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Computer network traffic is analyzed via mutual information techniques, implemented using linear and nonlinear canonical cor-
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upstream or downstream link. This observation appears to be topology independent, as the technique is demonstrated on the
so-called parking-lot topology, random 50-node topology, and 100-node transit-stub topology. This technique is also employed
to detect UDP flooding with low false alarm rate on a backbone link. These results indicate that a change in mutual information
provides a useful detection criterion when no other signature of the attack is available.
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1. INTRODUCTION

Attacks on the network have become commonplace and
with them intrusion detection systems (IDSs), firewalls, virus
scanning, and the like have become parts of an ever growing
arsenal of defense tools [1, 2]. If some knowledge of the na-
ture of the attack is available, it would be easily recognizable
by pattern recognition techniques. Hence, signature-based
IDS is perhaps the most popular IDS technique [3, 4]. How-
ever, when a new attack strikes, no such signature is avail-
able, in which case the only hope is through anomaly detec-
tion [5], meaning detection of some deviation of the overall
system behavior from what is considered normal. Anomaly
detection can be host-based or network-based. Host-based
anomaly detection is at the end user level, while network-
based detection is at the level of network data. The present
paper is relevant to the latter, in the sense that it detects in-
trusion by analysis of the signals at some link.

Within network-based anomaly detection, most tech-
niques are count-based where the rate of occurrence (i.e., the
number of events in a time period) or the absolute value
of some count is monitored. A sufficiently large deviation
of the count from its nominal value is assumed to signify
an attack. Change-point detection schemes such as cumsum
[6] or exponentially weighted moving average may be used
to detect when the deviation of the count occurs [7]. For

example, TCP-SYN attacks are detected by monitoring the
arrival rate of TCP-SYN packets or the number of half-open
connections (see, e.g., [8]). Email worms can be detected by
monitoring the number of emails sent from amail server and
by examining the number of emails sent to certain classes of
destinations [9]. The rate of DNS lookups [10] and ARP re-
quests [11] are used to detect various types of worms. The
arrival rate of certain-sized UDP packets can be used to de-
tect worms such as Code Red (see, e.g., [12]).

The paper presents an alternative to count-based anom-
aly detection. More specifically, we investigate intrusion
detection that is based on a possibly subtle change relevant
to the dynamical structure of the signal. Arguably that single
parameter that best encodes this dynamical structure is
the order of the model of the observed time series. As
already noted in [13], this model order can be obtained
by either the Akaike information criterion (AIC) or the
minimum description length (MDL) criterion. The former
is a Kullback-Leibler-based criterion, while the latter is a
Kolmogorov complexity-based criterion [14]. A third avenue
of approach utilizes the Kullback-Leibler information in a
different way to produce the Akaike mutual information
(MI) between past and future of the time series; model
order selection is then viewed as a compromise between
simplicity of the model and its ability to carry most of the
mutual information; this is computationally implemented
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Figure 1: The various approaches to detect a change in the signal
structure. The path taken here is the left-most one. In the Akaike
information criterion (AIC) and the minimum description length
(MDL), themodel orderD is chosen so as tominimize AIC orMDL,
respectively, where MSE denotes the mean square error and N the
number of sample sets.

in stochastic balancing (see [15] and the references cited
therein). The interrelation among these three approaches
is depicted in Figure 1. The left-hand side of the diagram
refers to properties of the statistics, whereas the right-hand
side refers to properties of sequences. The deeper connec-
tion between the two approaches is formulated by the
Zvonkin-Levin theorem [16], [17, Theorem 1], [18, page
227]: for a stationary ergodic source emitting symbols
y(k) over a finite alphabet, limn→∞(K(y(1), . . . , y(n))/n) =
limn→∞(H(y(1), . . . , y(n))/n), where K(y(1), . . . , y(n))
is the complexity of the sequence y(1), . . . , y(n) and
H(y(1), . . . , y(n)) is the entropy of the probability distri-
bution of y(1), . . . , y(n). The other connection between
complexity and mutual information, marked as a dotted
line in Figure 1, is more specific to intrusion detection and
expanded upon in the next section.

The specific path taken in this paper is the extreme left of
the diagram of Figure 1, except that we stop short of detect-
ing a change in model order, but rather endeavor to detect a
change in mutual information.

1.1. Mutual information versus
Kolmogorov complexity

Since the MI and Kolmogorov complexity both endeavor to
find model order, the two approaches ought to be somehow
related. To understand the similarities/discrepancies, some
more formal concepts are already in order.

The mutual information between the past y− and the
future y+ is the amount by which the Shannon entropy of
the future decreases when we are given the past, that is,
H(y+) − H(y+ | y−). Practically, the past/future MI is re-
lated to the (properly weighted) mean square error between
the data and the optimal predictor model. In the Gaussian
case, the modeling is traditionally done by the classical inno-
vations representation [19], while, in the non-Gaussian case,

the modeling could be done by such well-known statistical
modeling techniques as the alternating conditional expecta-
tion (ACE) [20].

