Hindawi Publishing Corporation

EURASIP Journal on Advances in Signal Processing
Volume 2009, Article ID 451638, 13 pages
doi:10.1155/2009/451638

Research Article

Perceptual Dominant Color Extraction by Multidimensional

Particle Swarm Optimization

Serkan Kiranyaz,' Stefan Uhlmann (EURASIP Member),' Turker Ince,?
and Moncef Gabbouj (EURASIP Member)!

Signal Processing Department, Tampere University of Technology, P.O. Box 553, 33101 Tampere, Finland
2 Faculty of Computer Science, Izmir University of Economics, 35330 Izmir, Turkey

Correspondence should be addressed to Serkan Kiranyaz, serkan.kiranyaz@tut.fi
Received 25 March 2009; Revised 20 September 2009; Accepted 7 December 2009
Recommended by Moon Kang

Color is the major source of information widely used in image analysis and content-based retrieval. Extracting dominant colors
that are prominent in a visual scenery is of utmost importance since the human visual system primarily uses them for perception
and similarity judgment. In this paper, we address dominant color extraction as a dynamic clustering problem and use techniques
based on Particle Swarm Optimization (PSO) for finding optimal (number of) dominant colors in a given color space, distance
metric and a proper validity index function. The first technique, so-called Multidimensional (MD) PSO can seek both positional
and dimensional optima. Nevertheless, MD PSO is still susceptible to premature convergence due to lack of divergence. To address
this problem we then apply Fractional Global Best Formation (FGBF) technique. In order to extract perceptually important colors
and to further improve the discrimination factor for a better clustering performance, an efficient color distance metric, which uses
a fuzzy model for computing color (dis-) similarities over HSV (or HSL) color space is proposed. The comparative evaluations
against MPEG-7 dominant color descriptor show the superiority of the proposed technique.
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1. Introduction

DOMINANT Color (DC) extraction is basically a dynamic
color quantization process, which seeks for such prominent
color centers that minimize the quantization error. To
this end, studying human color perception and similarity
measurement in the color domain becomes crucial and there
is a wealth of research performed in this field. For example
in [1], van den Broek et al. focused on the utilization of
color categorization (called as focal colors) for content-based
image retrieval (CBIR) purposes and introduced a new color
matching method, which takes human cognitive capabilities
into account. They exploited the fact that humans tend to
think and perceive colors only in 11 basic categories. In
[2], Mojsilovi¢ et al. performed a series of psychophysical
experiments analyzing how humans perceive and measure
similarity in the domain of color patterns. One observation
worth mentioning here is that the human eye cannot perceive
a large number of colors at the same time, nor it is able to

distinguish similar (close) colors well. Based on this, they
showed that at the coarsest level of judgment, the human
visual system (HVS) primarily uses dominant colors (i.e., few
prominent colors in the scenery) to judge similarity.

The usual approach for DC extraction is to perform
clustering in a color domain. The most popular clustering
method, which is also used for MPEG-7 DC descriptor
(DCD) [3], is K-means, [4]. However, clustering is a
multimodal problem especially in high dimensions, which
contains many suboptimum solutions resulting in over-
and underclustering. Therefore, well-known deterministic
methods such as K-means, Max-Min [4], FCM [4], and
SOM [4] are susceptible to get trapped to the closest local
minimum since they are nothing but greedy descent meth-
ods, which start from a random point in the solution space
and perform a localized search. This fact eventually turns
the focus on stochastic Evolutionary Algorithms (EAs) [5]
such as Genetic Algorithms (GAs) [6], Genetic Programming
(GP) [7], Evolution Strategies (ESs), [8] and Evolutionary



Programming (EP) [9], all of which are motivated by the
natural evolution process and thus make use of evolutionary
operators. The common point of all is that EAs are in
population-based nature and can perform a global search.
So they may avoid becoming trapped in a local optimum
and find the optimum solution; however, this is never
guaranteed.

Conceptually speaking, Particle Swarm Optimization
(PSO) [10-12], which has obvious ties with the EA family,
lies somewhere in between GA and EP. Yet unlike GA, PSO
has no complicated evolutionary operators such as crossover,
selection, and mutation. In a PSO process, a swarm of
particles (or agents), each of which represents a potential
solution to an optimization problem, navigate through the
search space. Particles are initially distributed randomly over
the search space and the goal is to converge to the global
optimum of a function or a system. Several researchers have
shown that PSO exhibits a better clustering performance
than the aforementioned techniques [12—15]; however, when
the problem is multimodal, PSO may also become trapped in
local optima [16] due to the premature convergence problem
especially when the search space is of high dimensions
[12]. Furthermore, PSO has so far been applied to simple
clustering problems [12—-15], where the data space is limited
and usually in low dimensions and the number of clusters
(hence the solution space dimension) is kept reasonably
low (e.g., <10). Moreover, all clustering methods mentioned
earlier are static in nature; that is, the number of clusters has
to be specified a priori. This is also true for PSO since in its
basic form it can only be applied to a search space with a
fixed dimension. Particularly for dominant color extraction,
the optimal (true) number of DCs in an image is unknown
and should thus be determined within the (PSO) process.

