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1. INTRODUCTION

Most of today’s challenging signal processing applications re-
quire techniques that are nonlinear, adaptive, and with on-
line processing capability. Also, there is need for approaches
to process complex-valued data as such data arises in a good
number of scenarios, for example, when processing radar
and magnetic resonance data as well as communications data
and when working in a transform domain such as frequency.
Even though complex signals play such an important role,
many engineering shortcuts have typically been taken in their
treatment preventing full utilization of the power of complex
domain processing as well as the information in the real and
imaginary parts of the signal.

The main difficulty arises due to the fact that in the com-
plex domain, analyticity, that is, differentiability in a given
open set, as described by the Cauchy-Riemann equations [1]
imposes a strong structure on the function itself. Thus the
analyticity condition is not satisfied for many functions of
practical interest, most notably for the cost (objective) func-
tions used as these are typically real valued and hence nonan-
alytic in the complex domain. Definition of pseudogradients
are used—and still not through a consistent definition in the
literature—and when having to deal with vector gradients,
transformations CN �→ R2N are commonly used. These trans-
formations are isomorphic and allow the use of real-valued
calculus in the computations, which includes well-defined
gradient and Hessians that can be at the end transformed

back to the complex domain. The approach facilitates the
computations but increases the dimensionality of the prob-
lem and might not be practical for functions that are nonlin-
ear since in this case, the functional form might not be easily
separable to real and imaginary parts.

Another issue that arises in the nonlinear processing
of complex-valued data is due to the conflict between the
boundedness and differentiability of complex functions. This
result is stated by Liouville’s theorem as: a bounded entire
function must be a constant in the complex domain [1]. Hence,
to use a flexible nonlinear model such as the nonlinear re-
gression model, one cannot identify a complex nonlinear
function (C �→ C) that is bounded everywhere on the entire
complex domain. A practical solution to satisfy the bound-
edness requirement has been to process the real and imagi-
nary parts (or the magnitude and phase) separately through
bounded real-valued nonlinearities (see, e.g., [2–6]). The so-
lution provides reasonable approximation ability but is an ad
hoc solution not fully exploiting the efficiency of complex
representations, both in terms of parameterization (number
of parameters to estimate) and in terms of learning algo-
rithms to estimate the parameters as we cannot define true
gradients when working with these functions.

In this paper, we define a framework that allows tak-
ing full advantage of the power of complex-valued process-
ing, in particular when working with nonlinear functions,
and eliminates the need for either of the two common engi-
neering practices we mentioned. The framework we develop
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is based on Wirtinger calculus [7] and extends the work of
Brandwood [8] and van den Bos [9] to define the basic for-
mulations for derivation of algorithms and their analyses in
the complex domain. We show how the framework also nat-
urally admits the use of nonlinear functions that are analytic
rather than the pseudocomplex nonlinear functions defined
using real-valued nonlinearities. Analytic complex nonlinear
functions have been shown to provide efficient representa-
tions in the complex plane [10, 11] and to be universal ap-
proximators when used as activation functions in a single-
layer multilayer perceptron (MLP) network [12].

The work by Brandwood [8] and van den Bos [9] em-
phasize the importance of working with complex-valued gra-
dient and Hessian operators rather than transforming the
problem to the real domain. Both contributions, though not
acknowledged in either of the papers, make use of Wirtinger
calculus [7] that provides an elegant way to bypass the limita-
tion imposed by the strict definition of differentiability in the
complex domain. Wirtinger calculus relaxes the traditional
definition of differentiability in the complex domain—which
we refer to as complex differentiability—by defining a form
that is much easier to satisfy and includes almost all functions
of practical interest, including functions that are CN �→ R.
The attractiveness of the formulation stems from the fact
that though the derivatives defined within the framework do
not satisfy the Cauchy-Riemann conditions, they obey all the
rules of calculus, including the chain rule, differentiation of
products and quotients. Thus all computations in the deriva-
tion of an algorithm can be carried out as in the real case. We
provide the connections between the gradient and Hessian
formulations given in [9] described in C2N and R2N to the
complex CN -dimensional space, and establish the basic rela-
tionships for optimization in the complex domain including
first- and second-order Taylor-series expansions.

Three specific examples are given to demonstrate the ap-
plication of the framework to complex-valued adaptive sig-
nal processing, and to show how they enable the use of the
true processing power of the complex domain. The examples
include a multilayer perceptron filter design and the deriva-
tion of the gradient update (backpropagation) rule, indepen-
dent component analysis using maximum likelihood, and the
derivation of an efficient second-order learning rule, the con-
jugate gradient algorithm for the complex domain.