The Kolmogorov complexity K(y) of a string y is the
length of the shortest composite string 〈T : u〉 such that if
the string u is the input tape to the Turing machine T it pro-
duces y on the output tape and then stops [21, Definition
6.20], [14, 16].

Information-based and complexity-based intrusion
detections can be related by the sometimes loosely stated
fact that high complexity means low information. Precisely,
Kolmogorov proved that the most complex binary sequences
are those that approach random coin tosses [18, page 227],
[21, page 218], which have vanishing mutual information.
To generalize the latter to arbitrary shift dynamics T : Ω→ Ω
with invariant measure μ, it is convenient to use Markov par-
titioning Ω=⋃i Ai, so as to reduce the problem to symbolic
dynamics. However, even after this conversion, the connec-
tion between complexity and mutual information does not
appear to hold without the crucial φ-mixing condition, that
is, |(μ(Ai

⋂
T−k−nAj))/(μ(Ai)μ(Aj)) − 1| ≤ φ(k) for some

decaying function φ(k), and uniformly for all n. For example,
consider the automorphism of the torus y(k + 1) = Fy(k)
mod 1 =: Ty(k), where F ∈ Z2×2 and detF = ±1, in which
case the entropy is relative to the Lebesgue measure μ [22].
This entropy is well known to be h(y+) = log(|λ(F)|max) and
the decay rate of the correlation is given by φ(k) ∼ |λ(F)|−kmax
[23]. By the Zvonkin-Levin theorem, the Kolmogorov
complexity rate is given by log(|λ(F)|max). As the complexity
increases, the correlation decreases faster; hence so does∑

i, j μ(Ai
⋂
T−kAj) log((μ(Ai

⋂
T−kAj))/(μ(Ai)μ(T−kAj)))

as k→∞, and from there on it can be shown [24] that the
past/future mutual information

∑
ik , jl μ((

⋂
l≥0 TlAjl )

⋂
(
⋂

k≥0
T−kAik ))log((μ((

⋂
l≥0TlAjl )

⋂
(
⋂

k≥0T−kAik )))/(μ(
⋂

l≥0TlAjl )
μ(
⋂

k≥0 T−kAik ))) decreases.

1.2. Fundamental concepts

A key assumption of the techniques investigated here is that
some network attacks change the structure of the traffic. In
an effort to understand self-similarity, several aspects of the
structure of network traffic have been extensively investi-
gated. It has been widely reported that various aspects of the
network and traffic impact the structure. For example, the
autocorrelation, more specifically, the rate of decay of the
autocorrelation, has been widely used to study traffic [25].
This rate of decay is related to the Hurst parameter and is
known to be related to the application layer parameters such
as file size distribution [26]. In [27], a wavelet-based anal-
ysis of traffic revealed a cascade structure that is dependent
on transport and application protocols as well as user behav-
ior such as mouse clicks and session duration. While much
of this previous work focuses on long time scales, in [28],
the short-time scale behavior of the “packet pattern” was
studied and it was found that this pattern depends on cer-
tain network parameters such as loss rate. Here, the mutual
information is used, but instead of examining the variation
over different time scales to understand self-similarity or
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scaling, the temporal variation is used to understand the type
of traffic, specifically, to determine whether an attack is oc-
curring.

The premise of the information theoretic approach to in-
trusion detection is that any kind of intrusion would disturb
the dynamical structure, and hence the information struc-
ture, which the signal inherits from the interaction of TCP
with the malicious flow. For example, in case of constant
bit-rate (CBR) UDP flooding, packet arrival rates may be-
come more stable than those that occur under typical TCP
file transfers. In this case, the signal becomes more determin-
istic, hence more predictable; that is, CBR flood results in
the past packet arrival rate holding more information about
the future packet arrival rate. Next to CBR flooding, there
are other attacks that would rather decrease the information,
making the signal less predictable. It appears therefore that
the traffic has to be monitored for a change in information,
which should trigger the alarm. On the other hand, while
flooding-based attacks may impact the mutual information,
traffic anomalies that do not impact the dynamic structure
would not cause a change in the mutual information. Other
techniques are required to detect such attacks.

From a broader perspective, since as shown in the preced-
ing section, the connection between rate of decay of correla-
tion and mutual information does not appear to hold with-
out a stronger version of mixing, it is believed that mutual
information adds, next to rate of decay of correlation, a new
dimension to traffic analysis.

1.3. Practical Implementation

Numerically, the mutual information between the past and
the future of the traffic signal, or any process for that mat-
ter, is computed via canonical correlation analysis (CCA) be-
tween the past and the future of the process [15, 19]. In case
of a Gaussian process, the linear CCA is adequate in the sense
that themutual information can easily be computed from the
linear canonical correlation coefficients (CCCs). If the traffic
signal is non-Gaussian, the linear CCCs underestimate the
mutual information. However, after a nonlinear preprocess-
ing, the resulting nonlinear CCCs would yield an estimate
that approaches the mutual information as closely as possi-
ble, depending on the amount of nonlinear processing that is
consistent with online intrusion detection.