In this paper, we shall address data clustering as an
optimization problem and present techniques, which extend
PSO in a proper way to find optimal (number of) clusters
in a multidimensional space. To alleviate the premature
convergence problem, the so-called Fractional Global Best
Formation (FGBF) collects all promising components from
each particle and fractionally creates an artificial Global
Best (GB) particle, the aGB, which may guide the swarm
better than the swarm’s native gbest particle [11] in such a
way that the swarm can converge to the global optimum
(or near-optimum) solution even in high dimensions and
usually in earlier stages. In order to achieve a dynamic
clustering where the optimum number of clusters is also
determined within the process, we shall then present the so-
called MultiDimensional Particle Swarm Optimization (MD
PSO) method, which extends the native structure of PSO
particles in such a way that they can make inter-dimensional
passes with a dedicated dimensional PSO process [17].
Therefore, in a multidimensional search space where the
optimum dimension is unknown, swarm particles can seek
for both positional and dimensional optima. In recent works,
both techniques have been successfully applied over multi-
dimensional nonlinear function minimization and 2D data
clustering [17], optimization over dynamic environments
[18], and automatic design of artificial neural networks
[19, 20], respectively. In this paper we adapt both techniques
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to extract the optimal (number of) DCs in an image with
respect to a cluster validity index and color domain.

Cluster validity analysis is the assessment of the clustering
method’s output using a specific criterion for optimality, that
is, the so-called clustering validity index function [21]. Hence
the optimality of any clustering method can only be assessed
with respect to the validity index, which can be defined
over a particular data representation with a proper distance
(similarity) metric. Many existing DC extraction techniques,
particularly the ones widely used in CBIR systems such
as MPEG-7 DCD, have severe drawbacks and thus show a
limited performance. The main reason for this is because
most of them are designed based on some heuristics or
naive rules that are not formed with respect to what humans
or more specifically the human visual system (HVS) finds
“relevant” in color similarity. Therefore, it is of decisive
importance that human color perception is considered whilst
modeling and describing any color composition of an image.
In other words, when a particular color descriptor is designed
entirely based on HVS and color perception rules, further
discrimination power and hence certain improvements in
retrieval performance can be achieved. For this reason we
shall propose a fuzzy model to achieve a perceptual distance
metric over HSV (or HSL) color space, which provides means
of modeling color in a way HVS does. In this way the
discrimination between distinct colors is further enhanced,
which in turns improves the clustering (and DC extraction)
performance.

The rest of the paper is organized as follows. Section 2
surveys related work on DC extraction whilst presenting a
brief overview on data clustering. The applications of MD
PSO and FGBF for optimal dynamic clustering and the
proposed DC extraction technique are presented in detail
in Section 3. Section 4 provides the experiments conducted
over a real image database and discusses the results. Finally,
Section 5 concludes the paper.

2. Related Work

There is a wealth of research done and still going on
in developing efficient DC extraction methods, which can
be used in many applications, such as lossy compression
techniques, mobile and hand-held devices, low-cost color
displays, color look-up tables, and CBIR. In this article, we
shall restrict the focus on the CBIR domain, which employs
color as the descriptor for image retrieval. We shall then
briefly introduce major data clustering methods.

2.1. DC Descriptors. In order to solve the problems of static
quantization in color histograms, various DC descriptors,
for example, [3, 22-25], have been developed using dynamic
quantization with respect to image color content. DCs, if
extracted properly according to the aforementioned color
perception rules, can indeed represent the prominent colors
in any image. They have a global representation, which is
compact and accurate, and they are also computationally
efficient. MPEG-7 DC descriptor (DCD) is adopted as in
[23] where the method is designed with respect to HVS
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color perceptual rules. For instance, HVS is more sensitive
to changes in smooth regions than in detailed regions. Thus
colors are quantized more coarsely in the detailed regions
while smooth regions have more importance. To exploit this
fact, a smoothness weight (w(p)) is assigned to each pixel
(p) based on the variance in a local window. Afterwards,
the General Lloyd Algorithm (GLA, also referred to as Linde-
Buzo-Gray and it is equivalent to the well-known K-means
clustering method [4]) is used for color quantization. For a
color cluster C;, its centroid ¢; is calculated by

o 2wp)x(p)
S Xwlp)

and the initial clusters for GLA are determined by using a
weighted distortion measure, defined as,

x(p) € G (1)

Di =Y w(p)llx(p) —cill’, x(p) €C. 2)

This is used to determine which clusters to split until either
a maximum number of clusters (DCs), N§&, is achieved
or a maximum allowed distortion criteria, ep, is met.
Hence, pixels with smaller weights (detailed sections) are
assigned fewer clusters so that the number of color clusters
in the detailed regions where the likelihood of outliers’
presence is high is therefore suppressed. As the final step,
an agglomerative clustering (AC) is performed on the cluster
centroids to further merge similar color clusters so that there
is only one cluster (DC) hosting all similar color components
in the image. A similarity threshold T is assigned to the
maximum color distance possible between two similar colors
in a certain color domain (CIE-Luv, CIE-Lab, etc.). Another
merging criterion is the color area; that is, any cluster should
have a minimum amount of coverage area, T4, so as to be
assigned as a DC; otherwise, it will be merged with the closest
color cluster since it is just an outlier. Another important
issue is the choice of the color space since a proper color
clustering scheme for DC extraction tightly relies on the
metric. Therefore, a perceptually uniform color space should
be used and the most common ones are CIE-Luv and CIE-
Lab, which are designed such that color distances perceived
by HVS are also equal in L, (Euclidean) distance in these
spaces. For CIE-Luv, a typical value for T is between 10 and
25, Ty is between 1% and 5%, and ¢p < 0.05 [3].

