probability density
function (PDF) of every possible channel characterization
given all channel observations: p(xk | Zk), in which xk

represents the characterization of the hidden channel state.
Once the a posteriori PDF is evaluated, either that channel
configuration that maximizes it can be determined—the
so called maximum a posteriori (MAP) estimate, or the
expectation can be chosen—equivalent to the minimum
mean square error (MMSE) estimate.

In the so-called prediction step, the recursive sequential
Bayesian estimation algorithm computes the a priori PDF
p(xk | Zk−1) from the a posteriori PDF at time instant k − 1,
p(xk−1 | Zk−1) via the Chapman-Kolmogorov equation

p(xk | Zk−1) =
∫

p(xk | xk−1)p(xk−1 | Zk−1)dxk−1, (2)

with p(xk | xk−1) being the state transition PDF of the
Markov process. In the update step, the new a posteriori PDF
for step k is obtained via

p(xk | Zk) = p(zk | xk)p(xk | Zk−1)
p(zk | Zk−1)

. (3)

The likelihood function p(zk | xk) represents the probability
of the measured channel output, conditioned on a certain
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configuration of channel parameters at the same time step
k. To apply (2) and (3) correctly, two conditions need to be
fulfilled.

(1) The noise affecting successive channel outputs is
independent of the past noise values, so each channel
observation depends only on the present channel
state.

(2) Future channel parameters, given the present state of
the channel and all its past states, depend only on the
present channel state and not on any past states.

2.2. Multipath Propagation and Receiver Requirements. The
typical urban multipath environment [28] poses stringent
requirements on the capabilities of a receiver that is based
on a parametric channel estimator, which are partially
contradicting.

(i) High noise level: the power level of the received signal
is usually more than 25 dB below the thermal noise,
thus the algorithm has to be robust against false
detection of line-of-sight (LOS) signals.

(ii) Low bandwidth: since in particular those echoes
which arrive within a chip period of the CDMA signal
cause the most heavy errors, the signal bandwidth
is relatively low with respect to the desired timing
resolution.

(iii) Multiple paths: multiple paths may impinge simul-
taneously at the receiver, so the algorithm must
properly determine which of them is the actual LOS
path.

(iv) LOS blockage: the algorithm shall ensure that tracking
of the LOS path is maintained also during periods
where it is heavily attenuated.

(v) Close-in echoes: tracking of closely spaced signals with
the proper multiple path signal model may lead to
increased mean square errors compared to the case
when tracking is based on a single-path model [29].

(vi) Track-before-detect: since it is difficult to declare dis-
tinct detections of multipath replicas due to the high
noise and the low signal bandwidth, the algorithm
will consider the echo detection in a probabilistic
fashion. The track-before-detect approach [25] is
suitable for this purpose, since for any echo both
hypotheses (echo present/echo not present) are esti-
mated simultaneously in a probabilistic sense.

These requirements are challenging, since weak signals
need to be detected and tracked properly in a noisy envi-
ronment, with echoes very close to the LOS signal.

3. Channel Model

3.1. Multipath Channel Signal Model. The complex valued
baseband-equivalent received signal in a navigation receiver

is assumed to be equal to

z(t) =
Nm
∑

i=0

ei(t) · ai(t) · s(t − τi(t)) + n(t), (4)

where s(t) is the CDMA navigation signal, Nm is the maxi-
mum number of considered multipath replicas reaching the
receiver (to restrict the modeling complexity), ei(t) ∈ {0, 1}
is a binary function that models the activity of the i′th path,
and ai(t) and τi(t) are their individual complex amplitudes
and time delays, respectively. The signal is disturbed by
additive white Gaussian noise n(t). The signal is sampled at
times (m + kL)Ts, m = 0, . . . ,L − 1 and grouped in blocks
of L samples together into vectors zk, with the block index
k = 0, 1, . . .. The parameter functions ai(t), ei(t) and τi(t)
are assumed to be constant and equal to ai,k, ei,k, and τi,k
for the duration of an entire block. Furthermore, the vectors
τk = [τ0,k, . . . , τNm,k]T and ak = [a0,k, . . . , aNm,k]T are used.
The vector ek = [e0,k, . . . , eNm,k]T determines whether the
i′th path is active or not: ei,k = 1 corresponds to an active
path, and ei,k = 0 to a path that is currently not active.
In the compact form, the samples of the delayed replicas
s(τi,k) are stacked together as columns of the matrix S(τk) =
[s(τ0,k), . . . , s(τNm,k)], and we may write

zk = S(τk)Ekak + nk, (5)

with Ek = diag(ek). In the following, we denote the signal
hypothesis by the concise notation sk=̂S(τk)Ekak. Thus, we
may write according to (5) the associated likelihood function
for observation block k

p(zk | sk) = 1

(2π)Lσ2L
· exp

[

− 1
2σ2

(zk − sk)H(zk − sk)
]