Several signals (e.g., link utilization, packet arrival, and
queue length) are candidates for mutual information analy-
sis by canonical correlation. However, our experiments have
shown that the change in mutual information concurrent
with an attack is more sizable if the average utilization over a
sample period is analyzed. Since the number of arrivals dur-
ing a sample period and the average utilization during a sam-
ple period differ only by a scaling factor, the mutual informa-
tion of the utilization is the same as the mutual information
of the number of packet arrivals.

In Section 4, three topologies are analyzed: parking-lot
topology, random 50-node topology, and 100-node transit-stub
topology.We do not consider a widely used single-bottleneck
dumbbell topology in this paper, as it was shown in [13] that

intrusion detection on the dumbbell topology is straightfor-
ward. The random 50-node and the 100-node transit-stub
topologies are generated by Georgia Tech’s topology gener-
ator (Gt-Itm). We use the network simulator (NS) [29] to
integrate these topologies and to generate traffic. For each
topology, our study is 2-fold: linear versus nonlinear canon-
ical correlation analysis, for varying sampling periods (rang-
ing from 0.1 to 20 s). Furthermore, in Section 6, this mutual
information-based detection scheme is applied to backbone
network traces.

While the simulation and experiment results are promis-
ing in that they indicate that the traffic anomalies result in
a significant change in the mutual information, the results
should not be taken as definitive proof of the deployability
of mutual information-based detection mechanisms. Rather,
the intent of this paper is to illustrate the potential utility of
signal processing techniques such as mutual information for
the detection of network traffic anomalies. A comprehensive
examination of the performance in terms of false positives
and false negatives over the very wide range of types of traffic
found in the Internet is currently under investigation.

1.4. Outline

An outline of the paper follows. Section 2 gives a brief
overview of the related work in this area. Section 3 deals
with the linear and nonlinear canonical correlation analyses,
the mutual information, and the resulting models. Section 4
presents the simulation setup. In Section 5 the simulation re-
sults are analyzed.

2. RELATEDWORK

Today, there are generally two types of intrusion detection
systems (IDS): misuse detection and anomaly detection.Mis-
use detection techniques attempt to model attacks on a sys-
tem as specific patterns, then systematically scan the system
for occurrences of these patterns [3, 4]. Anomaly detection
approaches attempt to detect intrusions by noting significant
departures from normal behavior [13, 30–34]. Our approach
falls under network-based anomaly detection as we detect in-
trusion by analysis of traffic signals.

Many techniques have been proposed for anomaly de-
tection. Several of them analyze different data streams, such
as data mining for network traffic [35], statistical analysis
for audit record [32], sequence analysis for operating system
calls [36], information retrieval [37], and inductive learn-
ing [38]. Statistical methods have also been developed for
network anomaly detection [5, 39]. Change point detection
technique has been used for detection of various flooding at-
tacks [40, 41].

Signal processing techniques, the focus of our work, have
been used previously to analyze malicious network traffic
and to detect ongoing attacks. In [42], the authors have used
wavelet coefficients across resolution levels to locate smooth
and abrupt changes in variance and frequency in the given
time series. Reference [43] has proposed a statistical sig-
nal processing technique based on abrupt change detection.
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Reference [44] has used flow-level information to identify
frequency characteristics of anomalous network traffic. Ref-
erences [45, 46] have developed spectral analysis-based ap-
proach to detect DoS attack. Further, wavelets and other sig-
nal processing techniques have been extensively used to an-
alyze both wired and wireless network traffic [47, 48]. Per-
haps the most relevant approach along the lines of our work
is Kolmogorov complexity approach to intrusion detection
described in [49]. The fundamental difference between our
work and this work is highlighted in the introduction.

3. CANONICAL CORRELATION ANALYSIS

Here {y(k) ∈ [−b, +b] : k = . . . ,−1, 0, +1, . . . } is the cen-
tered link utilization signal (i.e., the total number of bytes
that arrived during the sample period divided by the max-
imum possible number of bytes that could arrive during
the sample period). yk is bounded by the bandwidth and
is viewed as weakly stationary process with finite covari-
ance E(y(i)y( j)) = Λi− j defined over the probability space
(Ω,A,μ). As such, there is no need to take infinite variance
processes (e.g., α-stable, H-self-similar processes [50]) into
consideration. The past and the future of the process are de-
fined, respectively, as

y−[L] =
(
y(k), y(k − 1), . . . , y(k − L + 1)

)T
,

y+[L] =
(
y(k + 1), . . . , y(k + L)

)T
,

(1)

where L is the “lag.” We will drop the notation [L] when-
ever the size of the past or the future is irrelevant. The mu-
tual information between the past and the future [19, 51–53]
is the amount of information we acquire about the future
when we are given the past. Since, technically, the entropy of
a continuous-valued process does not exist, the mutual in-
formation is most easily defined in terms of past-measurable
partitions A and future-measurable partitions B of the sam-
ple space Ω,

I
(
y−, y+

) = sup
A,B

(
H(A)−H(A | B))

= sup
A,B

∑

i

∑

j

log
μ
(
Ai ∩ Bj

)

μ
(
Ai
)
μ
(
Bj
)μ
(
Ai ∩ Bj

)

=
∫∫

log
p
(
y−, y+

)

p
(
y−
)
p
(
y+
) p
(
y−, y+

)
dy− dy+.