2.2. Data Clustering. As the process of identifying natural
groupings in a multidimensional data space based on some
distance metric (e.g., Euclidean), data clustering can be
divided into two main categories: hierarchical and partitional
[4]. Each category then has a wealth of subcategories and
different algorithmic approaches for finding the clusters.
Clustering can also be performed in two different modes:
hard (or crisp) and fuzzy. K-means [4] is a well known
and widely used hard clustering method, which first assigns
each data point to one of the K cluster centroids and then
updates them to the mean of their associated points. Yet as
a hard clustering method, K-means suffers from the several
drawbacks, for example, (1) The number of clusters, K, needs
to be set in advance, (2) Its performance directly depends

on the initial (random) centroid positions as the method
converges to the closest local optima and (3) K-means is also
dependent on the data distribution. There are many other
clustering variants that are skipped where an extensive survey
can be found in [4, 26].

A hard clustering technique based on the basic PSO
(bPSO) was first introduced by Omran et al. in [13] and this
work showed that the bPSO can outperform K-means, FCM,
KHM, and some other state-of-the-art clustering methods
in any (evaluation) criteria. This is indeed an expected
outcome due to the PSO’s aforementioned ability to cope
with the local optima by maintaining a guided random
search operation through the swarm particles. In clustering,
similar to other PSO applications, each particle represents a
potential solution at a particular time t, that is, the particle a
in the swarm, & = {x,...,%a,...,xs}, is formed as x,(t) =
{Cats- o sCajs-sCart = Xaj(t) = cqaj Where ¢, jis the jth
(potential) cluster centroid in N dimensional data space and
K is the number of clusters fixed in advance. Note that the
data space dimension, N, is now different than the solution
space dimension, K. Furthermore, the fitness (validity index)
function, f that is to be optimized, is formed with respect to
two widely used criteria in clustering:

(i) Compactness: Data items in one cluster should be
similar or close to each other in N dimensional
space and different or far away from the others when
belonging to different clusters.

(ii) Separation: Clusters and their respective centroids
should be distinct and well-separated from each
other.

The fitness functions for clustering are then formed
as a regularization function fusing both Compactness and
Separation criteria and in this problem domain they are
known as clustering validity indices. The minimization of a
validity index will simultaneously try to minimize the intra-
cluster distances (for better Compactness) and maximize
the inter-cluster distance (for better Separation). In such a
regularization approach, different priorities (weights) can
be assigned to both subobjectives via proper setting of
weight coefficients; however, this makes the approach strictly
parameter dependent. Another traditional and well-known
validity index is Dunn’s index [27], which suffers from two
drawbacks. It is computationally expensive and sensitive to
noise [21]. Several variants of Dunn’s index were proposed
in [26] where robustness against noise is improved. There
are many other validity indices, that is, proposed by Turi
(28], Davies and Bouldin [29], Halkidi et al. [21], and so
forth. A throughout survey can be found in [21]. Most of
them presented promising results; however, none of them
can guarantee the “optimum” number of clusters in every
clustering scheme.

Although PSO-based clustering outperforms many well-
known clustering methods, it still suffers from two major
drawbacks. The number of clusters K (being the solution
space dimension as well) must still be specified in advance
and similar to other bPSO applications, the method tends to
trap in local optima particularly when the complexity of the



clustering scheme increases. This also involves the dimension
of the solution space, that is, convergence to “optimum”
number of “true” clusters can only be guaranteed for low
dimensions. This is also true for dynamic clustering schemes,
DCPSO [15] and MEPSO [22], both of which eventually
present results only in low dimensions and for simple
data distributions. All these drawbacks and limitations have
successfully been addressed in [17].

3. The Proposed DC Extraction Technique

Humans tend to think and describe color the way they per-
ceive it. Therefore, in order to achieve a color (dis) similarity
metric taking HVS into account, HSV (or HSL), which is a
perceptual color space and provides means of modeling color
in a way HVS does, is used in the proposed technique for
extracting dominant colors. Note that in a typical image with
24-bit RGB representation, there can be several thousands of
distinct colors, most of which cannot be perceived by HVS.
Therefore, to reduce the computational complexity of RGB
to HSV color transformation and particularly to speed up
the dynamic clustering process via MD PSO and FGBE, a pre-
processing step, which creates a limited color palette in RGB
color domain, is first performed. In this way such a massive,
yet unperceivable amount of colors in RGB domain can be
reduced to a reasonable number, for example, 256 < n < 512.
To this end, we used the Median Cut method [30] because
it is fast (i.e., O(n)) and for such a value of #, it yields an
image which can hardly be (colorwise) distinguished from
the original. Only the RGB color components in the color
palette are then transformed into HSV (or HSL) color space
over which the proposed dynamic clustering technique is
applied to extract the dominant colors, as explained next.