,

(6)

where σ2 refers to the variance of the elements within the
noise vector nk. The purpose of the likelihood function is
to quantify the conditional probability of the received signal
conditioned on the unknown signal (specifically the channel
parameters τk, ek , and ak).

3.2. Markovian Channel Process Model. To exploit the advan-
tages of sequential estimation for the task of multipath
mitigation/estimation, the actual channel characteristics
have to be described such that these are captured by p(xk |
xk−1). In other words, the model must be a first-order
Markov model, and all transition probabilities must be
known. The channel state model used here is motivated by
channel modeling work for multipath prone environments
such as the urban satellite navigation channel [28, 30]. In
fact, the process of constructing a channel model in order
to characterize the channel for signal level simulations and
receiver evaluation comes close to our task of building a first-
order Markov process for sequential estimation. Here, the
channel is approximated as follows.

(i) The channel is totally characterized by a LOS path
(index i = 0) and at most Nm echoes.
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(ii) Each path has complex amplitude ai,k and delay τi,k,
where echoes are constrained to have delay τi,k ≥ τ0,k,
i = 1, . . . ,Nm, to reflect that multipath replicas are
physically constrained to arrive later at the receiver
than the LOS path.

(iii) The delay of each path follows the process

τi,k = τi,k−1 + τ̇i,k−1Δt + ni,τ + nτ (7)

with noise ni,τ , nτ , where nτ is the same value for all
indices i.

(iv) Each parameter τ̇i,k that specifies the rate of the
change of the path delay follows its own process

τ̇i,k = τ̇i,k−1 + ni,τ̇ + nτ̇ (8)

with noise ni,τ̇ , nτ̇ , in which nτ̇ has the same value for
all indices i.

(v) Each echo is either “on” or “off”, as defined by the
channel parameter ei,k ∈ {1 ≡ “on”, 0 ≡ “off”},
where ei,k, i = 1, . . . ,Nm follows a simple two-
state Markov process with a-symmetric crossover and
same-state probabilities

p
(

ei,k = 0 | ei,k−1 = 1
) = ponoff,

p
(

ei,k = 1 | ei,k−1 = 0
) = poffon.

(9)

(vi) The LOS component is always present, and conse-
quently e0,k = 1 for all k.

(vii) Newly appearing echoes (ei,k = 1 with ei,k−1 = 0) are
initialized with

τi,k = τ0,k+ | τm + nτ0 |,
τ̇i,k = τ̇0,k + nτ̇0 ,

(10)

with noise nτ0 , nτ̇0 and the characteristic constant τm
(cf. [20]).

(viii) Blockage and shadowing of the LOS signal is consid-
ered through variations of the LOS amplitude a0,k.

(ix) Following [30], the complex amplitudes ai,k depend
on the previous amplitudes ai,k−1 through

ai,k = e− j2π f0Δtτ̇i,k · ai,k−1 + ni,ai , (11)

with complex noise ni,ai and the carrier frequency
f0. Thus, the rate of change in the delay affects the
evolution of the complex amplitude in a statistical
manner in order to consider the physical relation-
ships between phase, Doppler-frequency, and time
delay adequately.

The model implicitly incorporates nine i.i.d. noise sources:
Gaussian ni,τ ∼ N (0, σ2

i,τ), ni,τ̇ ∼ N (0, σ2
i,τ̇), nτ ∼ N (0, σ2

τ ),
nτ̇ ∼ N (0, σ2

τ̇ ), nτ0 ∼ N (0, σ2
τ0

), nτ̇0 ∼ N (0, σ2
τ̇0

), and comp-
lex Gaussian ni,ai ∼ N (0, σ2

i,ai), as well as the noise process
driving the state changes for ei,k. These sources provide the
randomness of the model. The noise sources nτ and nτ̇ are

included to model the impact of the receiver clock on the
individual delays and delay rates, since they are actually
affected simultaneously by the same random process. Finally,
Δt = LTs is the time between instants k − 1 and k. It is
assumed that all model parameters (i.e., Δt, noise variances,
and the “on”/“off” Markov model) are independent of k.
Note that the model implicitly represents the number of
actually impinging paths through the time variant parameter