(2)

In the above, H(A) is the entropy of the partitioning A
and H(A | B) is the conditional entropy of the partition-
ing A given the partitioning B. The last equality in the
above is valid only under absolute continuity conditions,
in which case p(y−, y+) is the Radon-Nikodym derivative,
μ(dy−,dy+)/dy− dy+ and p(y−), p(y+) are themarginal den-
sities. As such, I(y−, y+) is the Kullback-Leibler “distance”
between p(y−, y+) and p(y−)p(y+). In this setup, it could

be argued that, because y(k) is a packet count under band-
width limitation, it takes only finitely many values, so that
the mutual information can still be defined as I(y−, y+) =
H(y+) − H(y+ | y−), where H(y+) is the entropy of the fu-
ture and H(y+ | y−) is the conditional entropy of the future
given the past.

3.1. Linear canonical correlation

The linear canonical correlation analysis (CCA) is a second
moment technique for computing the mutual information
under the standard Gaussian assumption. Since the process
y(k) is bounded, the Gauss property is only an approxima-
tion of the true distribution.

Factor the covariances of the past and the future as

E
(
y−(k)yT−(k)

) = L−LT−,

E
(
y+(k)yT+ (k)

) = L+L
T
+

(3)

and then construct the canonical correlation matrix Γ along
with its singular value decomposition (SVD),

Γ
(
y−, y+

)
:= L−1− E

(
y−(k)yT+ (k)

)
L−T+ = UTΣV , (4)

where U and V are orthogonal matrices and

Σ =

⎛

⎜
⎜
⎜
⎝

σ1 . . . 0

...
. . .

...

0 · · · σL

⎞

⎟
⎟
⎟
⎠
, 1 � σ1 � · · · � σL � 0. (5)

The σ ’s are called canonical correlation coefficients (CCCs).
Since they are all bounded by 1, it follows that, even as L →
∞, the canonical correlation operator is bounded as ‖Γ‖ ≤
1, where ‖ · ‖ denotes the spectral norm. If the process is
Gaussian, it is well known that

−1
2
log det

(
I − ΓT

(
y−, y+

)
Γ
(
y−, y+

)) = I
(
y−, y+

)
.

(6)

The fact that Γ is a bounded operator does not imply that
I(y−, y+) is bounded as L → ∞, because σi ≤ 1 does not
imply that −(1/2) logΠ∞i=1(1− σ2i ) exists. We will come back
to this point at the end of the next subsection.

In general, with a noisy, finite length L data record, the se-
quence of CCCs still shows a fairly clear cutoff. Practically, in
all cases, a break point σD � σD+1 is identified and a reduced
model of order D is obtained after resetting the L−D tail co-
efficients to 0. The latter is formalized in stochastic balancing
and Hankel norm reduction [15].

A few numerical remarks

It is customary to define L± to be lower triangular (Cholesky
factorization), although L± could be defined upper triangu-
lar (“anti-Cholesky” factorization), in which case Γ is near-
Hankel and in fact, for L = ∞, it will be the Hankel op-
erator associated with the phase of the spectral factor of y
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[15]. The particular way the factorization is done does not
affect the CCCs. E(y±(k)yT±(k)) might be marginally positive
definite, resulting in problems with the Cholesky factoriza-
tion; there is thus a need to monitor the condition number
of E(y±(k)yT±(k)). If the covariance matrix is poorly condi-
tioned, a generalized eigenvalue approach to compute the σ ’s
should be used.

3.2. Nonlinear canonical correlation

If the process y is not Gaussian, (6) is no longer valid. This
motivates the nonlinear canonical correlation [51, 53, 54] as
a modified technique to reach the mutual information in the
non-Gaussian setup; precisely, we have the following.

Theorem 1. Let {y(k) ∈ [−b, +b] : k = . . . ,−1, 0, +1, . . . }
be a bounded valued weakly stationary process defined over the
probability space (Ω,A,μ). Let I(y−, y+) be the mutual infor-
mation between the past and the future and let Γ(·, ·) denote
the canonical correlation. Then

sup
f ,g

(

− 1
2
log det

(
I − ΓT

(
f
(
y−
)
, g
(
y+
))
Γ
(
f
(
y−
)
, g
(
y+
)))
)

≤ I
(
y−, y+

)
,

(7)

where f , g : [−b, +b]L → RL are functions such that f ◦
y−, g ◦ y+ ∈ L2(Ω,A,μ), E( f (y−)) = E(g(y+)) = 0,
and for convenience normalized as E( f T(y−) f (y−)) = 1,
E(gT(y+)g(y+)) = 1. Furthermore, equality is achieved if and
only if f (y−) and g(y+) can be made jointly Gaussian, in which
case the joint past/future process is called diagonally equivalent
to Gaussian.