3.1. Dynamic Clustering by MD PSO with FGBF. Based on
the earlier discussion it is obvious that the clustering problem
requires the determination of the solution space dimension
(i.e., number of clusters, K) and an effective mechanism
to avoid local optima (i.e., traps, both dimensionally and
spatially) particularly in complex clustering schemes in high
dimensions (e.g., K > 10). The former requirement justifies
the use of the proposed MD PSO technique while the latter
calls for FGBE. A brief description of both techniques is given
in the appendix and see [17] for details.
At time ¢, a particle a in the swarm, & = {x,...,
Xa»-..,Xs}, has the positional component formed as,
0w = Lean . Card,} = X (1) = oy
meaning that it represents a potent1a1 solutlon (ie, a
cluster centroid) for the xd,(t) number of clusters whilst jth
component being the jth cluster centroid. Apart from the
regular limits such as (spatial) velocity, Viax, dimensional
velocity, VDmax, and dimension range Dmin < xd,(t) <
Dinay, the (variable) N dimensional data space is also limited
with some practical spatial range, that is, Xmin < xxzd“m (1) <
Xmax. In case this range is exceeded even for a single

dimension j, xxjfij“(t)(t), then all positional components of
the particle for the respective dimension xd,(t) are initialized

randomly within the range and this further contributes to

,Ca,j,...
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the overall diversity. Let Z be the set of points, Z = {z,}, in
the N-dimensional data space. The following validity index
is used to obtain computational simplicity with minimal or
no parameter dependency,

f(xx;‘d‘*(”,Z) =Q, (xx;‘d““)) (xda (1)), where
1 0>, cxnle||X x;‘j“(t) - ZPH
Q. ( X (r)) D Z v - ;‘d“(‘)H ,

(3)

where Q. is the quantization error (or the average intra-
cluster distance) as the Compactness term and (xd,(t))" is the
Separation term, by simply penalizing higher cluster numbers
with an exponential, & > 0. Using « = 1, the validity index
yields the simplest form and becomes entirely parameter-
free.

On the other hand, (hard) clustering has some con-
straints. Let C; = {xde (1) (1)} =1{cajt, forall j € [1,xda(1)],
be the set of data p01nts assigned to a (potential) cluster
centroid xx “(t) for a particle a at time t. The partitions
Cj, forall j € [1,xd,(t)] should maintain the following
constraints:

(1) Each data point should be assigned to one cluster set:
U ¢ = z.

(2) Each cluster should contain at least one data point:
Ci#{¢}, forall j € [1,xd,(t)].

(3) Two clusters should have no common data points:
CinCj=1{¢}, i#j and forallij € [1,xd.(t)].

In order to satisty the Ist and 3rd (hard) clustering con-
straints, before computing the clustering fitness score via
the validity index function in (3), all data points are first
assigned to the closest centroid. Yet there is no guarantee for
the fulfillment of the 2nd constraint since xx %" (t) is set
(updated) by the internal dynamics of the MD PSO process
and hence any dimensional component (i.e., a potential
cluster candidate), xde (1) (t), can be in an abundant position
(i.e., no closest data pomt exists). To avoid this, a high
penalty is set for the ﬁtness score of the particle, that is,
f(xx Z) ~ oo, if {xx } = {¢} foranyj.

The major outlines so far given are sufficient for applying
the MD PSO technique to dynamic clustering and for this
purpose the details for the application of FGBF over MD PSO
can be found in [17].

3.2. Fuzzy Model over HSV-HSL Color Domains. Let ¢ =
{hi,s1,vi} and ¢ = {hy,s3,v2} be two colors in HSV
domain. Assume for the sake of simplicity that the hue
is between 0 to 360 degrees and both s and v are umnit
normalized. The normalized Euclidean distance between s
and v can be defined as follows:
ler = el = (v1 = v2)” + (51 cos(hy) — s, cos(hs))? "
4

+ (sy sin(hy) — sy sin(hy))%
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During the dynamic clustering process by MD PSO and
FGBE the problem of using this equation for comput-
ing a color distance between a candidate color centroid,
xxij(t), forall j € [1,d] and a color in the palette, z, €
xx4(t), as in (3) is that it has a limited discrimination
power between distinct colors, as it basically yields arbitrary
fractional numbers despite the fact that HVS finds “no
similarity” in between. Therefore, instead of using this
typical distance metric for all color pairs, we adopt a
perceptual approach in order to improve discrimination
between different colors. Recall from the earlier discussion
that humans can recognize and distinguish 8 to 12 colors.
Recall that in [1], the authors exploited the fact that humans
tend to think and perceive colors only in 11 basic categories.
Hence above a certain hue difference between two colors,
it is obvious that they become entirely different for HVS;
for example, yellow and green are as different as yellow
and blue or cyan or black or purple, and so forth. So if
the hue difference is above a certain limit, a maximum
difference should be used (i.e., 1.0). We have selected an
upper limit by considering distinct colors number as only
8, therefore, the perceptual threshold is ATy = 360/8 =
45 degrees. In practice, however, even a lower hue threshold
can also be used, because two colors, for instance, with 40
degrees of hue difference can hardly have any similarity—
yet 45 degrees present a safe margin leaving any subjectivity

