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1. Introduction

The competitive economy equilibrium problem of a com-
munication system consists of finding a set of prices and
distributions of frequency or tone power spectra to users
such that each user maximizes his/her utility, subject to
his/her budget constraints, and the limited power bandwidth
resource is efficiently utilized. Although the study of the
competitive equilibrium can date back to Walras [1] work
in 1874, the concepts applied to a communication system
just emerged few years ago because of the great advances in
communication technology recently. In a modern commu-
nication system such as cognitive radio or digital subscriber
lines (DSL), users share the same frequency band and how
to mitigate interference is a major design and management
concern. The Frequency Division Multiple Access (FDMA)
mechanism is a standard approach to eliminate interfer-
ence by dividing the spectrum into multiple tones and
preassigning them to the users on a nonoverlapping basis.

However, this approach may lead to high system overhead
and low bandwidth utilization. Therefore, how to optimize
users’ utilities without sacrificing the bandwidth utilization
through spectrum management becomes an important issue.
That is why the spectrum management problem has recently
become a topic of intensive research in the signal processing
and digital communication community.

From the optimization perspective, the problem can be
formulated either as a noncooperative Nash game [2–5]; or
as a cooperative utility maximization problem [6, 7]. Several
algorithms were proposed to compute a Nash equilibrium
solution (Iterative Waterfilling Algorithm (IWFA) [2, 4];
Linear Complementarity Problem (LCP) [3]) or globally
optimal power allocations (Dual decomposition method,
[8–10]) for the cooperative game. Due to the problem’s
nonconvex nature, these algorithms either lack global con-
vergence or may converge to a poor spectrum sharing
strategy. Moreover, the Nash equilibrium solution may not
achieve social communication economic efficiency; and, on
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the other hand, an aggregate social utility (i.e., the sum of all
users’ utilities) maximization model may not simultaneously
optimize each user’s individual utility.

Recently, Ye [11] proposed a competitive economy
equilibrium solution that may achieve both social economic
efficiency and individual optimality in dynamic spectrum
management. He proved that a competitive equilibrium
always exists for the communication spectrum market with
Shannon utility for spectrum users, and under a weak-
interference condition the equilibrium can be computed in
a polynomial time. In [11], Ye assumes that the budget is
fixed, but this paper deals how adjusting the budget can
further improve the social utility and/or meet each individual
physical demand. This adds another level of resource control
to improve spectrum utilization.

This study investigates how to allocate budget between
users to meet each user’s physical power demand or balance
all individual utilities in the competitive communication
spectrum economy. We prove what follows.

(1) A competitive equilibrium that satisfies each user’s
physical power demand always exists for the commu-
nication spectrum market with Shannon utilities if
the total power demand is less than or equal to the
available total power supply.

(2) A competitive equilibrium where all users have iden-
tical utility value always exists for the communication
spectrum market with Shannon utilities.

Computational results and comparisons between the com-
petitive equilibrium and Nash equilibrium solutions are
also presented. The simulation results indicate that the
competitive economy equilibrium solution provides more
efficient power distribution to achieve a higher social utility
in most cases. Besides, the competitive economy equilibrium
solution can make more users to obtain higher individual
utilities than the Nash equilibrium solution does in most
cases. Moreover, the competitive economy equilibrium takes
the power supply capacity of each channel into account,
while the Nash equilibrium model assumes the supply
unlimited where each user just needs to satisfy its power
demand.

The remainder of this paper is organized as follows. The
mathematical notations are illustrated in Section 2. Section 3
describes the competitive communication spectrum market
considered in this study. Section 4 formulates two com-
petitive equilibrium models that address budget allocation
on satisfying power demands and budget allocation on
balancing individual utilities. Section 5demonstrates a toy
example of two users and two channels. Section 6 describes
how to solve the market equilibrium and presents the
computational results. Finally, conclusions are made in the
last section.

2. Mathematical Notations

First, a few mathematical notations. Let Rn denote the n-
dimensional Euclidean space; Rn

+ denote the subset of Rn

where each coordinate is nonnegative. R and R+ denote the

set of real numbers and the set of nonnegative real numbers,
respectively.

Let X ∈ Rmn
+ denote the set of ordered m-tuples X =

(x1, . . . , xm) and let Xi ∈ R(m−1)n
+ denote the set of ordered

(m − 1)-tuples X = (x1, . . . , xi−1, xi+1, . . . , xm), where xi =
(xi1, . . . , xin) ∈ Xi ⊂ Rn

+ for i = 1, . . . ,m. For each i, suppose
there is a real utility function ui, defined over X . Let Ai(xi)
be a subset of Xi defining for each point xi ∈ Xi, then the
sequence [X1, . . . ,Xm,u1, . . . ,um, A1(x1), . . . ,Am(xm)] will
be termed an abstract economy. Here Ai(xi) represents the
feasible action set of agent i that is possibly restricted by
the actions of others, such as the budget restraint that the
cost of the goods chosen at current prices dose not exceed
his income, and the prices and possibly some or all of the
components of his income are determined by choices made
by other agents. Similarly, utility function ui(xi, xi) for agent
i depends on his or her actions xi, as well as actions xi made
by all other agents. Also, denote x j = (x1 j , . . . , xmj) ∈ Rm for
a given x ∈ X .

A function u : Rn
+ → R+ is said to be concave if for any

x, y ∈ Rn
+ and any 0 ≤ α ≤ 1, we have u(αx + (1 − α)y) ≥

αu(x) + (1 − α)u(y); and it is strictly concave if u(αx + (1 −
α)y) > αu(x) + (1 − α)u(y) for 0 < α < 1. It is monotone
increasing if for any x, y ∈ Rn

+, x ≥ y implies that u(x) ≥
u(y).

3. Competitive Communication
SpectrumMarket

Let the multiuser communication system consist of m
transmitter-receiver pairs sharing a common frequency band
discretized by n tones. For simplicity, we will call each of
such transmitter-receiver pair a “User.” Each user i will
be endowed a “monetary” budget wi > 0 and use it to
“purchase” powers, xi j , across tones j = 1, . . . ,n, from an
open market so as to maximize its own utility ui(xi, xi):

maximizexi ui
(

xi, xi
)

subject to pTxi =
∑

j

p jxi j ≤ wi,

xi ≥ 0,

(1)

where xi = (xi1, . . . , xin) ∈ Rn
+ and xi ∈ R(m−1)n

+ are power
units purchased by all other users, and pj is the unit price for
tone j in the market.