Next section introduces the main tool, Wirtinger calculus
for optimization in the complex domain and the key results
given in [8, 9], which we use to establish the main theory
presented in Section 3. In Section 3, we consider both vector
and matrix optimization and establish the equivalences for
first- and second-order derivatives for the real and complex
case, and provide the fundamental results for CN and CN×M .
Section 4 presents the application examples and Section 5
gives a short discussion.

2. COMPUTATIONOF GRADIENTS IN THE COMPLEX
DOMAIN USINGWIRTINGER CALCULUS

The fundamental result for the differentiability of a complex-
valued function

f (z) = u(x, y) + jv(x, y), (1)

where z = x+ j y, is given by the Cauchy-Riemann equations
[1]:

∂u

∂x
= ∂v

∂y
,

∂v

∂x
= −∂u

∂y
, (2)

which summarize the conditions for the derivative to as-
sume the same value regardless of the direction of approach
when Δz → 0.These conditions, when considered carefully,
make it clear that the definition of complex differentiability
is quite stringent and imposes a strong structure on u(x, y)
and v(x, y), the real and imaginary parts of the function,
and consequently on f (z). Also, obviously most cost (objec-
tive) functions do not satisfy the Cauchy-Riemann equations
as these functions are typically f : C → R and thus have
v(x, y) = 0.

An elegant approach due to Wirtinger [7] relaxes this
strong requirement for differentiability, and defines a less
stringent form for the complex domain. More importantly,
it describes how this new definition can be used for defin-
ing complex differential operators that allow computation of
derivatives in a very straightforward manner in the complex
domain, by simply using real differentiation results and pro-
cedures.

In the development, the commonly used definition of
differentiability that leads to the Cauchy-Riemann equations
is identified as complex differentiability and functions that
satisfy the condition on a specified open set as complex an-
alytic (or complex holomorphic). The more flexible form
of differentiability is identified as real differentiability, and a
function is called real differentiable when u(x, y) and v(x, y)
are differentiable as functions of real-valued variables x and
y. Then, one can write the two real-variables as x = (z+z∗)/2
and y = − j(z − z∗)/2, and use the chain rule to derive
the operators for differentiation given in the theorem below.
The key point in the derivation is regarding the two vari-
ables z and z∗ as independent from each other, which is also
the main trick that allows us to make use of the elegance
of Wirtinger calculus. Hence, we consider a given function
f : C �→ C as f : R× R �→ C by writing it as f (z) = f (x, y),
and make use of the underlying R2 structure. The main result
in this context is stated by Brandwood as follows [8].

Theorem 1. Let f : R×R → C be a function of real variables
x and y such that g(z, z∗) = f (x, y), where z = x + j y and
that g is analytic with respect to z∗ and z independently. Then,

(i) the partial derivatives

∂g

∂z
= 1

2

(
∂ f

∂x
− j

∂ f

∂y

)
,

∂g

∂z∗
= 1

2

(
∂ f

∂x
+ j

∂ f

∂y

)

(3)

can be computed by treating z∗ as a constant in g and z
as a constant, respectively;

(ii) a necessary and sufficient condition for f to have a
stationary point is that ∂g/∂z = 0. Similarly, ∂g/∂z∗ =
0 is also a necessary and sufficient condition.

Therefore, when evaluating the gradient, we can di-
rectly compute the derivatives with respect to the complex
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argument, rather than calculating individual real-valued gra-
dients as typically performed in the literature (see, e.g.,
[2, 6, 12, 13]). The requirement for the analyticity of g(z, z∗)
with respect to z and z∗ is independently equivalent to the
condition on real differentiability of f (x, y) since we can
move from one form of the function to the other using the
simple linear transformation given above [1, 14]. When f (z)
is complex analytic, that is, when the Cauchy-Riemann con-
ditions hold, g(·) becomes a function of only z, and the two
derivatives, the one given in the theorem and the traditional
one coincide.

The case we are typically interested in the development
of signal processing algorithms is given by f : R × R → R
and is a special case of the result stated in the theorem. Hence
we can employ the same procedure—taking derivatives inde-
pendently with respect to z and z∗, in the optimization of a
real-valued function as well. In the rest of the paper, we con-
sider such functions as these are the costs used in machine
learning, though we identify the deviation, if any, from the
general f : R×R→ C case for completeness.

As a simple example, consider the function g(z, z∗) =
zz∗ = |z|2 = x2 + y2 = f (x, y). We have (1/2)(∂ f /∂x +
j(∂ f /∂y)) = x + j y = z, which we can also evaluate as
∂g/∂z∗ = z, that is, by treating z as a constant in g when
calculating the partial derivative.