out.
We then use a fuzzy color model for further discrimina-

tion. As shown in Figure 1, for a fixed hue, for example, red
for HSV and green for HSL, a typical saturation (S) versus
Value (V) or Lightness (L) plot can be partitioned into 5
regions: White (W), Black (B), Gray (G), Color (C), and
Fuzzy (F), which is a transition area among others. W, B
and G are the areas where there is absolutely no color (hue)
component whereas in F there is a hint of a color presence
with a known hue but perhaps not fully saturated. In C, the
color described by its hue is fully perceivable with a varying
saturation and value. It is a fact that the borders among color
regions are highly subjective and this is the sole reason to use
a large Fuzzy region, so as to address this subjectivity in color
perception and thus to contain the error. This is the reason
why there is no need for drawing precise boundaries of F
(even if possible) or the boundaries between W ~ G and
B < G because between two colors, say one in C and one
in F, or both in C or both in F, the same distance metric
shall anyway be applied (as in (4)) provided that they have
hue differences less than ATy thus presenting some degree of
color similarity. This is not a condition in other cases where
at least one color is from either of the “no color” areas. For
instance, between W < G and B — G, the distance should
only be computed over V (or L) components because they
have no perceivable color components. The boundaries are
only important to distinguish areas such as C, W and B
(and between C < G) where there is no similarity among
them. Therefore, as shown in the HSL map on the right
with blue arrows, if two colors, despite the fact that they
have similar hues (i.e., AH < ATy), happen to be in such
regions, maximum distance (1.0) shall be applied rather than
computing (4).

HSV HSL

S

(b)
W
B

(d)

(a

)
C
G
c)

(

F1GURE 1: Fuzzy model for distance computation in HSV and HSL
color domains (best viewed in color).

4. Experimental Results

We have made comparative evaluations against MPEG-
7 DCD over a sample database with 110 images, which
are selected from Corel database in such a way that their
prominent colors (DCs) are easy to be recognized by ground-
truth. We used the typical internal PSO parameters (ci, ¢z,
and w) as in [31]. Unless otherwise stated, in all experiments
in this section, the two critical PSO parameters, swarm size
(S), and number of iterations (iterNo) are set as 100 and 500,
respectively. Their effects over the DC extraction are then
examined. The dimension (search) range for DC extraction
is set @8 Dmin = 2, Dmax = 25. This setting is in harmony
with the maximum number of DCs set by the MPEG-7
DCD, that is, NJ& = 25. Finally the size of the initial
color palette created by the Median Cut method is set as
256.

4.1. Comparative Evaluations against MPEG-7 DCD. In
order to demonstrate the strict parameter dependency of
MPEG-7 DCD, we have varied only two parameters, T4 and
Ts whilst keeping the others fixed, that is, Ng&* = 25, and
ep = 0.01. Experiments are performed with three sets of
parameters: P1: Ty = 1%, Ts = 15, P2: Tp = 1%, Ts = 25
and P3: Ty = 5%, Ts = 25. The number of DCs (per
image) plots obtained from the 110 images in the sample
database using each parameter set can be seen in Figure 2. It
is evident from the figure that the number of DCs is strictly
dependent on the parameters used and can vary significantly,
for example, between 2 to 25.
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Figure 2: Number of DC plot from three MPEG-7 DCDs with
different parameter set over the sample database.

Figures 3 and 4 show some visual examples from the
sample database. In both figures, the first column shows the
output of the Median-Cut algorithm with 256 (maximum)
colors, which is almost identical to the original image. The
second and the rest of the three columns show the back-
projected images using the DCs extracted from the proposed
technique and MPEG-7 DCD with those three parameter
sets, respectively. Note that the parts, where DC centroids
cannot be accurately localized or missed completely by
MPEG-7 DCD, are pointed with (yellow) arrows. There is
an ambiguity for deciding which parameter set yields the
best visual performance although it would have naturally
been expected from the first set, P1: To = 1%, Ts = 15,
where the highest number of DCs is extracted (see the red
plot in Figure 2), but it is evident that P2 and P3 can also
yield “comparable or better” results; however it is a highly
subjective matter.

According to the results, one straightforward conclusion
is that not only does the number of DCs significantly vary
but DC centroids, as well, change drastically depending on
the parameter values used. On the other hand, it is obvious
that the best DC extraction performance is achieved by the
proposed technique, where none of the prominent colors
are missed or mislocated whilst the “true” number of DCs
is extracted. However, we do not and, in any way, cannot
claim that the proposed technique achieves the minimum
quantization error (or the mean square error, MSE), due
to two reasons. First, the optimization technique is applied
over a regularization (fitness) function where the quanti-
zation error minimization (i.e., minimum Compactness) is
only one part of it. The other part, implying maximum
Separation, presents a constraint so that minimum MSE has
to be achieved using the least number of clusters (DCs).
The second and the main reason is that computation of
MSE is typically performed in RGB color space, using the
Euclidean metric. Recall that the proposed DC extraction
is performed over HSV (or HSL) color domain, which is
discontinuous and requires nonlinear transformations, and
using a fuzzy distance metric with respect to the HVS
perceptual rules for enhancing the discrimination power.
Therefore, the optimization in this domain using such a fuzzy
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metric obviously cannot ensure a minimum MSE in RGB
domain. Besides that, several studies show that MSE is not
an appropriate metric for visual (or perceptual) quality (e.g.,
[32]) and thus we hereby avoid using it as a performance
measure.