Proof. See [51, 53].

To motivate the left-hand side optimization in a practi-
cal estimation setup, consider a linear regression of g(y+) on
f (y−). It is easily found that

min
A

E
(
g
(
y+
)− A f

(
y−
))T(

L+L
T
+

)−1(
g
(
y+
)− A f

(
y−
))

= L− Trace
(
ΓT
(
f
(
y−
)
, g
(
y+
))
Γ
(
f
(
y−
)
, g
(
y+
)))

.
(8)

Clearly, the best choice of f and g is the one that maximizes
Trace(ΓT( f (y−), g(y+))Γ( f (y−), g(y+))) and it is readily seen
that this is achieved for the same distortion functions f and
g. This latter technique calls for themaximization of the trace
of ΓT( f (y−), g(y+))Γ( f (y−), g(y+)), as was done in the ap-
proach of Larimore and Baillieul (see [54]), rather than the
maximization of the mutual information, as done by Jonck-
heere and Wu (see [51, 53]). Not surprisingly, by how much
Trace(ΓT( f (y−), g(y+))Γ( f (y−), g(y+))) can be increased by
means of nonlinear distortion should be bounded by themu-
tual information; in fact, the following is true.

Theorem 2. Under the same assumptions as in Theorem 1,

max
f ,g

Trace
(
ΓT
(
f
(
y−
)
, g
(
y+
))
Γ
(
f
(
y−
)
, g
(
y+
)))

≤ 2I
(
y−, y+

)
(9)

and furthermore equality holds if and only if the processes y−
and y+ are independent.

Proof. See [51, 53].

Using the above, it follows that

MSE

:= lim
L→∞

1
L

(
L− sup

f ,g
Trace

(
ΓT
(
f
(
y−
)
, g
(
y+
))
Γ
(
f
(
y−
)
,

g
(
y+
)))) ≥ 1− 2 lim

L→∞
I
(
y−, y+

)

L
.

(10)

We define ι(y−, y+) := limL→∞(I(y−, y+)/L) to be the mutual
information rate. In case ι < 1/2, the mutual information rate
is too weak and will result in a nonvanishing MSE. It can be
shown that if the system is φ-mixing, themutual information
rate vanishes [24], so that MSE ≥ 1.

Invoking the finite variance property, we construct
Hilbert space bases for the subspaces of L2(Ω,A,μ) of past
and future measurable functions Ω → R. The distortion
functions f and g will be expressed as linear combinations of
those basis functions, leading to yet another computational
implementation of the nonlinear CCA in addition to the se-
quential selection of Larimore and Ballieul (see [54]) and the
integral equation approach of [51, 53]. In case of finite lag L,
since y(k) is defined over a compact set [−b, +b], by a well-
known theorem, any function of y−, y+ can be uniformly
approximated by polynomials; hence we choose polynomi-
als pj(y−), qj(y+), j = 1, 2, . . . such that E−pj = E+qj = 0,
and forming bases of the Lebesgue spaces of zero-mean past-
measurable, future-measurable functions, respectively. Since

fi
(
y−
) = lim

N→∞

N∑

j=1
φi j p j

(
y−
)
,

gi
(
y+
) = lim

N→∞

N∑

j=1
γi jq j

(
y+
)

(11)

for least squares fitting coefficients φi j and γi j , the nonlinear
CCA therefore reduces to

sup
φ,γ

(

− 1
2
log det

(
I−Γ(φp(y−

)
, γq
(
y+
))
ΓT
(
φp
(
y−
)
, γq
(
y+
)))
)

,

(12)
where φ and γ are the arrays made up with the coefficients φi j
and γi j . The solutions φ and γ are far from unique even under
the normalization condition on f and g, because there is still
the freedom to premultiply φ and γ by orthogonal transfor-
mations. If L < ∞, the above supremum is nontrivial and is
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easily accomplished via linear CCA of p(y−) and q(y+), that
is, via SVD of Γ(p(y−), q(y+)). Specifically, do the factoriza-
tions

E
(
p
(
y−
)
p
(
y−
)T) = L−LT−,

e
(
q
(
y+
)
q
(
y+
)T) = L+L

T
+

(13)

along with the SVD

Γ
(
p
(
y−
)
, q
(
y+
))=

(
u1

U2

)T (
Σ1 0

0 Σ2

)(
V1

V2

)

, I≥Σ1�Σ2≥0.