Nm,k =
Nm
∑

i=0

ei,k. (12)

Using τ̇k = [τ̇0,k, . . . , τ̇Nm,k]T , the hidden channel state vector
xk is thus represented as

xk=̂[ak, ek, τk, τ̇k]. (13)

4. Estimator Implementation

Various algorithms are known which implement the
Bayesian recursion (2) and (3), including the Kalman filter,
the grid-based filter, and the family of particle filtering
algorithms [13]. Certain restrictions are imposed on the
use of these algorithms. The objective here is to estimate
the channel parameters (13) via the likelihood function (6)
and the channel process model defined in Section 3.2, which
makes the estimation complicated: the amplitude parameters
ai,k are continuous, and the measurement depends linearly
on them like the activity parameters ei,k, which are discrete
and thus follow a discrete evolution. In contrast the obser-
vations depend nonlinearly on the continuous delays τi,k,
which are also nonlinear with respect to their dynamics. A
straightforward way would be to implement the estimation
algorithm completely with a particle filter, which is the
most general method with respect to system nonlinearities,
but depending on the considered number of paths Nm the
state space in such a filter becomes large, and it becomes
difficult to cover the entire space with a reasonable number
of particles. To consider the nonlinearities while keeping
the state space to be covered by the particles as small as
possible, it has been proposed to reduce the computational
complexity of the filter by means of marginalization over
the linear state variables [16], a technique also known as
Rao-Blackwellization [15]. In a marginalized filter, particles
are still used to estimate the nonlinear states, while for
each of the particles, the linear states can be estimated
analytically. Our marginalized estimator factorizes the a
posteriori density via the chain rule two-fold according to

p(ak, ek, τk, τ̇k | Zk)

= p(ak | Zk, ek, τk, τ̇k)
︸ ︷︷ ︸

Kalman filter

p(ek | Zk, τk, τ̇k)
︸ ︷︷ ︸

Grid-based filter

p(τk, τ̇k | Zk)
︸ ︷︷ ︸

Particle filter

.

(14)

A Kalman filter is used to estimate the amplitudes ak
analytically conditional on the parameters ek, τk, and τ̇k.
The discrete path activity parameters are in turn estimated
conditionally on the delays τk and the delay rates τ̇k
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using a grid-based method [13], which is appropriate to
optimally estimate a discrete state space. Finally, the delays
τk and the delay rates τ̇k are the only remaining parameters
that are estimated by the particle filtering algorithm. It is
straightforward to show that (14) indeed corresponds to
three Bayesian filters, in which the update step (3) can be
expressed as

p(ak, ek, τk, τ̇k | Zk)

= p(zk | ak, ek, τk, τ̇k)
p(zk | Zk−1)

· p(ak, ek, τk, τ̇k | Zk−1)
(15)

= p(zk | ak, ek, τk, τ̇k)
p(zk | Zk−1, ek, τk, τ̇k)

· p(ak | Zk−1, ek, τk, τ̇k)
︸ ︷︷ ︸

Amplitude estimator: Kalman filter

(16)

· p(zk | Zk−1, ek, τk, τ̇k)
p(zk | Zk−1, τk, τ̇k)

· p(ek | Zk−1, τk, τ̇k)
︸ ︷︷ ︸

Path activity estimator: grid-based filter

(17)

· p(zk | Zk−1, τk, τ̇k)
p(zk | Zk−1)

· p(τk, τ̇k | Zk−1)
︸ ︷︷ ︸

Delay and delay rate estimator: particle filter

(18)

= p(ak | Zk, ek, τk, τ̇k)p(ek | Zk, τk, τ̇k)p(τk, τ̇k | Zk).
(19)

The structure of the two-fold marginalization is illus-
trated in Figure 1, which reveals that the complexity of our
filter is heavily dependent on the choice of Nm. However, our
results that are presented in Section 5 will show that with a
practically reasonable choice of Nm, the complexity remains
still moderate.