A commonly recognized utility for user i, i = 1, . . . ,m, in
communication is the Shannon utility [12]:

ui
(

xi, xi
) =

n∑

j=1

log

(

1 +
xi j

σi j +
∑

k /= ia
i
k jxk j

)

, (2)

where parameter σi j denotes the normalized background
noise power for user i at tone j, and parameter aik j is the
normalized crosstalk ratio from user k to user i at tone j. Due
to normalization we have aii j = 1 for all i, j. Clearly, ui(xi, xi)
is a continuous concave and monotone increasing function

in xi ∈ Rn
+ for every xi ∈ R(m−1)n

+ .
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Figure 1: Interaction among four types of agents in the proposed
competitive spectrum market.

There are four types of agents in this market. The first-
type agents are users. Each user aims to maximize its own
utility under its budget constraint and the decisions by all
other users. The second-type agent, “Producer or Provider,”
who installs power capacity supply s j ≥ 0 to the market from
a convex and compact set S to maximize his or her utility. We
assume that they are fixed as s in this paper, and

∑
idi ≤

∑
j s j ,

that is, the total power demand is less than or equal to the
available total power supply.

The third agent, “Market,” sets tone power unit “price”
pj ≥ 0, which can be interpreted as a “preference or ranking”
of tones j = 1, . . . ,n. For example, p1 = 1 and p2 = 2 simply
mean that users may use one unit of s2 to trade for two units
of s1.

The fourth agent, “Budgeting,” allocates “monetary”
budget wi > 0 to user i from a bounded total budget, say∑

iwi = m.
Figure 1 illustrates the interaction among four types of

agents in the proposed competitive spectrum market. Each
user i determines its power allocation xi under its budget wi,
power spectra unit price density p and the decisions by all
other users xi. The producer installs power capacity spectra
density s based on power spectra unit price density p to
maximize his or her utility. The market sets power spectra
unit price density p based on tone power distribution x and
power capacity spectra density s to make market clear. The
budgeting agent allocates budget wi to user i from a bounded
total budget according to tone power distribution x for
satisfying power demands or balancing individual utilities.
In this study, we assume power capacity spectra density s is
fixed. Therefore, s is determined first in the system.

4. Budget Allocation in Competitive
Communication SpectrumMarket

In this section, we discuss how to adjust “monetary” budget
to satisfy each user’s prespecified physical power demand or
to balance all individual utilities in a competitive spectrum
market.

4.1. Budget Allocation on Satisfying Individual Power
Demands. The first question is whether or not the “Bud-
geting” agent can adjust “monetary budget” for each user to
meet each user’s desired total physical power demand di that
may be composed from any tone combination. We give an
affirmative answer in this section.

A competitive market equilibrium is a power distribution
[x∗1 , . . . , x∗m, p∗, w∗] such that

(i) (user optimality) x∗i is a maximizer of (1) given x∗i ,
p∗ and w∗i for every i;

(ii) (market efficiency) p∗ ≥ 0,
∑m

i=1x
∗
i j ≤ s j , p∗j (s j −∑m

i=1x
∗
i j ) = 0 for all j. This condition says that if

tone power capacity s j is greater than or equal to the
total power consumption for tone j,

∑m
i=1x

∗
i j , then its

equilibrium price p∗j = 0;

(iii) (budgeting according to demands) given x∗, w∗ is a
maximizer of

max
w

∑

i

(

max

{

0, di −
∑

j

x∗i j

})

wi,

s.t.
∑

i

wi = m, w ≥ 0.
(3)

This condition says that if user i’s power demand is
not met, that is, di −

∑
jxi j > 0, then one should

allocate more or all “money budget” to user i. Any
budget allocation is optimal if di−

∑
jxi j ≤ 0 for all i,

that is, if every user’s physical power demand is met.

Since the “Budgeting” agent’s problem is a bounded
linear maximization, and all other agents’ problems are
identical to those in Ye [11], we have the following corollary.

Corollary 4.1. The communication spectrum market with
Shannon utilities has a competitive equilibrium that satisfies
each user’s tone power demand, if the total power demand is
less than or equal to the available total power supply.

Now consider the KKT conditions of (1):

λp∗ −∇xiui
(

x∗i , x∗i
) ≥ 0,

λ ≥ 0,

λ ·
((

p∗
)T

x∗i −w∗i
)
= 0,

(x∗i )T ·
(
λp∗ −∇xiui

(
x∗i , x∗i

)) = 0,
(

p∗
)T

x∗i −w∗i ≤ 0,

x∗i ≥ 0,

(4)

where ∇xiu(xi, xi) ∈ Rn denotes any subgradient vector of
u(xi, xi) with respect to xi.

Since λp∗ ≥ ∇xiui(x∗i , x∗i ) and (∇xiui(xi, xi)) j = 1/σi j +
∑

k /= ia
i
k jxk j + xi j > 0, for all j, we have p∗ > 0 and λ > 0.

Then, (p∗)Tx∗i = w∗i . The optimality conditions in (4) can
be simplified to

w∗i · ∇xiui
(

x∗i , x∗i
) ≤

(
∇xiui

(
x∗i , x∗i

)T
x∗i
)
· p∗,

(
p∗
)T

x∗i = w∗i ,

x∗i ≥ 0.

(5)
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The complete necessary and sufficient conditions for a
competitive equilibrium with satisfied power demands can
be summarized as

w∗i · ∇xiui
(

x∗i , x∗i
)
≤
(
∇xiui

(
x∗i , x∗i

)T
x∗i
)
· p∗, ∀i,

∑

i

x∗i j ≤ s j , ∀ j,

sTp∗ ≤∑
i
w∗i ,

max

{

0, di −
∑

j

x∗i j

}

− λ ≤ 0, ∀i,

w∗i

(

max

{

0, di −
∑

j

x∗i j

}

− λ

)

= 0, ∀i,
∑

i

w∗i = m,

x∗i , p∗, w∗ ≥ 0, ∀i.
(6)

Note that the conditions (p∗)Tx∗i = wi for all i are implied
by the conditions in (6): multiplying x∗i ≥ 0 to both sides
of the first inequality, we have (p∗)Tx∗i ≥ wi for all i, which,
together with other inequality conditions in (6), imply

∑

i

wi ≥ sTp∗ ≥ (p∗
)T
(
∑

i

x∗i

)

=
∑

i

(
p∗
)T

x∗i ≥
∑

i

wi, (7)

that is, every inequality in the sequence must be tight, which
implies (p∗)Tx∗i = wi for all i.