4.2. Robustness and Parameter Invariance of the Proposed
Method. Due to its stochastic nature, there is a concern
about robustness (or repeatability) of the results. In this
section, we perform several experiments to examine whether
or not the results are consistent in regard to accuracy of
the DC centroids and their numbers. Repeatability would
be a critical problem for deterministic methods such as K-
means, and Min-Max. if the initial color (cluster) centroids
are randomly chosen, as the original algorithm suggests.
Eventually such methods would create different clustering
scheme each time they are performed since they are bound
to get trapped to the nearest local optimum from the initial
position. The solution to this problem induced by MPEG-
7 DCD method is to change the random initialization part
to a fixed (deterministic) initial assignment to the existing
data points so that the outcome, DC centroids and the
number of DCs extracted, will be the same each time the
algorithm is performed over a particular image with the same
parameters. This would also be a practical option for the
proposed technique, that is, fixing the initialization stage and
using a constant seed for the random number generator that
MD PSO uses. However, as a global optimization method,
we shall demonstrate that MD PSO with FGBF can most of
the time converge to (near-) optimal solutions, meaning that,
the number of DCs and their centroids extracted from the
proposed dynamic clustering technique shall be consistent
and perceptually intact. Furthermore, in order to show that
significant variations for two major parameters, iterNo and
S, do not cause drastic changes on the DC extraction, we
will use three parameter sets: P1: S = 50, iterNo = 500,
P2: S = 50, iterNo = 1000, and P3: S = 100, iterNo
= 1000. With each parameter set, we run the proposed
technique (with random initialization and random seeds)
100 times over two images. The DC number histograms per
image and per parameter set are as shown in Figure 5. In
the first image (left), it is certain that the number of DCs
is either 2 or 3, as one might argue that the yellowish color
of the dot texture over the object can be counted as a DC
or not. For the image on the right, it is rather difficult to
decide the exact number of DCs, since apart from blue, the
remaining 5 colors, red, pink, yellow, green, and brown have
certain shades. It is, first of all, obvious that the proposed
technique is parameter invariant since in both cases, the
significant parameter variations, (particularly from P1 to P3
where both iterNo and S are doubled) only make a slight
difference over the histograms. A high degree of robustness
(repeatability) is also achieved since all runs in the first
image yielded either 2 or 3 DCs, as desired, and >95% of
the runs in the second image; the number of DCs is in
the range 16 + 1. Among the back-projected images, it is
evident that quite similar/almost identical DCs are anyway
extracted even though they have different number of DCs
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FiGgure 3: The DC extraction results over 5 images from the sample database (best viewed in color).

(e.g., see the two with 14 and 18 DCs). As a result of the
perceptual model used, the number of DCs can slightly vary,
somewhat reflecting the subjectivity in HVS color perception,
but similar DCs are extracted by the proposed technique
regardless of the parameter set used.

4.3. Computational Complexity Analysis. The computational
complexity of the proposed method depends on two distinct
processes. First is the preprocessing stage which creates a
limited color palette in RGB color domain using Median Cut
method and the following RGB to HSV color transformation.
Recall that Median Cut method is a fast method (i.e., O(n)),
which has the same computational complexity as K-means.
The following color transformation has an insignificant
processing time since it is only applied to a reduced number
of colors. The computational complexity analysis for the
dynamic clustering technique based on MD-PSO with FGBF
is performed in [17]. Moreover, the complexity of the validity
index used has a direct impact over the total computational

cost since for each particle (and at each iteration) it is used
to compute the fitness of that particle. This is the main
reason of using such a simple (and parameter independent)
validity index as in (3). In that, the proposed fuzzy color
model makes the computational cost primarily dependant
on the color structure of the image because the normalized
Euclidean distance that is given in (4) and is used within
the validity index function is obviously quite costly; however,
recall that it may not be used at all for such color pairs that
do not show any perceptual color similarity. This further
contributes the infeasibility of performing an accurate com-
putational complexity analysis for the proposed technique.
For instance, using a PC with P-IV 3GHz CPU and 1GB
RAM, the proposed DC extraction technique with parameter
set P1 took 126 and 911 milliseconds, respectively, for the
two sample images shown in Figure 5. In short, as any other
evolutionary algorithm the DC extraction based on MD PSO
with FGBF is slow in nature and may require indefinite
amount of iterations to converge to the global solution.
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FiGURre 4: The DC extraction results over 5 images from the sample database (best viewed in color).

5. Conclusions

In this paper, we first presented two efficient techniques, MD
PSO and FGBE, as a solution to common drawbacks of the
family of PSO methods such as a priori knowledge of the
search space dimension and premature convergence to local
optima. A novel dynamic clustering technique based on MD
PSO with FGBF is then proposed and applied for extracting
“true” number of dominant colors in an image. In order to

improve the discrimination among different colors, a fuzzy
model over HSV (or HSL) color space is then proposed so as
to achieve such a distance metric that reflects HVS perception
of color (dis) similarity.