(14)

The coefficients of the optimal distortion functions are given
by

φ = U1L
−1
− , γ = V1L

−1
+ . (15)

Even when L < ∞, the Hilbert space basis will still be
infinite-dimensional, so that the arrays φ and γ will be “fat.”
In this case, we have

sup
φ,γ

(

−1
2
log det

(
I−Γ(φp(y−

)
, γq
(
y+
))
ΓT
(
φp
(
y−
)
, γq
(
y+
)))
)

≤−1
2
log det

(
I−Γ(p(y−

)
, q
(
y+
))
ΓT
(
p
(
y−
)
, q
(
y+
)))

.

(16)

In other words, the CCA of the Hilbert space basis (the right-
hand side) provides a bound on what the nonlinear CCA can
achieve (the left-hand side).

A feature that is already present in the linear CCA of
traffic signals, but that becomes much more pronounced
in the nonlinear CCA, is that the head of the CCC se-
quence, σ1, σ2, σ3, . . . , σD, remains close to one before drop-
ping abruptly near zero. This phenomenon is, to our knowl-
edge, unique to traffic signals and points to some determin-
istic features in the dynamics.

Numerical remark

Practically, p and q are chosen as simple monomials or
Chebyshev polynomials in the components of the past and
the future. It is important to scale the large powers appear-
ing in p(y−) and q(y+), for otherwise the high power terms
become dominant over the low power terms.

4. SIMULATION SETUP

We used the network simulator (NS) developed by LBNL
to set up our simulation environment [29]. NS is a discrete
event simulator widely accepted for networking research. It

provides a substantial support for simulation of TCP, rout-
ing, and multicast protocols over wired and wireless (local
and satellite) networks. Moreover, NS generates constant bit
rate (CBR), TELNET, FTP, HTTP, and so forth traffic. The
simulator also has a small collection of mathematical func-
tions that can be used to implement exponential, uniform,
Pareto, and so forth random variables. We used this capabil-
ity to set up the network environment that synthesizedHTTP
and CBR traffic.

A dynamical model for normal TCP traffic was synthe-
sized from the signals obtained by sending HTTP traffic from
the sources to the destinations at random times. For HTTP
traffic, the file size distribution was modeled as a general
ON/OFF behavior with a combination of heavy-tailed and
light-tailed sojourn times, while the interpage time and the
interobject per page time distributions were set to be expo-
nential. The page size was set to be constant and the ob-
ject per page size to be Pareto to replicate today’s network
bursty traffic [55, 56]. In summary, HTTP traffic can be
parametrized by the following parameters in NS: number of
sessions, intersession time, session size, interpage time, page
size, interobject time, average object size, and shape parame-
ter of object size (exponent (α) in Pareto distribution).

In addition to this background (HTTP) traffic, a large
number of small size CBR packets were sent over some UDP
connections from the attack scenario model [57]. CBR traffic
can be parameterized by packet size and interval.

We ran several trials to cover a wide range of param-
eters for each topological setting. Each run was executed
for 30 000 simulated seconds, logging the traffic at the 0.01-
second granularity.

5. RESULTS AND INTERPRETATION

In this section, we show how the mutual information
changes under CBR attack. Three topologies are considered:
parking-lot topology, 50-node random topology, and 100-
node transit-stub topology. For parking-lot topology, we car-
ried out two experiments. The first experiment gives an idea
of how the mutual information is affected under the attack,
while the second experiment shows how the attack can be
detected at a link different than the attacked link. In a more
complicated setting, we consider 50-node random topology.
Moreover, to see if the mutual information is a useful tool in
detection of infrastructure attacks, such as flooding a bottle-
neck link, we use 100-node transit-stub topology.

5.1. Parking-lot topology

Figure 2 shows the “parking-lot” topology. The nodes Si (i =
8, 10, 12) are sources and the nodes Di (i = 9, 11, 13) are des-
tinations. The sources send traffic to their downstream des-
tinations. In addition to this background (HTTP) traffic, a
large number of CBR packets are sent over several UDP con-
nections from source nodes to the victim node to model the
attack scenario [57]. Specifically, source nodes 8 and 10 each
sends 15 CBR flows to the victim node 4. The intensity of



Khushboo Shah et al. 7

0

1

2

3

4

5

6

7

8

10

12

9

11

13

Normal traffic

UDP flooding
attack

Node
under
attack

Figure 2: Parking-lot topology. Normal traffic is an HTTP traffic,
while UDP packet storm attack is simulated by sending CBR traffic
downstream from the sources 8 and 10 to the vicitm 4.

Table 1: CBR traffic parameters for parking-lot topology.

Trial
CBR traffic

Packet size Interval (sec)

1 250 0.06

2 300 0.07

3 350 0.08

4 400 0.09

5 450 0.1

CBR and HTTP traffic is varied in each trial. Here, we show
the results for 5 trials. The parameters of CBR and HTTP
traffic for each trial are shown in Tables 1 and 2. Here the link
speed is 10Mbps and the latency of the each link is 20ms.