The complex gradient defined by Brandwood [8] has
been extended by van den Bos to define a complex gradient
and Hessian in C2N by defining a mapping

z ∈ CN �−→ z̃ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z1

z∗1
...

zN

z∗N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ C2N . (4)

Note that the mapping allows a direct extension of
Wirtinger’s result to the multidimensional space through N
mappings of the form (zR,k, zI ,k) �→ (zk, z∗k ), where z =
zR + jzI , so that one can make use of Wirtinger derivatives.
Since the transformation from R2 to C2 is a simple linear
invertible mapping, one can work in either space, depend-
ing on the convenience offered by each. In [9], it is shown
that such a transformation allows the definition of a Hessian,
hence of a Taylor series expansion very similar to the one in
the real case, and the Hessian matrix H defined in this man-
ner is naturally linked to the complex CN×N Hessian G in
that if λ is an eigenvalue of G, then 2λ is the corresponding
eigenvalue of H. The result implies that the positivity of the
eigenvalues as well as the conditioning of the Hessian ma-
trices are shared properties of the two matrices, that is, of
the two representations. For example, in [15], this property
has been utilized to derive the local stability conditions of
the complex-valued maximization of negentropy algorithm
for performing independent component analysis. In the next
section, we establish the connections of the results of [9] to
CN for first- and second-order derivatives such that efficient
second-order optimization algorithms can be derived by di-

rectly working in the original CN space where the problems
are typically defined.

3. OPTIMIZATION IN THE COMPLEX DOMAIN

3.1. Vector case

We define 〈·, ·〉 as the scalar inner product between two ma-
trices W and V as

〈W,V〉 = Trace(VHW), (5)

so that 〈W,W〉 = ‖W‖2
Fro, where the subscript Fro denotes

the Frobenius norm. For vectors, the definition simplifies to
〈w, v〉 = vHw.

We define the gradient vector ∇z = [∂/∂z1, ∂/∂z2, . . . ,
∂/∂zN ]T for vector z = [z1, z2, . . . , zN ]T with zk = zR,k + jzI ,k
in order to write the first-order Taylor series expansion for a
function g(z, z∗) : CN×CN → R,

Δg = 〈Δz,∇z∗g
〉

+
〈
Δz∗,∇zg

〉 = 2Re
{〈
Δz,∇z∗g

〉}
, (6)

where the last equality follows because g(·, ·) is real valued.
Using the Cauchy-Schwarz-Bunyakovski inequality [16], it
is straightforward to show that the first-order change in
g(·, ·) will be maximized when Δz and the gradient∇z∗g are
collinear. Hence, it is the gradient with respect to the con-
jugate of the variable, ∇z∗g, that defines the direction of the
maximum rate of change in g(·, ·) with respect to z, not∇zg
as sometimes noted in the literature. Thus the gradient opti-
mization of g(·, ·) should use the update

Δz = zt+1 − zt = −μ∇z∗g (7)

as this form leads to a nonpositive increment given by Δg =
−2μ‖∇z∗g‖2, while the update using Δz = −μ∇zg results in
updates Δg = −2μRe{〈∇z∗g,∇zg〉}, which are not guaran-
teed to be nonpositive.

Based on (6), similar to a scalar function of two real vec-
tors, the second-order Taylor series expansion of g(z, z∗) can
be written as [17]

Δ2g = 1
2

〈
∂g

∂z∂zT
Δz,Δz∗

〉
+

1
2

〈
∂g

∂z∗∂zH
Δz∗,Δz

〉

+

〈
∂g

∂z∂zH
Δz∗,Δz∗

〉
.

(8)

Next, we derive the same complex gradient update rule
using another approach, which provides the connection be-
tween the real and complex domains. We first introduce the
following fundamental mappings that are similar in nature
to those introduced in [9].

Proposition 1. Given a function g(z, z∗) : CN ×CN → R that
is real differentiable and f :R2N→R such that g(z, z∗)= f (w),
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where z = [z1, z2, . . . , zN ]T , w = [zR,1, zI ,1, zR,2, zI ,2, . . . , zR,N ,
zI ,N ]T , and zk = zR,k + jzI ,k, k ∈ {1, 2, . . . ,N}, then

∂ f

∂w
= UH ∂g

∂z∗
,

∂2 f

∂w∂wT
= UH ∂2g

∂z∗∂zT
U,

(9)

where U is defined by z
Δ= [ z

z∗
] = Uw and satisfies U−1 = (1/

2)UH .

Proof. Define a 2× 2 matrix J as

J =
⎡
⎣1 j

1 − j

⎤
⎦ (10)

and a vector z̃∈ C2N as z̃ = [z1, z∗1 , z2, z∗2 , . . . , zN , z∗N ]T . Then

z̃ = U′w, (11)

where U′2N×2N = diag{J, J, . . . , J} that satisfies (U′)−1 = (1/
2)(U′)H [9]. Next, we can find a permutation matrix P such
that

z
Δ= [z1, z2, . . . , zN , z∗1 , z∗2 , . . . , z∗N

]T = Pz̃ = PU′w = Uw,
(12)

where U
Δ= PU′ that satisfies U−1 = (1/2)UH since P−1 = PT .