4.1. Estimation of Amplitudes. The implementation of the
conditional amplitude filter follows from (16). The con-
ditional a posteriori PDF with respect to the complex
amplitudes is thus given by

p(ak | Zk, ek, τk, τ̇k)

= p(zk | ak, ek, τk, τ̇k)
p(zk | Zk−1, ek, τk, τ̇k)

· p(ak | Zk−1, ek, τk, τ̇k),

(20)

in which p(zk | ak, ek, τk, τ̇k) corresponds to the likelihood
function given in (6). Recalling the structure of the mea-
surement model (5), the observed signal zk is disturbed by
white Gaussian noise and depends linearly on the amplitudes
ak. According to (11), the amplitude dynamics are linear
conditioned on the delay rates. Hence, (20) can be estimated
with a Kalman filter and the a priori PDF for the amplitudes
is given by the Gaussian density

p(ak | Zk−1, ek, τk, τ̇k) = N
(

ã−k , ˜P−k
)

. (21)

Its mean a−k and its covariance matrix P−k are obtained in the
prediction step from the previous time instant k− 1 through

the framework of the Kalman filter equations

ã−k = ˜Fk ãk−1, (22)

˜P−k ≈ R
{

˜Fk˜Pk−1˜FH
k

}

+ ˜Q. (23)

The matrices Fk and Q follow directly from the state
transition model (11) and are computed using

Fk = diag
([

e− j2π f0Δtτ̇0,k , . . . , e− j2π f0Δtτ̇Nm ,k

])

,

Q = diag
([

σ2
0,ai , . . . , σ2

Nm,ai

])

.
(24)

The notation •̃ above indicates that dimension and values of
the respective matrices and vectors correspond to the active
paths as given by ek. We assume in our implementation that
(21) is still a circular symmetric complex normal PDF [31],
which is enforced by the approximation via (23).

The a posteriori PDF of the amplitude filter becomes

p(ak | Zk, ek, τk, τ̇k) = N
(

ãk, ˜Pk

)

, (25)

with mean and covariance given by

ãk = ã−k + ˜Kk

(

zk − ˜Sk ã−k
)

,

˜Pk =
(

I− ˜Kk˜Sk

)

˜P−k ,
(26)

with Sk = Sk(τk) and the Kalman gain

˜Kk = ˜P−k ˜ST
k

(

˜Sk˜P−k ˜S
T
k + R

)−1
. (27)

The value of R = σ2 · I follows directly from (6).

4.2. Estimation of Path Activity. The estimation of the path
activity ek follows (17), and thus the a posteriori PDF with
respect to the path activity is given by

p(ek | Zk, τk, τ̇k)

= p(zk | Zk−1, ek, τk, τ̇k)
p(zk | Zk−1, τk, τ̇k)

· p(ek | Zk−1, τk, τ̇k).
(28)

The activity state space is finite and discrete and can thus
be estimated optimally using a grid-based filter [13]. In this
case, the prediction (2) simplifies to the evaluation of the
sum

p(ek | Zk−1, τk, τ̇k)

=
∑

ek−1

p(ek | ek−1, Zk−1, τk, τ̇k)p(ek−1 | Zk−1, τk, τ̇k).

(29)

The transition density with respect to the activity states is
given by (9) and depends, therefore, on the realization of the
path transition ek−1 → ek, and it can be shown that

p(ek = ek | ek−1 = ek−1, Zk−1, τk, τ̇k)

= (poffon)Noffon · (ponoff)Nonoff

· (1− poffon)Noffoff · (1− ponoff)Nonon ,

(30)
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A posteriori PDF p(ak , ek , τk , τ̇k|Zk)

Received signal Zk

KF

KF

KF
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TFMBF
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Figure 1: Structure of the two-fold marginalized filter, which infers
the a posteriori PDF of the channel parameters from the blockwise
processed received signal. Each particle (black dots) of the central
particle filter (PF) carries a grid-based filter (GBF) in which there
are several Kalman filters (KF) according to the combination of
active paths. The number of complex amplitudes to be tracked per
KF (as indicated by the numbers in the boxes) ranges from 1 to
Nm + 1.

where Noffon is the number of paths switching from “off”
to “on”, Nonoff is the number of paths switching from “on”
to “off”, Noffoff is the number of paths remaining “off”, and
Nonon is the number of paths remaining “on” during the
transition from ek−1 to ek. Note that there are 2Nm discrete
states and 22Nm transitions to be covered by the grid-based
filter. The marginal likelihood value used in the update step
is given by the integral

p(zk | Zk−1, ek, τk, τ̇k)

=
∫

ak
p(zk | Zk−1, ak, ek, τk, τ̇k)p(ak | Zk−1, ek, τk, τ̇k)dak.