Experiment 1 (HTTP traffic under CBR attack, monitored
link the same as the flooded link, linear versus nonlinear
analysis). In this experiment, the impact of intensity of traf-
fic on the ability to detect an attack is explored. Here, the
background traffic is HTTP and the attack traffic is CBR.
Intensity of HTTP traffic can be varied by changing such
parameters as number of sessions, number of pages, num-
ber of objects, and so forth in NS (Table 2). The intensity
of CBR traffic is also varied (Table 1). The link under attack

is 3-4 and the monitored link for the detection is also 3-4
in Figure 2. The upper frames of Figure 3 show the linear
mutual information for different sample intervals for nor-
mal and attack traffic. Note that the mutual information is
derived from the average link utilization over the sample pe-
riod (i.e., the number of bytes that arrived during the sample
period divided by the maximum possible number of bytes
that could arrive during the sample period). Note that the
mutual information for the normal traffic remains the same
for different trials. The justification of the latter is that the
mutual information is unchanged under scaling; it only de-
pends on the dynamics, which in this case remains that of
HTTP traffic. From trial 1 to trial 5, the intensity of HTTP
traffic increases while the intensity of CBR traffic decreases.
As the relative intensity of CBR traffic increases, the traffic
becomes more predictable. This can be seen as the increase
in the mutual information in the attack traffic. Observe that
for trial 1, the increase in the mutual information under at-
tack is small; the justification is the small amount of CBR
traffic. Another experiment was performed in which the in-
tensity of CBR traffic was kept constant. This experiment also
showed a clear increase in mutual information under signif-
icant amount of CBR traffic.

The lower frames of Figure 3 show the nonlinear mutual
information for normal and attack traffic. Observe that for
normal traffic the nonlinear mutual information is higher
than the linear mutual information. Since TCP has compli-
cated dynamics, higher correlation and hence higher mu-
tual information are achieved by nonlinear distortion of the
past and the future. This also holds true for the attack traf-
fic. However, for this setup, the relative increase in linear and
nonlinear mutual information remains almost the same.

Experiment 2 (monitored link downstream of the flooded
link). In this experiment, the flooded link is still 3-4, but the
link utilization is monitored along link 4-5. The simulation
set-up is the same as that of Experiment 1. The linear mutual
information is computed for the link utilization 4-5. Figure 4
shows significant increase in the linear mutual information
for the attack traffic as compared to the normal traffic. In
conclusion, the mutual information can pick up the differ-
ence in the statistical structure of the signal, even when the
signal is not recorded on the flooded link. This differs from
count-based schemes that typically focus on observing the
attack directly.

5.2. Random50-node topology

In the more complicated “50-node” random topology
(Figure 5) generated by Georgia Tech’s topology generator
(Gt-Itm), 20 nodes are set as the sources and 20 nodes are
set as the destinations. The maximum link speed is 1.5Mbps
while the minimum link speed is 10Mbps. The propagation
delay varies between 20 to 120ms. HTTP requests are sent at
random times from random clients to random servers. All
the sources send 5 CBR flows to the target node 14 dur-
ing the attack. The CBR and HTTP traffic parameters for
various trials for this set-up are listed in Tables 3 and 4.
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Table 2: HTTP traffic parameters for parking-lot topology.

Trial
HTTP traffic

Number of Intersession
Session size

Interpage
Page size

Interobject Average object Object size

sessions time (s) time (s) time (s) size shape parameter

1 2500 2.5 1000 75 5 0.05 60 1.1

2 3000 3 1200 90 6 0.06 72 1.2

3 3500 3.5 1400 105 7 0.07 84 1.3

4 4000 4 1600 120 8 0.08 96 1.4

5 4500 4.5 1800 135 9 0.09 108 1.5
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Figure 3: Mutual information versus sample period for parking-lot topology. The upper frames show the linear mutual information while
the lower frames show nonlinear mutual information. The left-hand side plots are for normal traffic while the right-hand side plots are for
attack traffic.

Each trial was executed for 30 000 simulated seconds, logging
the traffic at 0.01-second granularity. The monitored link is
14–30.

Figure 6 shows the linear and nonlinear mutual informa-
tion for the monitored link. The results are consistent with

the results obtained for the parking-lot topology, meaning
that the mutual information increases in case of an attack.
Furthermore, the increase in the mutual information under
attack is much more sizable for this topology as compared
with the elementary baseline topology.
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Figure 4: Linear mutual information versus sample period for parking-lot topology. The flooded link is 3-4 while the monitored link is 4-5.
Observe the difference between the mutual information.

HTTP sources

Attack
destination

Link
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Figure 5: 50-node random topology. The target node 14 and the
monitored link is 14–30.

Table 3: CBR traffic parameters for random 50-node and 100-node
transit-stub topologies.