On the other hand, the 4–6th conditions in (6) are
optimality conditions of budget allocator’s linear program,
where λ is the dual variable. Then, we have a characterization
theorem of a competitive equilibrium that satisfies power
demands.

Theorem 4.2. Every equilibrium of the discretized communi-
cation spectrum market with the Shannon utility that satisfies
power demands has the following properties:

(1) p∗ > 0 (every tone power has a price);

(2)
∑

ix
∗
i = s (all powers are allocated);

(3) (p∗)Ts =∑iw
∗
i (all user budgets are spent);

(4)
∑

jx
∗
i j ≥ dj for all i (all user demands are met);

(5) If x∗i j > 0 then (∇xiui(x∗i , x∗i )Tx∗i ) · p∗j − wi ·
(∇xiui(x∗i , x∗i )) j = 0 for all i, j (every user only
purchases most valuable tone power).

Proof. Note that

(
∇xiui

(
xi, xi

))

j
= 1

σi j +
∑

k /= ia
i
k jxk j + xi j

> 0, ∀x ≥ 0.

(8)

Since wi cannot be zero for all i, there is at least one i such
that

wi · ∇xiui
(

x∗i , x∗i
)
> 0, (9)

so that the first inequality of (6) implies that p∗ > 0.
The second property is from (p∗)T(

∑
ix
∗
i ) = (p∗)Ts,∑

ix
∗
i ≤ s and p∗ > 0.
The third is from (p∗)Tx∗i = wi for all i and

∑
ix
∗
i = s.

We prove the fourth property by contradiction. Suppose,
di −

∑
jx
∗
i j > 0 for i ∈ I for a nonempty index set I . Then,

wi = 0 for all i /∈I so that x∗i = 0 for all i /∈I . Then,

∑

i∈I
di >

∑

i∈I

∑

j

x∗i j =
∑

i

∑

j

x∗i j =
∑

j

s j , (10)

which is a contradiction to the assumption
∑

idi ≤
∑

j s j .
The last one is from the complementarity condition of

user optimality.

The fourth property of Theorem 4.2 implies that equilib-
rium conditions (6) can be simplified to

w∗i · ∇xiui
(

x∗i , x∗i
) ≤

(
∇xiui

(
x∗i , x∗i

)T
x∗i
)
· p∗, ∀i,

∑

j

x∗i j ≥ di, ∀i,

∑

i

x∗i j ≤ s j , ∀ j,

sTp∗ ≤
∑

i

w∗i ,

∑

i

w∗i = m,

x∗i , p∗, w∗ ≥ 0, ∀i.
(11)

Note that the constraint
∑

iw
∗
i = m is merely a normalizing

constraint and it can be replaced by another type of nor-
malizing constraint such as

∏
iw
∗
i ≥ 1. Moreover, multiple

competitive equilibria may exist due to the nonconvexity
of the optimality conditions of the spectrum management
problem with minimal user power demands.

4.2. Budget Allocation on Balancing Individual Utilities. The
second question is whether or not the “Budgeting” agent can
adjust “monetary budget” for each user such that a certain
fairness is achieved in the spectrum market; for example,
every user obtains the same utility value, which is also a
critical issue in spectrum management. We again give an
affirmative answer in this section.

Here, a competitive market equilibrium is a density point
[x∗1 , . . . , x∗m, p∗, w∗] such that

(i) (user optimality) x∗i is a maximizer of (1) given x∗i ,
p∗ and w∗i for every i;

(ii) (market efficiency) p∗ ≥ 0,
∑m

i=1x
∗
i j ≤ s j , p∗j (s j −∑m

i=1x
∗
i j ) = 0 for all j;
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(iii) (budgeting according to individual utilities) Given
x∗, w∗ is a minimizer of

min
w

∑

i

ui
(

x∗i , x∗i
)
w∗i , s.t.

∑

i

wi = m, w ≥ 0. (12)

This condition says that if user i’s utility is higher
than any others’, that is, ui(x∗i , x∗i ) > uj(x∗j , x∗j ), then
one should shift “money budget” from user i to user
j. Any budget allocation is optimal if ui(x∗i , x∗i ) are
identical for all i, that is, if every user has the same
utility value.

Since the “Budgeting” agent’s problem is again a
bounded linear maximization, and all other agents’ problems
are identical to those in Ye [11], we have the following
corollary.

Corollary 4.3. The communication spectrum market with
Shannon utilities has a competitive equilibrium that balances
each user’s utility value.

The complete necessary and sufficient conditions for
a competitive equilibrium with balanced utilities can be
summarized as

w∗i · ∇xiui
(

x∗i , x∗i
) ≤ (∇xiui

(
x∗i , x∗i

)T
x∗i
) · p∗, ∀i,

∑

i

x∗i j ≤ s j , ∀ j,

sTp∗ ≤
∑

i

w∗i ,

ui
(

x∗i , x∗i
)− λ ≥ 0, ∀i,

w∗i
(
ui
(

x∗i , x∗i
)− λ

) = 0, ∀i,
∑

i

w∗i = m,

x∗i , p∗, w∗ ≥ 0, ∀i.
(13)

Note that the conditions (p∗)Tx∗i = wi for all i are implied
by the conditions in (13). On the other hand, the 4–
6th conditions in (13) are optimality conditions of budget
allocator’s linear program for balancing utilities, where λ is
the dual variable.

Again, we have a characterization theorem of a competi-
tive equilibrium that balances individual utilities.

Theorem 4.4. Every equilibrium of the discretized communi-
cation spectrum market with the Shannon utility that balances
individual utilities has the following properties:

(1) p∗ > 0 (every tone power has a price);

(2)
∑

ix
∗
i = s (all powers are allocated);

(3) (p∗)Ts =∑iw
∗
i (all user budgets are spent);

(4) ui(x∗i , x∗i ) are identical for all i (all user utilities are the
same);

(5) If x∗i j > 0 then (∇xiui(x∗i , x∗i )Tx∗i ) · p∗j − wi ·
(∇xiui(x∗i , x∗i )) j = 0 for all i, j (every user only
purchases most valuable tone power).

Proof. The proof of properties 1, 2, 3, and 5 are the same as
Theorem 4.2. The fourth property is from the 5th condition
of (13). If wi = 0, then the user cannot participate the game.
Therefore, wi > 0 and ui(x∗i , x∗i ) = λ,∀i by the 5th condition
of (13), which implies all user utilities are identical.