Using the Wirtinger derivatives in (3), we obtain

∂g

∂z
= 1

2
U∗

∂ f

∂w
, (13)

which establishes the first-order connection between the
complex gradient and the real gradient. By applying the two
derivatives (3) recursively to obtain the second-order deriva-
tive of g, we obtain

∂2 f

∂w∂wT

1= (U′)H ∂2g

∂z̃∗∂z̃T
U′

2= (U′)HPT ∂2g

∂z∗∂zT
PU′ = UH ∂2g

∂z∗∂zT
U.

(14)

Equality 1 is already proved in [18]. Equality 2 is obtained
by simply rearranging the entries in ∂2g/∂ z̃∗∂ z̃T to form
∂2g/∂ z∗∂ zT . Therefore, the second-order Taylor expansion
given in (8) can be rewritten as

Δg = ΔzT
∂g

∂z
+

1
2
ΔzH

∂2g

∂z∗∂zT
Δz, (15)

which demonstrates that the C2N×2N Hessian in (15) can be
decomposed into three CN×N Hessians in (8).

The mappings given in Proposition 1 are similar to those
defined in [9]. However, the mappings given in [9] include
redundancy since they operate in C2N and the dimension
cannot be further reduced. This is not convenient since cost

function g(z) is normally defined in CN and the C2N map-
ping as described by z̃ cannot be always easily applied to de-
fine g(z̃), as observed in [18].

In the following two propositions, we show how to use
the same mappings we defined above to obtain first- and
second-order derivatives, and hence algorithms, in CN in an
efficient manner.

Proposition 2. Given functions g and f defined as in Proposi-
tion 1, one has the complex gradient update rule

Δz = −2μ
∂g

∂z∗
, (16)

which is equivalent to the real gradient update rule

Δw = −μ ∂ f
∂w

, (17)

where z and w are as defined in Proposition 1 as well.

Proof. Assuming f is known, the gradient update rule in the
real domain is

Δw = −μ ∂ f
∂w

. (18)

Mapping back into complex domain, we obtain

Δz = UΔw = −μU ∂ f

∂w
= −2μ

∂g

∂z∗
. (19)

The dimension of the update rule can be further decreased as

⎡
⎣ Δz

Δz∗

⎤
⎦ = −2μ

⎡
⎢⎢⎢⎣
∂g

∂z∗

∂g

∂z

⎤
⎥⎥⎥⎦ =⇒ Δz = −2μ

∂g

∂z∗
. (20)

Proposition 3. Given functions g and f defined as in Proposi-
tion 1, one has the complex Newton update rule

Δz = −(H∗
2 −H∗

1 H
−1
2 H1

)−1
(

∂g

∂z∗
−H∗

1 H
−1
2

∂g

∂z

)
, (21)

which is equivalent to the real Newton update rule

∂2 f

∂w∂wT
Δw = − ∂ f

∂w
, (22)

where

H1 =
∂2g

∂z∂zT
, H2 =

∂2g

∂z∂zH
. (23)

Proof. The pure Newton method in the real domain takes
the form given in (22). Using the equalities given in
Proposition 1, it can be easily shown that the Newton update
in (22) is equivalent to

∂2g

∂z∗∂zT
Δz = − ∂g

∂z∗
. (24)
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Using the definitions for H1 and H2 given in (23), we can
rewrite (24) as

⎡
⎣H∗

2 H∗
1

H1 H2

⎤
⎦
⎡
⎣ Δz

Δz∗

⎤
⎦ = −

⎡
⎢⎢⎢⎣
∂g

∂z∗

∂g

∂z

⎤
⎥⎥⎥⎦ . (25)

If ∂2g/∂z∗∂zT is positive definite, we have

⎡
⎣ Δz

Δz∗

⎤
⎦ = −

⎡
⎣M11 M12

M21 M22

⎤
⎦
⎡
⎢⎢⎢⎣
∂g

∂z∗

∂g

∂z

⎤
⎥⎥⎥⎦ , (26)

where

M11 =
(
H∗

2 −H∗
1 H

−1
2 H1

)−1
,

M12 = H−∗
2 H∗

1

(
H1H−∗

2 H∗
1 −H2

)−1
,

M21 =
(
H1H−∗

2 H∗
1 −H2

)−1
H1H−∗

2 ,

M22 =
(
H2 −H1H−∗

2 H∗
1

)−1
,

(27)

and H−∗
2 denotes (H∗

2 )−1. Since ∂2g/∂z∗∂zT is Hermitian, we
finally obtain the complex Newton rule as

Δz = −(H∗
2 −H∗

1 H
−1
2 H1

)−1
(

∂g

∂z∗
−H∗

1 H
−1
2

∂g

∂z

)
. (28)

The expression for Δz∗ is the conjugate of (28).