(31)

The first term is independent of Zk−1 (6), and the second
follows from (21). This yields the Gaussian distribution

p(zk | Zk−1, ek, τk, τ̇k) = N
(

˜Sk ã−k , ˜Sk˜P−k ˜S
T
k + R

)

. (32)

A proof for (32) can be found in [32].

4.3. Estimation of Path Delays. Due to the nonlinearity in the
system model, the remaining parts of the state vector, namely,
the delays and the delay rates, are to be estimated by a particle
filter. Particle filters belong to the family of sequential Monte

Table 1: Simulation and algorithm parameters.

Parameter Value Unit

c0 2.99792458 · 108 [m/s]

f0 1.57542 · 109 [Hz]

BHF 4 [MHz]

Ts 125 [ns]

L 80 [kSamples]

C/N0 @ |a0| = 1 35 [db-Hz]

BDLL 1 [Hz]

BPLL 10 [Hz]

Δt 10 [ms]

Np 50

σ2
i,τ (0.03/co)

2 [s]

σ2
i,τ̇ (0.03/co)

2 [s/s]

σ2
τ (0.03/co)

2 [s]

σ2
τ̇ (0.03/co)

2 [s/s]

σ2
τ0

(100/co)
2 [s]

σ2
τ̇0 (0.03/co)

2 [s/s]

τm (50/co)
2 [s]

poffon q

ponoff 1− q

q <0.01

σ2
i,ai 1

Carlo (SMC) filters [13], which solve the Bayesian filtering
equations based on the principle of importance sampling and
thus inherently implement only a suboptimal approximation
of the optimal Bayesian solution. According to (18), the
marginalized a posteriori density with respect to the path
delays and delay rates is

p(τk, τ̇k | Zk) = p(zk | Zk−1, τk, τ̇k)
p(zk | Zk−1)

· p(τk, τ̇k | Zk−1).

(33)

Here, a simple sampling importance resampling particle
filter (SIR-PF) according to [14] is used to implement the
marginalized delay and delay rate estimator. In the SIR-PF
algorithm, the a posteriori density at step k is represented as
a sum, and is specified by a set of Np particles

p(τk, τ̇k | Zk) ≈
Np
∑

μ=1

w
μ
k · δ

(

τk−τμk , τ̇k−τ̇μk
)

, (34)

where each particle with index μ has a state τ
μ
k , τ̇

μ
k and

has a weight w
μ
k . Due to the marginalization, each particle

carries in addition a grid-based filter, in which for each
of the discrete states a Kalman filter is associated to the
particle, resulting thus in 2Nm Kalman filters per particle (see
Figure 1).
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Table 2: Complexity of TFMBF depending on Nm.

Nm NPF
s NGBF

s NKF
s,max NKF

0 2 1 1 Np

1 4 2 2 2Np

2 6 4 3 4Np

3 8 8 4 8Np

−200

−100

0

100

200

300

D
el

ay
(m

)

400

0 50 100 150

Time (s)

200 250 300 350

10

20

30

40

50

60

600

500

Figure 2: Typical satellite-to-pedestrian-user channel in an urban
environment. The coloring indicates the power of the impinging
wavefronts with respect to the receiver noise density in terms of
C/N0. The boxes highlight the channel sections that are shown
subsequently in Figures 6 and 7.

The key step of the particle filter algorithm is the
calculation of the weight

w
μ
k ∝ w

μ
k−1

p
(

zk | Zk−1, τ
μ
k , τ̇

μ
k

)

p
(

τ
μ
k , τ̇

μ
k | τμk , τ̇

μ
k−1

)

q
(

τ
μ
k , τ̇

μ
k | τμk−1, τ̇

μ
k−1, zk

) , (35)

with the so-called proposal density q(τk, τ̇k | τμk−1, τ̇
μ
k−1, zk).