The fourth property of Theorem 4.4 implies that equilib-
rium conditions (13) can be simplified to

w∗i · ∇xiui
(

x∗i , x∗i
) ≤ (∇xiui

(
x∗i , x∗i

)T
x∗i
) · p∗, ∀i,

ui
(

x∗i , x∗i
) = λ, ∀i,

∑

i

x∗i j ≤ s j , ∀ j,

sTp∗ ≤
∑

i

w∗i ,

∑

i

w∗i = m,

x∗i , p∗, w∗ ≥ 0, ∀i.
(14)

5. An Illustration Example

Consider two channels f1 and f2, and two users x and y. Let
the Shannon utility function for user x be

log

(

1 +
x1

1 + y1

)

+ log

(

1 +
x2

4 + y2

)

, (15)

and one for user y be

log

(

1 +
y1

2 + x1

)

+ log

(

1 +
y2

4 + x2

)

, (16)

and let the aggregate social utility be the sum of the two
individual user utilities.

Assume a competitive spectrum market with power
supply for two channels is s1 = s2 = 2 and the initial
endowments for two users is wx = wy = 1. Then the
competitive solution is

p1 = 3
5

, p2 = 2
5

,

x1 = 5
3

, x2 = 0,

y1 = 1
3

, y2 = 2,

(17)

where the utility of user x is 0.3522, the utility of user y is
0.2139, and the social utility has value 0.5661.

Now consider each of them has a physical power demand
dx = dy = 2. From above example we find x1 + x2 = 5/3 can
not satisfy user x’s power demand dx = 2 if wx = wy = 1.
By the proposed method, we can adjust the initial budget
endowments to wx = 6/5 and wy = 4/5, then the equilibrium
price will remain the same and the equilibrium allocation
will be

x1 = 2, x2 = 0,

y1 = 0, y2 = 2,
(18)
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Iterative algorithm for budget allocation on satisfying power demands

Step 1: Set power supply of each channel s j = m, j = 1, . . . ,n.
Step 2: Initialize budget assigned to each user wi = 1, i = 1, . . . ,m.
Step 3: Loop:

(i) Compute competitive economy equilibrium [x∗1 , . . . , x∗m, p∗] under s j , wi

according to the model in [11].
(ii) Obtain total allocated power for each user i,

∑
jx
∗
i j .

(iii) Calculate average power shortage, avg short =∑i(di −
∑

jx
∗
i j )/m,

and minimal user budget, min w = mini wi.
(iv) Update wi = wi + (((di −

∑
jx
∗
i j )− avg short)/m · n) ·min w, i = 1, . . . ,m.

Until (di −
∑

jx
∗
i j )/di ≤ error tolerance, i = 1, . . . ,m.

Algorithm 1

Iterative algorithm for budget allocation on balancing individual utilities

Step 1: Set power supply of each channel s j = m, j = 1, . . . ,n.
Step 2: Initialize budget assigned to each user wi = 1, i = 1, . . . ,m.
Step 3: Loop:

(i) Compute competitive economy equilibrium [x∗1 , . . . , x∗m, p∗] under s j , wi

according to the model in [11].
(ii) Obtain individual utility of each user ui.
(iii) Calculate average reciprocal of individual utility, avg rec u =∑i(1/ui)/m,

and minimal user budget, min w = mini wi.
(iv) Update wi = wi + ((1/ui − avg rec u)/avg rec u) ·min w, i = 1, . . . ,m.

Until (maxi ui −mini ui)/mini ui ≤ difference tolerance.

Algorithm 2

where the utility of user x is 0.4771, the utility of user y is
0.1761, and the social utility has value 0.6532.

Since the Nash equilibrium model only considers each
user’s power demand, we set the power constraints of user
x and user y as 2 and get a Nash equilibrium x1 = 2, x2 = 0,
y1 = 1, y2 = 1, where the utility of user x is 0.3010, the
utility of user y is 0.1938, and the social utility has value
0.4948. Since the power resource supply of each channel is
assumed to be unconstrained in the Nash model, we see that
Channel 1 supplies 3 units power and Channel 2 supplies
1. Even though, comparing the competitive equilibrium and
Nash equilibrium solutions, one can see that the competitive
equilibrium provides a power distribution that not only
meets physical power demand and supply constraints but
also achieves a much higher social utility than the Nash
equilibrium does.

Now consider user x and user y need to have more
balanced individual utilities. By the proposed method, we
can adjust the initial endowments to wx = 4/5 and wy = 6/5,
then the equilibrium price will remain the same and the
equilibrium power distribution will be

x1 = 4
3

, x2 = 0,

y1 = 2
3

, y2 = 2,
(19)

where the utilities of user x and user y are both 0.25527, and
the social utility is 0.51054.

If the power constraints of user x and user y are set as
4/3 and 8/3, respectively, then the Nash equilibrium will be
x1 = 4/3, x2 = 0, y1 = 5/3, y2 = 1, where the utility of user x
is 0.1761 , the utility of user y is 0.2730, and the social utility
has value 0.4491. Comparing the competitive equilibrium
and Nash equilibrium solutions again, one can see that the
competitive equilibrium provides a power distribution that
not only makes both users with an identical utility value but
also achieves a higher social utility than the Nash equilibrium
does.

6. Numerical Simulations

This section presents some computer simulation results on
using two different approaches to achieve budget alloca-
tion for satisfying each user’s power demand or balancing
individual utilities. We compare the competitive equilibrium
solution with Nash equilibrium solution in social utility and
individual utilities under various number of channels and
number of users in a weak-interference communication envi-
ronment. In a weak-interference communication channel,
the Shannon utility function is approximated by

ui
(

xi, xi
) =

n∑

j=1

log

(

1 +
xi j

σi j + aij
(∑

k /= ixk j
)

)

, (20)

where aij represent the average of normalized crosstalk ratios

for k /= i. Furthermore, we assume 0 ≤ aij ≤ 1, that is,
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Figure 2: Convergence of iterative algorithm for satisfying power demands.

Table 1: Number of iterations required to achieve the budget allocation where the competitive equilibrium satisfies power demands di =
0.5(

∑
j s j /m) and di =

∑
j s j /m by the iterative algorithm, error tolerance = 0.01, average of 10 simulation runs.