The DC extraction experiments using MPEG-7 DCD
have shown that the method, although a part of the MPEG-7
standard, is highly dependent on the parameters. Moreover,
since it is entirely based on K-means clustering method, it
can create artificial colors and/or misses some important
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FIGure 5: DC number histograms of 2 sample images using 3 parameter sets. Some typical back-projected images with their DC number
pointed are shown within the histogram plots (best viewed in color).
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DCs due to its convergence to local optima, thus yielding
critical over- and under-clustering. Consequently, a mixture
of different colors, and hence artificial DCs or DCs with
shifted centroids, may eventually occur. This may also cause
severe degradations over color textures since the regular
textural pattern cannot be preserved if the true DC centroids
are missed or shifted. Using a simple clustering validity
index, we have successfully addressed these problems and a
superior DC extraction is achieved with ground-truth DCs.
The optimum number of DCs can slightly vary on some
images, but the number of DCs on such images is hardly
definitive, rather subjective and thus on such occasions
the dynamic clustering based on a stochastic optimization
technique can converge to some near-optimal solutions. The
proposed technique shows a high level of robustness for
parameter invariance and hence the main idea is that instead
of struggling to fine tune several parameters to improve
performance, which is not straightforward, if possible at all,
the focus can now be drawn to designing better validity index
functions or improving the ones for the purpose of higher
DC extraction performance in terms of perceptual quality,
which shall be the subject to our future work.

Appendices
A. MD PSO Algorithm

Instead of operating at a fixed dimension N, the MD
PSO algorithm is designed to seek both positional and
dimensional optima within a dimension range (Dmin <
N < Dpuy). In order to accomplish this, each particle has
two sets of components, each of which has been subjected
to two independent and consecutive processes. The first
one is a regular positional PSO, that is, the traditional
velocity updates and following positional moves in N-
dimensional search (solution) space. The second one is
a dimensional PSO, which allows the particle to navigate
through dimensions. Accordingly, each particle keeps track
of its last position, velocity and personal best position
(pbest) in a particular dimension so that when it revisits the
same dimension at a later time, it can perform its regular
“positional” fly using this information. The dimensional
PSO process of each particle may then move the particle
to another dimension where it will remember its positional
status and keep “flying” within the positional PSO process
in this dimension, and so on. The swarm, on the other
hand, keeps track of the gbest particles in all dimensions,
each of which, respectively, indicates that the best (global)
position so far achieved and can thus be used in the regular
velocity update equation for that dimension. Similarly the
dimensional PSO process of each particle uses its personal
best dimension in which the personal best fitness score has
so far been achieved. Finally, the swarm keeps track of the
global best dimension, dbest, among all the personal best
dimensions. The gbest particle in dbest dimension represents
the optimum solution (and the optimum dimension).

For the description of the positional and dimensional
components, we shall use the following two-letter notation
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rule for parameterization: the first letter signifies whether it
is a position (x) or velocity (v) component and the second
letter corresponds to the type of the component: positional
(x) or dimensional (d). As in PSO notation, we also used y for
personal best (pbest) position for the positional component.
Therefore, the following enlists all the components of MD
PSO:

(i) xx, ] (t) jth component (dimension) of the posi-
tion of particle g, in dimension xd,(t),

(ii) vxz,dj“(t) (#): jth component (dimension) of the velocity
of particle a, in dimension xd,(¢),

(iii) xyf;j-“(t) (t): jth component (dimension) of the per-
sonal best (pbest) position of particle a, in dimension

xda(1),

(iv) xﬁf (t): jth component (dimension) of the global best
position of swarm, in dimension d,

(v) xd,(t): dimension component of particle a,

(vi) vd,(t): velocity component of dimension of particle
a,

(vii) xc?a(t): personal best dimension component of parti-
clea,

(viii) gbest(d): global best particle index in dimension d.

Figure 6 shows sample MD PSO and bPSO particles with
index a. The bPSO particle that is at a (fixed) dimension,
N = 5, contains only positional components whereas
MD PSO particle contains both positional and dimensional
components, respectively. In the figure the dimension range
for the MD PSO is given between 2 and 9; therefore the
particle contains 8 sets of positional components (one for
each dimension). In this example, the current dimension
where the particle a resides is 2 (xd,(t) = 2) whereas its

personal best dimension is 3 (x(;a(t) = 3). Therefore, at
time t, a positional PSO update is first performed over the
positional elements, xx2(f), and then the particle may move
to another dimension by the dimensional PSO.

Let f denote the dimensional fitness function that is to
be optimized within a certain dimension range (Dpin < N <
Dmax). Without loss of generality assume that the objective
is to find the minimum (position) of f at the optimum
dimension within a multidimensional search space. Assume
that the particle a visits (back) the same dimension after T
iterations (i.e., xd,(t) = xd,(t + T)), then the personal best
position can be updated in iteration t + T as follows,

Xy, xd (t+T) (t+T)

xyzfjj“(t)(t) if f(xxﬁd WD (4 T))

= >f(xyﬁf ‘ (t))

xxxd Dt 4 T) else

(A.1)

Ve [1Lxd (D).
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FiGUre 6: Sample MD PSO (right) versus bPSO (left) particle structures. For MD PSO [Dpin = 2,Dmax = 9 | and at the current time f,

xd,(t) = 2 and xd,(t) = 3. For bPSON = 5.