3.2. Matrix case

The extension from the vector gradient to matrix gradient is
straightforward. For a real-differentiable g(W,W∗) : CN×N×
CN×N → R, we can write the first-order expansion as

Δg =
〈
ΔW,

∂g

∂W∗

〉
+

〈
ΔW∗,

∂g

∂W

〉

= 2Re

{〈
ΔW,

∂g

∂W∗

〉}
,

(29)

where ∂g/∂W is an N × N matrix whose (i, j)th entry is
the partial derivative of g with respect to wij . By arranging
the matrix gradient into a vector and by using the Cauchy-
Schwarz-Bunyakovski inequality [16], it is easy to show that
the matrix gradient ∂g/∂W∗ defines the direction of the max-
imum rate of change in g with respect to W.

For local stability analysis, Taylor expansions up to the
second order is also frequently needed. Since the first-order
matrix gradient takes a matrix form already, here we only
provide the second-order expansion with respect to every en-
try of matrix W. From (8), we obtain

Δ2g = 1
2

(∑ ∂g

∂wij∂wkl
dwi jdwkl +

∑ ∂g

∂w∗i j ∂w
∗
kl

dw∗i j dw
∗
kl

)

+
∑ ∂g

∂wij∂w
∗
kl

dwi jdw
∗
kl.

(30)

We can use the first-order Taylor series expansion to de-
rive the relative gradient [19] update rule for the complex
case, which is usually directly extended to the complex case
without a derivation [5, 13, 20]. To write the relative gradi-
ent rule, we consider an update of the parameter matrix W
in the invariant form (ΔW)W [19]. We then write the first-
order Taylor series expansion for the perturbation (ΔW)W
as

Δg =
〈

(ΔW)W,
∂g

∂W∗

〉
+

〈(
ΔW∗)W∗,

∂g

∂W

〉

= 2Re

{〈
ΔW,

∂g

∂W∗W
H

〉} (31)

to determine the quantity that maximizes the rate of change
in the function. The complex relative gradient of g at W is
then written as (∂g/∂W∗)WH to write the relative gradient
update term as

ΔW = −μ ∂g

∂W∗W
HW. (32)

Upon substitution of ΔW into (29), we observe that Δg =
−2μ‖(∂g/∂W∗)WH‖2

Fro is a nonpositive quantity, thus a
proper update term. The relative gradient can be regarded
as a special case of natural gradient [21] in the matrix space,
but provides the additional advantage that it can be easily ex-
tended to nonsquare matrices. In Section 4.2, we show how
the relative gradient update rule for independent component
analysis based on maximum likelihood can be derived in a
very straightforward manner in the complex domain using
(32) and Wirtinger calculus.

4. APPLICATION EXAMPLES

We demonstrate the application of the optimization frame-
work introduced in Section 3 by three examples. The first
two examples demonstrate the derivation of the update rules
for complex-valued nonlinear signal processing. In the third
example, we show how the relationship for Newton updates
given by Proposition 3 can be utilized to derive efficient up-
date rules such as the conjugate gradient algorithm for the
complex domain.

4.1. Fully complexMLP for nonlinear adaptive filtering

The multilayer perceptron filter—or network—provides a
good example case for the difficulties that arise in complex-
valued processing as discussed in the introduction. These are
due to the selection of activation functions for use in the fil-
ter structure and the optimization procedure for deriving the
weight update rule.

The first issue is due to the conflict between the bound-
edness and differentiability of functions in the complex
domain. This result is stated by Liouville’s theorem as: a
bounded entire function must be a constant in the complex do-
main [1], where entire refers to differentiability everywhere.
For example the sigmoid nonlinearity, which has been the
most typically used activation function for real-valued MLPs,
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x1

x2

xN

y1

yK

g(·)

g(·)

g(·)

h(·)

h(·)

...
...