No. of channels
di = 0.5(

∑
j s j /m) di =

∑
j s j /m

No. of users No. of users

2 4 6 8 10 2 4 6 8 10

2 1 1 1 1 1 5 14 20 22 38

4 1 1 1 1 1 5 18 44 49 85

6 1 1 1 1 1 5 20 37 47 65

8 1 1 1 1 1 7 21 35 52 66

10 1 1 1 1 1 6 18 33 53 66

12 1 1 1 1 1 6 18 35 56 71

14 1 1 1 1 1 6 20 35 50 70

16 1 1 1 1 1 6 18 35 49 74

18 1 1 1 1 1 6 18 35 45 70

20 1 1 1 1 1 6 18 31 50 68

Table 2: Comparisons of CPU time (seconds) required to achieve the budget allocation where the competitive equilibrium satisfies power
demands di =

∑
j s j /m between two approaches, error tolerance = 0.01 and average of 10 simulation runs.

No. of channels
No. of users

2 4 6 8 10

M1∗ M2† M1 M2 M1 M2 M1 M2 M1 M2

2 0.033 1.085 0.049 1.228 0.069 1.358 0.088 1.624 0.136 1.882

4 0.022 1.164 0.080 1.479 0.267 2.255 0.463 3.465 1.011 6.450

6 0.028 1.270 0.106 2.207 0.312 5.129 0.639 10.545 1.947 19.406

8 0.025 1.516 0.103 3.788 0.510 10.305 0.875 25.697 2.592 51.210

10 0.035 1.889 0.130 7.222 0.525 27.027 0.938 44.909 2.455 111.270

12 0.028 2.482 0.158 12.558 0.603 41.747 1.816 93.028 3.164 190.489

14 0.028 3.231 0.161 20.454 0.528 66.719 2.464 150.099 2.708 322.979

16 0.039 4.793 0.184 33.251 0.684 102.846 1.260 263.820 6.006 519.137

18 0.041 6.529 0.250 46.043 0.627 150.047 2.181 385.401 5.781 773.646

20 0.042 9.322 0.247 66.839 0.703 215.038 2.645 553.401 4.689 1179.129
∗M1: iterative algorithm
†M2: solving the entire optimal conditions.
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Table 3: Number of iterations and CPU time (seconds) required to achieve the budget allocation where the competitive equilibrium satisfies
power demands di = 0.95(

∑
j s j /m) in large-scale problems by the iterative method, error tolerance = 0.05 and average of 10 simulation runs.

No. of channels
di = 0.95(

∑
j s j /m)

2 users 10 users 50 users 100 users

Iterations Time Iterations Time Iterations Time Iterations Time

256 1 0.072 1 2.162 5 400.092 17 4751.578

512 1 0.255 1 5.656 1 148.097 3 2277.144

1024 1 0.388 1 15.978 1 365.290 1 1720.400

Table 4: Comparisons of social utility and individual utility between competitive equilibrium(CE) with power demands di =
∑

j s j /m and
Nash equilibrium(NE), error tolerance = 0.01 and average of 100 simulation runs.

No. of channels
No. of users

2 4 6 8 10

Social∗ Indiv† Social Indiv Social Indiv Social Indiv Social Indiv

2 9.20% 83% 8.51% 58% 7.85% 53% 8.42% 51% 9.38% 51%

4 6.78% 87% 6.21% 70% 6.21% 62% 6.40% 58% 6.11% 57%

6 5.91% 88% 6.20% 81% 5.68% 71% 5.59% 64% 5.57% 62%

8 6.83% 92% 5.26% 78% 5.65% 71% 5.46% 69% 5.19% 67%

10 6.14% 94% 5.82% 80% 5.31% 74% 5.26% 70% 5.05% 67%

12 6.18% 94% 5.76% 84% 5.50% 77% 5.50% 74% 5.24% 71%

14 5.73% 95% 5.49% 84% 5.55% 79% 5.26% 74% 5.04% 70%

16 6.24% 97% 5.35% 83% 5.27% 81% 5.03% 75% 5.02% 74%

18 5.62% 96% 5.64% 86% 5.33% 82% 5.22% 77% 5.28% 76%

20 5.83% 97% 5.26% 88% 5.34% 85% 5.25% 81% 5.02% 74%
∗Social: (average social utility in CE− average social utility in NE)/average social utility in NE
†Indiv: average percentage in number of users obtaining higher individual utilities in CE than in NE.

the average cross-interference ratio is not above 1 or it is
less than the self-interference ratio (always normalized to 1).
In all simulated cases, the channel background noise levels
σi j are chosen randomly from the interval (0,m], and the
normalized crosstalk ratios aij are chosen randomly from the
interval [0, 1]. The power supply of each channel j is s j =
m, j = 1, . . . n. The total budget is

∑
iwi = m. All simulations

are run on a Genuine Intel CPU 1.66 GHz Notebook.

6.1. Budget Allocation on Satisfying Individual Power Dem-
ands. In this section, we compute the budget allocation
where the competitive equilibrium meets power demands
di = 0.5(

∑
j s j /m) or di =

∑
j s j /m for all users under various

number of channels and number of users. Two approaches
are adopted to find out the budget allocation strategy:
one is solving the entire optimality conditions in (11) by
optimization solver LINGO; the other is iteratively adjusting
total budget m among different users based on whether
their power demands are satisfied or not. In the iterative
algorithm, all user budgets wi are set as 1 initially, then the
competitive equilibrium can be derived from given channel
capacity and user budget. If some user’s power demand is
not satisfied in the resulting competitive equilibrium, the
budgeting agent reallocates budget to users and computes a
new competitive equilibrium. The procedure reiterates until
a desired competitive equilibrium is reached for satisfying

power demands. The iterative algorithm that allocates more
budget to the users with more power shortage and keeps the
total budget as m is summarized in Algorithm 1.

In each iteration, given channel capacity s j and user
budget wi, the competitive equilibrium is derived by an
iterative waterfilling method [13]. Since the competitive
equilibrium in each iteration satisfies

∑
ix
∗
i j = s j = m and

∑
iw
∗
i = m, and each user optimizes his own utility under

his budget constraint and the equilibrium prices, relatively
increasing one user’s budget makes him obtain more powers
and others obtain fewer powers. In Algorithm 1, the user
budget is reassigned according to the power shortage of each
user in the equilibrium solution. The idea of comparing the
user’s power shortage with average shortage makes more
budget be allocated to the users with higher power shortage
and the total budget remains m. The term min w aims to
keep new wi not less than 0. The power demand value
and the error tolerance have a significant impact on the
number of iterations required to converge to the budget
allocation where the competitive equilibrium meets the
power demands. Figure 2 indicates the convergence behavior
of the iterative algorithm for satisfying power demands for
the case of 2 users and 2 channels illustrated in Section 5.
Each user has a physical power demand dx = dy = 2. The
error tolerance is set as 0.01. As the figure shows, at first,
user x has power shortage and user y has power surplus, then
the algorithm converges after eight iterations and the errors
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Table 5: Number of iterations required to achieve the budget allocation where the competitive equilibrium has balanced individual utilities
by the iterative algorithm, difference tolerance = 0.01 and average of 10 simulation runs.