In the SIR-PF, the recent measurement zk is not taken into
account by the proposal density. This choice is appropriate
here, since we operate our filter in an environment that
is characterized by high measurement noise, such that the
likelihood function is rather flat and the dynamics of the
particles are more dominant with respect to the shape of
the optimal proposal density. However, other choices have
been suggested in the literature, for example, a Gaussian
approximation strategy [24], which may be applied as well
to the particle filter employed here. The characterization of
the channel process enters in the algorithm when at each
time instant k the state of each particle τ

μ
k , τ̇

μ
k is drawn

randomly from the SIR-PF’s proposal distribution; that is,
from q(τk, τ̇k | τμk−1, τ̇

μ
k−1, zk)=̂p(τk, τ̇k | τμk−1, τ̇

μ
k−1), which

corresponds to drawing values for ni,τ , ni,τ̇ , nτ , nτ̇ , nτ0 and
nτ̇0 . As a consequence, in (35), p(τ

μ
k , τ̇

μ
k | τ

μ
k−1, τ̇

μ
k−1) and

q(τ
μ
k , τ̇

μ
k | τμk−1, τ̇

μ
k−1, zk) cancel out, and the computation of

the new weight w
μ
k simplifies to the evaluation of the product
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sidering more simultaneously echoes (via Nm) leads to a further
improved performance, which tends to saturate rapidly for more
than one additional path.

of the previous weight and the marginalized likelihood
function: w

μ
k−1p(zk | Zk−1, τ

μ
k , τ̇

μ
k). The marginal likelihood

value is given by summing up the marginal likelihoods over
all path activity hypotheses using (32) and (29)

p(zk | Zk−1, τk, τ̇k)

=
∑

ek

p(zk | Zk−1, ek, τk, τ̇k)p(ek | Zk−1, τk, τ̇k).
(36)
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Figure 5: RMSE of LOS estimate as a function of the employed
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Only few particles (Np < 50) are needed to attain convergence.

The particle filter approach allows us to enforce the
nonlinear constraint τi,k ≥ τ0,k, i = 1, . . . ,Nm in an easy
way: when drawing new realizations of τ

μ
i,k according to our

proposal density via (7), we reinitialize τ
μ
i,k and τ̇

μ
i,k according

to (10) in case τ
μ
i,k < τ

μ
0,k. In our implementation of the

particle filter, we apply resampling at every time instant.
To tackle this potential bottleneck, advanced resampling
strategies may be applied [33, 34].

5. Algorithm Assessment

5.1. Scenario. To validate our algorithm, we build on the
concept of the stored channel: a channel profile is recorded
during a measurement campaign, and the stored profile is
fed back into the receiver simulation. Though the statistical
significance of such an assessment is limited, it is the most
realistic approach, since the employed channel corresponds
to a real world scenario. In Figure 2, the recorded channel
profile from [28] which we use is illustrated. It has a total
duration of 350 seconds and corresponds to a scenario,
where a satellite at 10 degrees elevation transmits to a
pedestrian user moving within an urban environment. The
profile clearly motivates the pursued algorithmic approach.
Discrete echoes due to reflectors such as house fronts are
clearly visible. Thereby, each echo experiences a typical life-
cycle: the reflectors cause echo traces that persist, approach,
and depart along with the occasionally shadowed LOS path.
Dominant channel properties are the long correlation times
in the multipath echoes and their clearly observable binding
to the user dynamics and the surrounding environment. The
overall power variation in the channel is depicted in Figure 3.
As navigation signal, we assume a GPS C/A code signal,
which is a CDMA signal with a code length of 1023 (Gold
code) and a chip rate of 1.023 MChips/s, such that a single

chip corresponds to a signal travel time of approximately
300 meters and the duration of an entire codeword is a
millisecond. The carrier frequency of the transmitted signal
is the GPS L1 center frequency f0 = 1575.42 MHz and the
receiver’s assumed reception bandwidth is BHF = 4 MHz.
Our TFMBF computes (15) at a rate of 100 Hz corresponding
to Δt = 10 ms and unless stated otherwise, we employ 50
particles.

5.2. Model Matching. It is important to point out that a
sequential estimator is only as good as its state transition
model matches the real-world situation. The state model
needs to capture all relevant hidden states with memory and
needs to correctly model their dependencies, while adhering
to the first order Markov condition. Furthermore, any
memory of the measurement noise affecting the likelihood
function must be explicitly contained as additional states of
the model, so that the measurement noise is i.i.d. Adapting
the model parameters to a real channel environment is a
challenging task for current and future work, since the tuning
of the parameters has to take into account the potential
model mismatch. The result of an adaption by empirical
means, which has been the basis of the present simulations,
is given in Table 1.