...

z1

z2

zM

vNM wKN

Figure 1: A single hidden layer MLP filter.

has periodic singular points. Since boundedness is deemed as
important for the stability of algorithms, a practical solution
when designing MLPs for the complex domain has been to
define nonlinear functions that process the real and imagi-
nary parts separately through bounded real-valued nonlin-
earities as in [2]

f (z) � f̃ (x) + j f̃ (y) (33)

for acomplex variable z = x + j y using functions f̃ : R �→ R.
Another approach has been to define joint-nonlinear com-
plex activation functions as in [3, 4], respectively,

f (z) � z

c + |z|/d , f
(
re jθ

)
� tanh

(
r

m

)
e jθ. (34)

As shown in [10], these functions cannot utilize the phase in-
formation effectively, and in applications that introduce sig-
nificant phase distortion such as equalization of saturating-
type channels, are not effective as complex domain nonlinear
filters.

The second issue that arises when designing MLPs in the
complex domain has to do with the optimization of the cho-
sen cost function to derive the parameter update rule. As an
example, consider the most commonly used MLP structure
with a single hidden layer as shown in Figure 1. If the cost
function is chosen as the squared error at the output, we have

J(V,W) =
∑
k

(
dk − yk

)(
d∗k − y∗k

)
, (35)

where yk = h(
∑

nwknxn) and xn = g(
∑

mvnmzm). Note that
if both activation functions h(·) and g(·) satisfy the prop-
erty [ f (z)]∗ = f (z∗), then the cost function assumes the
form J(V,W) = G(z)G(z∗) making it clear how practical the
derivation of the update rule will be using Wirtinger calcu-
lus, since then we treat the two variables z and z∗ as inde-
pendent in the computation of the derivatives. On the other
hand, when any of the activation functions given in (33) and
(34) are used, it is clear that the evaluation of the gradients
will have to be performed through separate real and imagi-
nary part evaluations as traditionally done, which can easily
get quite cumbersome [2, 10].

Any function f (z) that is analytic for |z| < R with a Tay-
lor series expansion with all real coefficients in |z| < R sat-
isfies the property [ f (z)]∗ = f (z∗). Examples of such func-
tions include polynomials and most trigonometric functions
and their hyperbolic counterparts. In particular, all the el-
ementary transcendental functions proposed in [12] satisfy
the property and can be used as effective activation func-
tions. These functions, though unbounded, provide signif-
icant performance advantages in challenging signal process-
ing problems such as equalization of highly nonlinear chan-
nels [10] in terms of superior convergence characteristics
and better generalization abilities through the efficient rep-
resentation of the underlying problem structure. The non-
singularities do not pose any practical problems in the im-
plementation, except that some care is required in the selec-
tion of their parameters when training these networks. Mo-
tivated by these examples, a fundamental result for complex
nonlinear approximation is given in [12], where the result
on the approximation ability of the multilayer perceptron
is extended to the complex domain by classifying nonlin-
ear functions based on their singularities. To establish the
universal approximation property in the complex domain,
a number of elementary transcendental functions are first
classified according to the nature of their nonsingularity as
those with removable, isolated, and essential singularities.
Based on this classification, three types of approximation
theorems are given. The approximation theorems for the first
two classes of functions are very general and resemble the
universal approximation theorem for the real-valued feed-
forward multilayer perceptron that was shown almost con-
currently by multiple authors in 1989 [22–24]. The third ap-
proximation theorem for the complex multilayer perceptron
is unique and related to the power series approximation that
can represent any complex number arbitrarily closely in the
deleted neighborhood of a singularity. This approximation is
uniform only in the analytic domain of convergence whose
radius is defined by the closest singularity.

For the MLP filter shown in Figure 1, where yk is the out-
put and zm the input, when the activations functions g(·) and
h(·) are chosen as functions that are C �→ C as in [11, 12], we
can directly write the backpropagation update equations us-
ing Wirtinger derivatives.

For the output units, we have ∂yk/∂w∗kn = 0, therefore

∂J

∂w∗kn
= ∂J

∂y∗k

∂y∗k
∂w∗kn

= ∂
[(
dk − yk

)(
d∗k − y∗k

)]
∂y∗k

∂h
(∑

nw
∗
knx

∗
n

)
∂w∗kn

= −(dk − yk
)
h′
(∑

n

w∗knx
∗
n

)
x∗n .

(36)

We define δk = −(dk − yk)h′(
∑

nw
∗
knx

∗
n ) so that we can write

∂J/∂w∗kn = δkx∗n .
For the hidden layer or input layer, first we observe the

fact that vnm is connected to xn for all m. Again, we have
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∂yk/∂v∗nm = 0, ∂xn/∂v∗nm = 0. Using the chain rule once again,
we obtain

∂J

∂v∗nm
=
∑
k

∂J

∂y∗k

∂y∗k
∂x∗n

∂x∗n
∂v∗nm

= ∂x∗n
∂v∗nm

∑
k

∂J

∂y∗k

∂y∗k
∂x∗n

= g′
(∑

m

v∗nmz
∗
m

)
z∗m
∑
k

∂J

∂y∗k

∂y∗k
∂x∗n

= g′
(∑

m

v∗nmz
∗
m

)
z∗m

(∑
k

− (dk − yk
)
h′
(∑

l

w∗klx
∗
l

)
w∗kn

)

= z∗mg
′
(∑

m

v∗nmz
∗
m

)(∑
k

δkw
∗
kn

)
.