No. of channels
No. of users

2 4 6 8 10

Iter∗ Diff+ Iter Diff Iter Diff Iter Diff Iter Diff

2 5 0.0076 10 0.0078 14 0.0079 18 0.0080 97 0.0080

4 4 0.0075 20 0.0079 27 0.0080 21 0.0080 74 0.0080

6 4 0.0077 9 0.0079 18 0.0080 22 0.0081 46 0.0081

8 4 0.0080 8 0.0078 40 0.0079 149 0.0081 33 0.0080

10 4 0.0080 13 0.0081 17 0.0079 57 0.0081 24 0.0080

12 4 0.0078 16 0.0080 35 0.0079 31 0.0080 29 0.0080

14 5 0.0078 8 0.0080 13 0.0079 21 0.0080 67 0.0080

16 5 0.0078 9 0.0080 12 0.0079 27 0.0080 48 0.0080

18 4 0.0076 6 0.0079 10 0.0078 18 0.0079 26 0.0080

20 4 0.0077 7 0.0078 8 0.0079 11 0.0079 20 0.0079
∗Iter: number of iterations
+Diff: (maxi ui −mini ui)/mini ui.

Table 6: Comparisons of CPU time (seconds) required to achieve the budget allocation where competitive equilibrium has balanced
individual utilities between two approaches, difference tolerance = 0.01 and average of 10 simulation runs.

No. of channels
No. of users

2 4 6 8 10

M1∗ M2† M1 M2 M1 M2 M1 M2 M1 M2

2 0.048 0.330 0.056 0.364 0.061 0.447 0.060 0.575 0.239 0.837

4 0.046 0.377 0.088 0.647 0.127 1.100 0.148 1.892 0.738 3.606

6 0.048 0.467 0.075 1.005 0.116 2.469 0.353 5.425 1.550 11.273

8 0.041 0.641 0.069 2.052 0.319 5.555 1.663 13.305 1.422 26.173

10 0.070 0.872 0.113 3.366 0.214 10.264 1.759 27.294 1.056 54.902

12 0.063 1.247 0.139 6.345 0.397 19.048 0.919 47.069 1.428 101.013

14 0.064 1.822 0.095 9.692 0.217 32.551 0.577 81.780 2.633 168.536

16 0.056 2.542 0.119 14.928 0.216 52.972 0.953 123.817 3.320 274.966

18 0.058 3.328 0.103 22.686 0.261 74.310 1.117 191.992 1.733 401.128

20 0.057 4.333 0.098 31.805 0.192 102.436 0.506 272.994 1.674 557.339
∗M1: iterative algorithm
†M2: solving entire optimal conditions.

(di −
∑

jx
∗
i j )/di for user x and user y are both below error

tolerance 0.01.
Table 1 lists the number of iterations required to find

out the budget allocation with di = 0.5(
∑

j s j /m) and di =∑
j s j /m by the above iterative algorithm. The cases of di =∑
j s j /m need more iterations since the total power demand∑
idi is equal to the total channel capacity

∑
j s j . This require-

ment is tight and the budget allocation makes each user get
the same physical power in the competitive equilibrium, that
is,
∑

jx
∗
i j = n, for all i. Table 2 compares the CPU time used

by two different approaches under power demands di =∑
j s j /m. The iterative algorithm spends much less time than

the method of solving entire optimal conditions on finding
out the budget allocation and the competitive equilibrium.
We can also use the iterative method to solve large scale
problems. The number of iterations and the CPU time
required to solve large-scale problems are listed in Table 3.
We observe that more iterations and CPU time spending

for 100 users and 256 channels than those spending for 100
users and 1024 channels because the stop condition of the
iterative algorithm is “(di −

∑
jx
∗
i j )/di ≤ error tolerance.” In

our simulations in Table 3, di = 0.95∗ 256 for 100 users and
256 channels and di = 0.95 ∗ 1024 for 100 users and 1024
channels, therefore the case of 100 users and 1024 channels
requires fewer iterations and less total CPU time to reach
the error tolerance 0.05 than the case of 100 users and 256
channels does. However the CPU time spending for one
iteration in the case of 100 users and 256 channels is less than
that in the case of 100 users and 1024 channels.

In comparing competitive equilibrium with Nash equi-
librium, the total power allocated to user i,

∑
jx
∗
i j , in

competitive equilibrium is used as the power constraint for
user i in Nash equilibrium model to derive a Nash equilib-
rium. The simulation results averaged over 100 independent
runs indicates that the average social utility of competitive
equilibrium is higher than that of Nash equilibrium in



10 EURASIP Journal on Advances in Signal Processing

Table 7: Number of iterations and CPU time (seconds) required to achieve the budget allocation where the competitive equilibrium has
balanced individual utilities in large-scale problems by the iterative method, difference tolerance = 0.05 and average of 10 simulation runs.

No. of channels
2 users 10 users 50 users 100 users

Iterations Time Iterations Time Iterations Time Iterations Time

256 1 0.119 4 6.775 8 646.620 16 4005.344

512 1 0.211 3 14.309 6 964.164 8 4750.842

1024 1 0.452 3 35.631 5 1663.111 5 6326.120

Table 8: Comparisons of social utility and individual utility between competitive equilibrium (CE) with balanced individual utilities and
Nash equilibrium (NE), difference tolerance = 0.01 and average of 100 simulation runs.