5.3. Results. The results of the assessment are illustrated
in Figure 4 in terms of the cumulative density function
(CDF) of the LOS estimation error when processing the
entire channel scenario that is shown in Figure 2. Note that
all results have been converted from signal delays to the
equivalent pseudorange measures by means of the speed
of light c0 and that the statistics are obtained from single
Monte Carlo trials on the 350 second scenario, respectively.
Due to LOS blockage and shadowing, large errors can occur
occasionally for the conventional DLL receiver, which in
our case employs a standard combination of a second-order
DLL with narrow correlator spacing (0.1 Chips) [2] and a
loop bandwidth of BDLL = 1 Hz and a second-order phase
locked loop (PLL) with a loop bandwidth of BPLL = 10 Hz.
Due to frequent cycle slips in this demanding scenario,
the PLL output is neither used to aid the DLL nor to
smooth its delay estimates [1]. It can be seen clearly that
the use of the sequential estimation algorithm enhances the
performance significantly, even if only a single LOS path
(Nm = 0) is considered by the estimation algorithm. This
is due to the dynamic model that underlies the recursive
estimation procedure and which prohibits the LOS estimate
of having errors that become effectively as large as those of
the conventional DLL receiver. Furthermore, our approach
exploits the phase information that is provided by the
received signal (for all Nm) and is thus superior to the plain
DLL. Since the comparison with the DLL is not quite fair
with respect to the use of carrier information and dynamic
constraints, the reader is referred to the case of Nm = 0 as
a reference implementation, from which one could derive
the actual benefit of the multipath activity modeling, which
is implemented for Nm > 0. For these actual mitigation
algorithms, which are capable of detecting and tracking
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Figure 6: In the illustrated scenario, there is a partially shadowed LOS path (red) that is superimposed by a heavy multipath component.
During some periods with weak LOS, the DLL receiver (green) tracks the multipath signal instead of the true LOS, which leads to high errors
in the order of 100 meters. The TFMBF’s LOS estimate (dark blue) is still slightly biased if the multipath replicas are not taken into account
by the estimator (Nm = 0, (a)). Nevertheless, the magnitude of the errors is much smaller than the DLL errors, since the dynamic model
of the estimator prevents fast variations of the LOS estimate and also because phase information is being used implicitly. Once the number
of considered replicas is sufficient to take into account multipath signals (Nm > 0, (b, c, d)), the estimation algorithm detects and properly
tracks the additional replicas (light blue), and thus successfully mitigates the multipath errors.

multipath and which thus are able to remove the estimation
bias due to multipath, it can be observed that the estimation
performance tends to saturate quickly for Nm > 1. Thus, the
additional complexity that is needed by considering more
simultaneous paths may not be justified, given the amount
of performance gain. Furthermore, the rapid performance
saturation for Nm > 1 shows that the presence of more than a

single relevant multipath component tends to happen only
rarely, and if so, that the simultaneous tracking of two or
more multipath replicas leads only to a small amount of
performance improvement in the average error statistics.

5.4. Complexity. As illustrated in Figure 1, the complexity
of the filter depends crucially on the number of considered
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Figure 7: In this scenario, the channel estimation algorithm has to cope with a LOS path (red) that is superimposed by several simultaneous
multipath replicas. The DLL receiver (green) shows the typical multipath errors, whose magnitude varies due to the fading processes of the
path amplitudes. If the multipath replicas are not taken into account by the estimator (Nm = 0, (a)), the LOS estimate (dark blue) shows
still significant errors, but their magnitude is smaller than the DLL errors, since the dynamic model used in the estimator helps to constrain
variation of the LOS estimate. With Nm = 1 (b) the number of considered paths is too small to track all replicas and thus the multipath delay
estimates (light blue) tend to jump between the respective multipath signals. Once the number of considered replicas is sufficient to take
into account all present signals (Nm > 1, (c, d)), the estimation algorithm detects and tracks the channel, except for the period between 40 s
and 80 s. During this interval, a proper resolution of the actual LOS does not seem feasible any more, due to the presence of an echo which
is born with almost zero delay w.r.t. the LOS path which itself is strongly attenuated, hence its history does not allow to separate it suitably
from the LOS component.

paths Nm. The dimension of the particle filter is given by
the maximum number of required multipath replicas. For
the LOS path and each replicas delay and delay rate are to
be estimated. Thus, the state dimension to be covered by

the particle filter is NPF
s = 2Nm + 2. Each particle needs

to carry a grid-based filter to estimate the path activities.
Their respective state dimension is NGBF

s = 2Nm , because
the LOS path is assumed to be always active. The number
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of Kalman filters totals NKF = Np2Nm , since each activity
hypothesis is required to carry its own Kalman filter. The
dimension of the Kalman filters thus depends on the number
of active paths and is in the range of 1, . . . ,Nm + 1. In the
overall implementation, there are Np