Furthermore, the personal best dimension of particle a can
be updated in iteration ¢ + 1 as follows:

xdo(t) if f (x4 1)
xdy(t+1) = >f<xy;cd~a(z)(t)> (A.2)
xd,(t+1) else

Recall that gbest(d) is the index of the global best
particle at dimension d then xp®!(t) = xygffjf(dbest)(f) =
argminy;e(1,s)( f (xyfb“t(t)). For a particular iteration ¢, and
for a particle a € [1,S], first the positional components
are updated in the current dimension, xd,(t), and then the
dimensional update is performed to determine the next
(t + 1st) dimension, xd,(¢t + 1). The positional update is
performed for each dimension component, j € [1,xd,(t)]
as follows:

vfoij“(t)(t+ 1) = w(t) vfoij“m(t) + 11 (t)
d, da
X (xy:,j () - xx;,j (t)(t))

~xd, d,
+ e (1) (x50 (1) — eV (1)),

xdq(t)

xx;‘fij“(t)(t+ 1) = xxﬁ“(t)(t) +vag (1),

(A.3)

Note that the particle’s new position, xxi® D (¢ 4 1), will
still be in the same dimension, xd,(t); however, the particle
may fly to another dimension afterwards with the following
dimensional update equations:

vda(t+1) = [vda(t) + crri (1) (xda(t) — xdo(t))
+eary(t)(dbest — xd(t)) | (A4)

xda(t+1) = xd,(t) + vd,(t + 1),

where || is the floor operator. The inertia weight, w, is
not used for dimensional velocity update, since no benefit
was obtained experimentally for dimensional PSO. To avoid
exploding, along with the positional velocity limit Viax, two
more clamping operations are applied for dimensional PSO
components, such as [vdy;(t + 1)| < VD and the initial
dimension range set by the user, Dyin < xda(t) < Dmax.
Once the MD PSO process terminates, the optimum solution
will be xfdb“t at the optimum dimension, dbest, achieved by
the particle gbest(dbest) and finally the best (fitness) score
achieved will naturally be f(xydbest).

B. FGBF Algorithm

Fractional GB formation (FGBF) is designed to avoid
premature convergence by providing a significant diversity
obtained from a proper fusion of the swarm’s best compo-
nents (the individual dimension(s) of the current position
of each particle in the swarm). At each iteration in a bPSO
process, an artificial GB particle (aGB) is (fractionally)
formed by selecting the most promising (or simply the best)
particle (dimensional) components from the entire swarm.
Therefore, especially during the initial steps, the FGBF can
most of the time be a better alternative than the native
gbest particle since it has the advantage of assessing each
dimension of every particle in the swarm individually, and
forming the aGB particle fractionally by using the most
promising (or simply the best) components among them.
This process naturally uses the available diversity among
individual dimensional components and thus it can prevent
the swarm from trapping in local optima. Suppose for a
swarm ¢, that FGBF is performed in a PSO process at a
(fixed) dimension N. In a particular iteration, ¢, each PSO
particle, a, has the following components: position (x,,j(t)),
velocity (vg,;(¢)) and the personal best position (y,;(t)),j €
[1,N]). The aGB particle, first of all, does not use a velocity
term, since instead of velocity updates, the aGB particle
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FIGURE 7: A sample FGBF in 2D space.

is fractionally (re) created from the dimensions of some
swarm particles. Consequently, y,g(t) is set to the best
of x,68(t) and y,ge(t — 1). As a result, the FGBF process
creates one aGB particle providing a (potential) GB solution
(yacB(1)). Let f(a, j) be the dimensional fitness score of the
jth component of particle a and the computation of f(a, j)
depends entirely on the optimization problem. It keeps track
of partial fitness contributions from each individual dimen-
sion from each particle’s position (the potential solution).
For those problems without any constraints (e.g., nonlinear
function minimization), the best dimensional components
can simply be selected whereas in others (e.g., clustering),
some promising components, which satisfy the constraints,
are first selected, grouped and the most suitable one in each
group is then used for FGBE. Here, the internal nature of the
problem will determine the “suitability” of the selection. Take
for instance the function minimization problem as illustrated
in Figure 7 where 2D space is used for illustration purposes.
In the figure, three particles in a swarm are ranked as the
Ist (or the gbest), the 3rd and the 8th with respect to their
proximity to the target position (or the global solution)
of some function. Although gbest particle (i.e., 1st ranked
particle) is the closest in the overall sense, the particles
ranked 3rd and 8th provide the best x and y dimensions
(closest to the target’s respective dimensions) in the entire
swarm and hence the aGB particle via FGBF yields a better
(closer) particle than the swarm’s gbest.

Recall that in an MD PSO process there is one gbest
particle per (potential) dimension of the solution space.
Recall further from the earlier discussion that in a particular
iteration, t, each MD PSO particle, a, has the following
components: position (xxﬁfij“(t)(t)), velocity (vx;cfij“m(t)) and
the personal best position (xyfij“(t)(t)) for each potential
dimensions in solution space (i.e., xd,(t) € [Dmin, Dmax]
and j € [1,xd,(t)]) and their respective counterparts in
the dimensional PSO process (i.e., xd,(t), vd,(t) and xc;a(t)).
aGB particle does not need dimensional components where a
single positional component with the maximum dimension
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Dy is created to cover all dimensions in the range, Vd €
[Dmin> Dmax], and as explained earlier, there is no need
for the velocity term either. Furthermore, the aforemen-
tioned competitive selection ensures that xy%.s(t) ,Vd €
[ Dmin> Dmax ] 18 set to the best of the xeGB(t) and xy‘jGB(t— 1).
Asaresult, the FGBF process creates one aGB particle provid-
ing (potential) GB solutions (x yZGB(t)) for all dimensions in
the given range (i.e., for all d € [Dpmin, Dmax]). Further details
and pseudocode for FGBF and its application along with the
MD PSO can be obtained from [17].
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