No. of channels
No. of users

2 4 6 8 10

Social∗ Indiv† Social Indiv Social Indiv Social Indiv Social Indiv

2 0.96% 46% −0.59% 45% −0.41% 47% −0.34% 48% −0.44% 48%

4 1.05% 55% 0.83% 53% 0.42% 50% 0.01% 48% −0.42% 48%

6 1.14% 56% 0.08% 50% −0.15% 48% −0.08% 48% 0.01% 49%

8 1.27% 58% 0.66% 57% 0.17% 51% 0.00% 49% 0.19% 52%

10 1.15% 61% 0.88% 58% 0.52% 54% 0.22% 52% −0.08% 53%

12 1.35% 66% 0.78% 57% 0.50% 56% 0.39% 54% 0.16% 52%

14 1.43% 67% 0.85% 60% 0.28% 55% 0.10% 52% 0.16% 54%

16 1.60% 75% 0.88% 60% 0.42% 55% 0.30% 54% 0.29% 55%

18 1.63% 72% 0.71% 59% 0.34% 54% 0.14% 55% 0.16% 52%

20 1.50% 73% 0.80% 59% 0.30% 56% 0.11% 54% 0.17% 54%
∗Social: (average social utility in CE− average social utility in NE)/average social utility in NE
†Indiv: average percentage in number of users obtaining higher individual utilities in CE than in NE.

all cases with di = 0.5(
∑

j s j /m) and in most cases with
di =

∑
j s j /m, even though the difference is not significant.

However, in certain type of problems, for instance, the
channels being divided into two categories: high quality and
low quality, the competitive equilibrium solution performs
much better than the Nash equilibrium solution does. Table 4
compares social utility and individual utility between the
competitive equilibrium and the Nash equilibrium when one
half of channels with σi j , j = 1, . . . ,n/2, chosen randomly
from the interval (0, 0.1] and the other half of channels
with σi j , j = n/2 + 1, . . . ,n, chosen randomly from the
interval [1,m]. One can see that the competitive equilibrium
significantly outperforms the Nash equilibrium in the social
utility value and a much higher portion of users obtain
higher individual utilities in the competitive equilibrium
than those in the Nash equilibrium.

6.2. Budget Allocation on Balancing Individual Utilities. To
consider fairness, we adjust each user’s endowed monetary
budget wi to reach a competitive equilibrium where the
individual utilities are balanced. Herein we also adopt two
approaches to find out the budget allocation: one is solving
the entire optimality conditions in (14) by optimization
solver LINGO; the other is iteratively adjusting total budget
m among different users based on their individual utili-
ties.The iterative algorithm that shifts some budget from
high-utility users to low-utility users and keeps the total
budget as m is summarized in Algorithm 2.

Algorithm 2 is similar to Algorithm 1 for budget alloca-
tion on satisfying power demands. For balancing individual
utilities, herein the user budget is adjusted based on the
individual utility in the equilibrium solution. The idea of
using the reciprocal of individual utility makes some budget
be transferred from the high-utility users to low-utility users.
Since relatively increasing one user’s budget makes him
obtain more powers and others obtain fewer powers, this
will decrease the difference between highest individual utility
and lowest individual utility. The term min w aims to keep
new wi not less than 0. The difference tolerance significantly
affects the number of iterations required to converge to the
budget allocation. Figure 3 indicates the convergence behav-
ior of the iterative algorithm for balancing individual utilities
for the case of 2 users and 2 channels illustrated in Section 5.
The difference tolerance is set as 0.01. As the figure shows, at
first, the difference (maxi ui −mini ui)/mini ui is higher than
0.6, then the algorithm converges after eighteen iterations
and the difference is below difference tolerance 0.01.

Table 5 lists the number of iterations required to converge
to the budget allocation for balancing individual utilities
by the iterative algorithm. Table 6 compares the CPU time
used by two different approaches to achieve the budget
allocation. The iterative algorithm spends less CPU time than
the method of solving the entire optimal conditions. Treating
the budget allocation problem by solving the entire optimal
conditions can obtain a budget allocation where the com-
petitive equilibrium has exactly identical individual utility
value for each user. Table 7 lists the number of iterations
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Table 9: Comparisons of social utility and individual utility between competitive equilibrium(CE) with balanced individual utilities and
Nash equilibrium(NE) under two tiers of channels, difference tolerance = 0.01 and average of 100 simulation runs.

No. of channels

No. of users

2 4 6 8 10

Social∗ Indiv† Social Indiv Social Indiv Social Indiv Social Indiv

2 9.02% 81% 9.86% 73% 10.01% 69% 8.85% 67% 9.62% 67%

4 7.68% 80% 7.67% 78% 8.30% 77% 8.54% 71% 8.23% 71%

6 6.06% 87% 6.55% 81% 6.87% 77% 7.43% 76% 7.16% 75%

8 5.56% 88% 6.24% 81% 6.41% 78% 6.80% 76% 6.75% 75%

10 5.46% 87% 6.12% 84% 6.18% 80% 6.47% 77% 6.38% 75%

12 5.66% 88% 5.75% 84% 5.88% 80% 5.94% 79% 6.38% 77%

14 5.65% 91% 6.01% 85% 5.65% 82% 5.80% 81% 5.86% 77%

16 5.63% 92% 5.84% 89% 5.75% 83% 5.86% 82% 5.70% 79%

18 5.78% 94% 5.84% 88% 5.80% 83% 5.81% 83% 5.54% 80%

20 5.66% 94% 5.58% 88% 5.77% 86% 5.72% 81% 5.63% 80%
∗Social: (average social utility in CE− average social utility in NE)/average social utility in NE
†Indiv: average percentage in number of users obtaining higher individual utilities in CE than in NE.
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Figure 3: Convergence of iterative algorithm for balancing individual utilities.

and the CPU time required to solve large-scale problems for
balancing utilities by the iterative method. We observe that
more iterations are required for 100 users and 256 channels
than those required for 100 users and 1024 channels because
the stop condition of the proposed algorithm is “(maxi ui −
mini ui)/mini ui ≤ difference tolerance.” In our simulations
in Table 7, the balanced individual utilities for 100 users and
1024 channels are higher than those for 100 users and 256
channels, therefore the case of 100 users and 1024 channels
requires fewer iterations to reach the difference tolerance 0.05
than the case of 100 users and 256 channels does. However
the CPU time spending for one iteration in the case of 100
users and 256 channels is less than that in the case of 100
users and 1024 channels.