(37)

Thus, (36) and (37) define the gradient updates for comput-
ing the hidden and the output layer coefficients, wkn and vnm,
through backpropagation. Note that the derivations in this
case are very similar to the real-valued case as opposed to
what is shown in [2, 10] where separate evaluations with re-
spect to the real and imaginary parts are carried out.

4.2. Complexmaximum likelihood approach to
independent component analysis

Independent component analysis (ICA) for separating
complex-valued signals is needed in a number of applica-
tions such as medical image analysis, radar, and communi-
cations. In ICA, the observed data are typically expressed as a
linear combination of independent latent variables such that
x = As where s = [s1, s2, . . . , sN ]T is the vector of sources,
x = [x1, x2, . . . , xN ]T is the vector of observed random vari-
ables, and A is the mixing matrix. We consider the simple
case where the number of independent variables is the same
as the number of observed mixtures. The main task of the
ICA problem is to estimate a separating matrix W that yields
the independent components through ŝ = Wx. Nonlinear
ICA approaches such as the maximum likelihood provide
practical and efficient solutions to the problem. When de-
riving the update rule in the complex domain, however, the
optimization is not straightforward and can easily become
cumbersome [13, 25]. To alleviate the problem, the rela-
tive gradient framework of [19] has been used along with
isomorphic transformations CN �→ R2N to derive the update
equations in [25]. As we show next, Wirtinger calculus al-
lows a much more straightforward derivation procedure, and
in addition, provides a convenient formulation for working
with probabilistic descriptions such as the probability density
function (pdf) in the complex domain.

We define the pdf of a complex random variable X =
XR + jXI as pX(x) ≡ pXRXI (xR, xI) and the expectation of
g(X) is given by E{g(X)} = ∫∫

g(xR + jxI)pX(x)dxRdxI for
any measurable function g : C → C. The traditional ICA
problem determines a weight matrix W such that y = Wx

approximates the source s subject to the permutation and
scaling ambiguity. To write the density transformation, we
consider the mapping C→ R2N such that y =Wx = s, where

y = [yTRy
T
I ]T , W = [WR −WI

WI WR

]
, x = [xTRx

T
I ]T , and s = [sTRs

T
I ]T .

Given T independent samples x(t), we write the log-
likelihood function as [26]

l′(y,W) = log
∣∣det (W)

∣∣ +
N∑
k=1

logpk
(
yk
)
, (38)

where pk is the density function for kth source. Maximiza-
tion of l′ is equivalent to minimization of l where l = −l′.
Simple algebraic and differential calculus yields

dl = −tr
(
dWW

−1)
+ ψT(y)d y, (39)

where ψ(y) is a 2N × 1 column vector with components

ψ(y) = −
[
∂ log p1

(
y1
)

∂yR,1
· · · ∂ log pN (yN )

∂yR,N

∂ log p1
(
y1
)

∂yI ,1

· · · ∂ log pN
(
yN
)

∂yI ,N

]
.

(40)

We write log ps(yR, yI) = log ps(y, y∗) and using Wirtinger
calculus, it is straightforward to show

ψT(y)d y = ψT
(
y, y∗

)
dy + ψH

(
y, y∗

)
dy∗, (41)

where ψ(y, y∗) is an N×1 column vector with complex com-
ponents

ψk
(
yk, y∗k

) = −∂ log pk
(
yk, y∗k

)
∂yk

. (42)

Defining a 2N × 2N matrix P = (1/2)
[ I jI

jI I

]
, we obtain

tr
(
dWW

−1) = tr
(
dWPP−1W

−1)

= tr

⎧⎪⎨
⎪⎩
⎡
⎣ dW∗ jdW

jdW∗ dW

⎤
⎦ ·
⎡
⎣W∗ jW

jW∗ W

⎤
⎦
−1
⎫⎪⎬
⎪⎭

= tr
(
dWW−1) + tr

(
dW∗W−∗).

(43)

Therefore, we can write (39) as

dl = −tr
(
dWW−1)− tr

(
dW∗W−∗)

+ ψT
(
y, y∗

)
dy + ψH

(
y, y∗

)
dy∗.