(

Nm
m

)

Kalman filters
with a state dimension of m + 1, where m corresponds to
the number of active echo paths. For a given Nm, the worst
case state dimension of the Kalman filters is thus NKF

s,max =
Nm + 1. Table 2 summarizes these values for Nm = 0, . . . , 3.
Experience with our simulations confirm that increasing Nm

from 2 to 3 roughly doubles computation time. For a more
detailed complexity analysis of marginalized particle filters,
the reader is referred to [35].

In Figure 5, the average performance of the TFMBF is
shown as a function of the employed number of particles
Np and the parameter Nm. In contrast to previous work,
the novel two-fold filter structure allows us to reduce the
number of required particles significantly (cf. [22] ≈20.000,
[24] ≈2.000). We are able to cover the state-space more
efficiently by the particles’ hypotheses, since each particle is
able to exploit the carrier phase information via (11): since
the complex amplitude can be measured quite precisely, we
are able to infer the delay rates accurately as well. Precise
delay rates in turn allow a proper prediction of the particles’
delays (7), so that in the end much fewer particles are needed
to represent the a posteriori density, as the delay spread of
the particles during the importance sampling is kept much
smaller, since delay hypotheses, which do not match the delay
rates are not generated during the importance sampling.
Thus, many particles, which would be deleted during the
resampling anyway and thus are a waste of computational
resources, are not even generated using our approach.

5.5. Filter Behavior. To illustrate the operation of the sequen-
tial estimation algorithm its MMSE estimates of the LOS
and multipath delays are depicted in Figures 6 and 7, which
correspond to two typical scenarios a navigation receiver has
to cope with in urban environments. The scenario illustrated
in Figure 6 represents a situation where a partially shadowed
LOS component is superimposed by a strong multipath
signal. The scenario shown in Figure 7 corresponds to a
situation where several simultaneous echoes arrive at the
receiver. The evolution of these echoes shows the typical
behavior that can be observed in urban environments,
including echoes that are approaching and other echoes
that are departing due to the movement of the receiver
towards or away from the reflector. Both scenarios reveal
the general benefit of the sequential estimation approach
compared to the conventional DLL. On the one hand, the
explicit consideration of the multipath replicas in the signal
model at the receiver allows us to mitigate the multipath
errors successfully; on the other hand, the exploitation of
the constrained dynamic model yields smoother and more
realistic estimates, which do not follow the abrupt changes in
the channel such as the DLL does occasionally; for example,
in Figure 6, during the period from 275 s to 295 s, which are
quite unlikely given the limited dynamics of the pedestrian.
In particular this period shows the major drawback of the
conventional DLL: though the DLL implements a low-pass

characteristic and thus limits the dynamics, it is not able to
take into account a real probabilistic and physical model of
the receiver dynamics and thus tends to immediately track
the strongest path while neglecting any weaker earlier paths,
which are much more likely to be the actual LOS path due to
the recent channel history and the limited user dynamics.

6. Conclusions

In this paper, we have introduced a novel two-fold marginal-
ized Bayesian filter for multipath mitigation in satellite
navigation receivers. Our approach allows us to exploit the
constrained channel dynamics within a typical satellite-to-
user propagation scenario in an urban environment. We
have proposed an efficient implementation of the filter by
applying the concept of marginalization, where we proposed
to estimate impinging multipath replicas in a typical track-
before-detect approach. Our approach is able to adapt to
the channel dynamics and favors implicitly the most likely
channel configuration for a given sequence of channel
observations. This has been shown to be of particular benefit
in case the LOS path is shadowed or blocked, since unlike
other approaches, the presented filter does not synchronize
on powerful replicas during such periods. We have shown
that our approach requires a significantly reduced number of
particles compared to previous work, which is achieved as a
result of the implicit use of phase information. Our results
for a real urban environment show that our approach is
practically viable and confirm its benefits. They also provide
insights on how many simultaneous multipath replicas a
future Bayesian navigation receiver should consider. Our
findings reveal that the LOS tracking performance of our
Bayesian filter tends to saturate rapidly when increasing of
the number of simultaneously detectable multipath replicas.
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