In comparing competitive equilibrium with Nash equi-
librium, the total power allocated to each user in competitive
equilibrium is also used as the power constraint to derive
a Nash equilibrium. The simulation results averaged over
100 independent runs are displayed in Table 8. We find that,
in most cases, more users get higher individual utilities in
competitive equilibrium than those in Nash equilibrium
and the social utility of competitive equilibrium remains
higher than that of Nash equilibrium. Table 9 lists the
comparisons in the communication environment involving
two tiers of channels, one half of channels with σi j , j =
1, . . . ,n/2, chosen randomly from the interval (0, 0.1] and the
other half of channels with σi j , j = n/2 + 1, . . . ,n, chosen
randomly from the interval [1,m]. We can observe that the
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competitive equilibrium not only makes more users obtain
higher individual utilities but also significantly enhances the
social utility. In other words, using budget allocation we
can derive a competitive equilibrium that provides a power
allocation strategy to balance individual utilities without
sacrificing the social utility. Moreover, in the competitive
equilibrium model with balanced individual utilities, all
users have identical utility value. However, in the Nash
equilibrium model the average difference between maximal
individual utility and minimal individual utility is over 15%.

7. Conclusions

This study proposes two competitive equilibrium models: (1)
to satisfy each user’s physical power demand and (2) to bal-
ance all individual utilities in a competitive communication
spectrum economy. Theoretically, we prove that a competi-
tive equilibrium with physical power demand requirements
always exists for the communication spectrum market with
Shannon utility if the total power demand is less than or
equal to the available total power supply. A competitive
equilibrium with identical individual utilities also exists for
the communication spectrum market with Shannon utility.
Computationally, we use two approaches to find out the
budget allocation where the competitive equilibrium satisfies
power demand or balances individual utilities: one solves the
characteristic equilibrium conditions and the other employs
an iterative tatonament -type method by adjusting budget to
each user. The iterative method performs significantly faster
and can efficiently solve large-scale problems, which makes
the competitive economy equilibrium model applicable in
real-time spectrum management.

In comparing with the Nash equilibrium solution under
the identical power usage of each user obtained from the
competitive equilibrium model, our computational results
show that the social utility of the competitive equilib-
rium solution is better than that of the Nash equilibrium
solution in most cases. Under the equilibrium condition
with balanced individual utilities, the competitive economy
equilibrium solution makes more users obtain higher indi-
vidual utilities than Nash equilibrium solution does without
sacrificing the social utility.

In this study, we propose a centralized algorithm to
reach a desired competitive equilibrium for satisfying power
demands or balancing individual utilities. In the future, a
distributed algorithm should be developed especially when a
centralized controller is not available in the network. Besides,
although the iterative method works well in our computa-
tional experiments, its convergence is unproven. We plan to
do so in future work. We would also consider further study in
how to adjust another exogenous factor s (power supply) to
achieve a better social solution while maintaining individual
satisfaction. That is, how to set the power supply capacity
for each channel to make spectrum power allocation more
efficient under the competitive equilibrium market model.

Acknowledgments

This research is supported in part by Taiwan NSC Grants
NSC-095-SAF-I-564-635-TMS, NSC 96-2416-H-158-003-

MY3, and the Fulbright Scholar Program. The research
also is supported in part by Taiwan NSC Grants NSC-095-
SAF-I-564-640-TMS, NSC 96-2416-H-027-004-MY3, and
the Fulbright Scholar Program, and supported in part by NSF
DMS-0604513.

References

[1] L. Walras, Elements of Pure Economics, or the Theory of Social
Wealth, Porcupine Press, Paris, France, 1874.

[2] S. T. Chung, S. J. Kim, J. Lee, and J. M. Cioffi, “A game-
theoretic approach to power allocation in frequency-selective
Gaussian interference channels,” in Proceedings of IEEE Inter-
national Symposium on Information Theory (ISIT ’03), p. 316,
Yokohama, Japan, June-July 2003.

[3] Z.-Q. Luo and J.-S. Pang, “Analysis of iterative waterfilling
algorithm for multiuser power control in digital subscriber
lines,” EURASIP Journal on Applied Signal Processing, vol.
2006, Article ID 24012, 10 pages, 2006.

[4] W. Yu, G. Ginis, and J. M. Cioffi, “Distributed multiuser power
control for digital subscriber lines,” IEEE Journal on Selected
Areas in Communications, vol. 20, no. 5, pp. 1105–1115, 2002.

[5] N. Yamashita and Z.-Q. Luo, “A nonlinear complementarity
approach to multiuser power control for digital subscriber
lines,” Optimization Methods & Software, vol. 19, no. 5, pp.
633–652, 2004.

[6] R. Cendrillon, W. Yu, M. Moonen, J. Verlinden, and T.
Bostoen, “Optimal multiuser spectrum balancing for digital
subscriber lines,” IEEE Transactions on Communications, vol.
54, no. 5, pp. 922–933, 2006.

[7] W. Yu, R. Lui, and R. Cendrillon, “Dual optimization meth-
ods for multiuser orthogonal frequency division multiplex
systems,” in Proceedings of IEEE Global Telecommunications
Conference (GLOBECOM ’04), vol. 1, pp. 225–229, Dallas, Tex,
USA, November-December 2004.

[8] V. M. K. Chan and W. Yu, “Joint multiuser detection and
optimal spectrum balancing for digital subscriber lines,”
EURASIP Journal on Applied Signal Processing, vol. 2006,
Article ID 80941, 13 pages, 2006.

[9] R. Lui and W. Yu, “Low-complexity near-optimal spectrum
balancing for digital subscriber lines,” in Proceedings of IEEE
International Conference on Communications (ICC ’05), vol. 3,
pp. 1947–1951, Seoul, Korea, May 2005.

[10] W. Yu and R. Lui, “Dual methods for nonconvex spectrum
optimization of multicarrier systems,” IEEE Transactions on
Communications, vol. 54, no. 7, pp. 1310–1322, 2006.

[11] Y. Ye, “Competitive communication spectrum economy and
equilibrium,” working paper, Stanford University, Stanford,
Calif, USA, October 2007.

[12] T. M. Cover and J. A. Thomas, Elements of Information Theory,
John Wiley & Sons, New York, NY, USA, 1991.

[13] Y. Xie, B. Armbruster, and Y. Ye, “Dynamic spectrum man-
agement with the competitive market model,” working paper,
Stanford University, Stanford, Calif, USA, February 2009.


	1. Introduction
	2.Mathematical Notations
	3. Competitive Communication Spectrum Market
	4. Budget Allocation in Competitive Communication Spectrum Market
	4.1. Budget Allocation on Satisfying Individual Power Demands.
	4.2. Budget Allocation on Balancing Individual Utilities.

	5. An Illustration Example
	6. Numerical Simulations
	6.1. Budget Allocation on Satisfying Individual Power Demands
	6.2. Budget Allocation on Balancing Individual Utilities.

	7. Conclusions
	Acknowledgments
	References