(44)

Using y =Wx and defining dZ = (dW)W−1, we obtain

dy = (dW)x = dW
(
W−1)y = dZy,

dy∗ = dZ∗y∗.
(45)

By treating W as a constant matrix, the differential matrix
dZ has components dzi j that are linear combinations of dwij
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and is a nonintegrable differential form. However, this trans-
formation greatly simplifies the expression for the Taylor se-
ries expansion without changing the function value. It also
provides an elegant approach for the derivation of the natu-
ral gradient update for maximum likelihood ICA [26]. Using
this transformation, we can write (44) as

dl = −tr(dZ)− tr
(
dZ∗

)
+ ψT

(
y, y∗

)
dZy

+ ψH
(
y, y∗

)
dZ∗y∗.

(46)

Therefore, the gradient update rule for Z is given by

ΔZ = −μ ∂l

∂Z∗
= μ

[
I− ψ∗

(
y, y∗

)
yH
]
, (47)

which is equivalent to

ΔW = μ
[
I− ψ∗

(
y, y∗

)
yH
]
W (48)

by using dZ = (dW)W−1.
Thus the complex score function is defined as ψ∗(y, y∗),

as in [27], which takes a form very similar to the real case
[26], but with the difference that in the complex case the en-
tries in the score function are defined using Wirtinger deriva-
tives.

4.3. Complex conjugate gradient (CG) algorithm

The equivalence condition given by Proposition 3 allows for
easy derivation of second-order efficient update schemes as
we demonstrate next. As shown in Proposition 3, for a real
differentiable function g(z, z∗) : CN×CN → R and f : R2N →
R such that g(z, z∗) = f (w), the update for the Newton
method in R2N is given by

∂2 f

∂w∂wT
Δw = − ∂ f

∂w
, (49)

and is equivalent to

Δz = −(H∗
2 −H∗

1 H
−1
2 H1

)−1
(

∂g

∂z∗
−H∗

1 H
−1
2

∂g

∂z

)
(50)

in CN . To achieve convergence, we require that the search
direction Δw is a descent direction when minimizing a
cost function, which is the case if the Hessian ∂2 f /∂w∂wT

is positive definite. However, if the Hessian is not positive
definite, Δw may be an ascent direction. The line search
Newton-CG method is one of the strategies for ensuring
that the update is of good quality. In this strategy, we solve
(49) using the CG method, terminating the updates if
ΔwT(∂2 f /∂w∂wT)Δw ≤ 0.

When we do not have the definition of function f but
only have the knowledge of g, we can obtain the complex
conjugate gradient method with straightforward algebraic
manipulations of the real CG algorithm (e.g., given in [28])
by using the three equalities given in (12), (13), and (14). We
let s = ∂g/∂z∗ to write the complex CG method as shown in
Algorithm 1, and thecomplex line search Newton-CG algo-
rithm is given in Algorithm 2.

The complex Wolfe condition [28] can be easily obtained
from the real Wolfe condition using a procedure similar to

Given some initial gradient s0;
Set x0 = 0, p0 = −s0, k = 0;
while |sk| /= 0

αk =
sHk sk

Re
(
pT
kH2p∗k + pT

kH1pk

) ;

xk+1 = xk + αkpk ;

sk+1 = sk + αk
(
H∗

2 pk + H∗
1 p

∗
k

)
;

βk+1 =
sHk+1sk+1

sHk sk
;

pk+1 = −sk+1 + βk+1pk ;
k = k + 1;

end(while)

Algorithm 1: Complex conjugate gradient algorithm.

for k = 0, 1, 2, . . .
Compute a search direction Δz by applying the complex
CG method, starting from x0 = 0.
Terminating when Re(pT

kH2p∗k + pT
kH1pk) ≤ 0;

Set zk+1 = zk + μΔz, where μ satisfies a complex Wolfe
condition.

end

Algorithm 2: Complex line search Newton-CG algorithm.

the one followed in Proposition 3. It should be noted that
the complex conjugate gradient algorithm is a linear version
such that the solution of a linear equation is considered. The
procedure given in [28] can be used to obtain the version for
a given nonlinear function.

5. DISCUSSION

We describe a framework for complex-valued adaptive sig-
nal processing based on Wirtinger calculus for the efficient
computation of algorithms and their analyses. By enabling to
work directly in the complex domain without the need to in-
crease the problem dimensionality, the framework facilitates
the derivation of update rules and makes efficient second-
order update procedures such as the conjugate-gradient rule
readily available for complex optimization. The examples we
have provided demonstrate the simplicity offered by the ap-
proach in the derivation of both componentwise update rules
as in the case of the backpropagation algorithm for the MLP
and direct matrix updates for estimating the demixing ma-
trix as in the case of independent component analysis us-
ing maximum likelihood. The framework can also be used to
perform the analysis of nonlinear adaptive algorithms such as
ICA using the relative gradient update given in (48) as shown
in [29] in the derivation of local stability conditions.
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