Trial
CBR traffic

Packet size Interval (s)

1 25 0.11

2 50 0.12

3 75 0.13

4 100 0.14

5 125 0.15

5.3. 100-node transit-stub topology

CERT has noted that DoS attacks on links and routers are in-
creasing [58]. A coordinated attack can be planted by many

end hosts that all send packets that will eventually traverse
the same link thereby hogging all link bandwidth. In the
present experiment, we explore the possibility of detecting
such an attack. A 100-node transit-stub topology is generated
by Georgia Tech’s topology generator (Gt-Itm). As shown in
Figure 7, there is only one HTTP server and 20 HTTP clients.
There are 13 attack sources and 13 attack destinations. Each
attack source sends 20 CBR flows to every attack destination.
All the attack sources use bottleneck link 2–0 to send traffic.
The focus here is the HTTP client that uses the link 0–2 to
send HTTP requests and the link 2–0 to receive the HTTP
server response. We ran 5 different trials by varying CBR and
HTTP traffic parameters (see Tables 3 and 4). Each trial was
executed for 30 000 simulated seconds, logging the traffic at
0.01-second granularity. The monitored link is 2–0.

Figure 8 shows the time series of link utilization of var-
ious links. The left frame in Figure 8 shows the link utiliza-
tion for the upstream server link, the center frame shows the
link utilization for the bottleneck link, and the right frame
shows the link utilization for the upstream client link. It can
be seen that, during the attack, the client of interest has zero-
link utilization, meaning the client completely stops getting
HTTP data packets since almost all the bandwidth of the link
2–0 is used by the attack traffic. On the other hand, there is
no visible difference in the link utilization of upstream server
link nor in the link utilization of the bottleneck link after the
attack.

To detect this attack, we use the nonlinear mutual in-
formation computed for the link utilization observed on the
bottleneck link 2–0. Figure 9 shows the mutual information
plots for this experiment for different trials. It can be seen
that there is a significant change in the mutual information,
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Table 4: HTTP traffic parameters for random 50-node and 100-node transit-stub topologies.

Trial HTTP traffic

Number of Intersession
Session size

Interpage
Page size

Interobject Average object Object size

sessions time (s) time (s) time (s) size shape parameter

1 400 1 200 15 1 0.01 12 1.1

2 800 2 400 30 2 0.02 24 1.2

3 1200 3 600 45 3 0.03 36 1.3

4 1600 4 800 60 4 0.04 48 1.4

5 2000 5 1000 75 5 0.05 60 1.5
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Figure 6: 50-node random topology. The upper frames show the linear mutual information while the lower frames show nonlinear mutual
information. The left-hand side plots are for normal traffic while the right-hand side plots are for attack traffic.

even though the attack cannot be seen by visual inspection of
the link utilization plots. It is important to note that since the
link utilization remains constant during the attack, count-
basedmethods that simply consider the amplitude of the link
utilization during a sample period are unable to detect the at-
tack.

6. EXPERIMENTAL STUDY

To further investigate mutual information-based detection
schemes, traces from a backbone link were used. Specifically,
we examine packet traces captured on SONET OC-48 links
by CAIDA monitors. The link runs from San Jose, Calif, to
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Figure 7: 100-node transit-stub topology. The link under attack is
0–2.

Seattle,Wash, and belongs to US tier 1 backbone Internet ser-
vice provider (ISP). The traces were collected by Linux-based
monitor with Dag 4.11 network cards and packet capture
software originally developed at the University of Waikato
and currently produced by Endace. The data was collected
over a 1-hour period on August 8, 2002. During this time,
the average link utilization was 14.7%. The packet trace cap-
tured a UDP-flooding attack. The detection of this attack is
used as a test case for examining the performance of mutual
information-based detection.

The mutual information of the time series of the aver-
age link utilization over a 62ms sample intervals was com-
puted. Based on the first 1000 samples, the nominal mutual
information was determined. We denote this nominal value
as Ī , whereas the mutual information found after processing
a new observation is denoted by Ik. We take the lag to be 30
and compute the mutual information based on a window of
1000 observations. We employ the cumsum [6] technique to
distinguish normal mutual information from abnormal mu-
tual information. Specifically, an attack is declared when Sk >
threshold, where Sk+1 = max(0, Sk + Ik − Ī), with S0 = 0.
Figure 10 shows the time series of S before and during the
UDP-flooding attack. The start of the attack can easily be ob-
served by the sharp rise in S toward the end of the trial.

Clearly, the performance of the detection scheme is re-
lated to the value of threshold. Figure 11 shows the relation-
ship between the false alarm rate and threshold. A false alarm
is said to occur if Sk exceeds threshold without attack. After a
false alarm, S is reset to 0 and the time series is continued to
be processed. As expected, as threshold grows, the false alarm
rate decreases. No false alarms occurred for threshold above
160, hence no points are included for threshold > 160. How-
ever, as long as threshold is below 1600, the attack is detected.

7. CONCLUDING REMARKS

The investigations reported here have demonstrated that
some specific attack scenarios, while perhaps not visible by
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Figure 8: Link utilization versus time.

naked eye observation of traffic plots, nevertheless create dy-
namical shift substantial enough for the mutual information
to be affected in a sizable manner. It appears that the signal
to be monitored is the link utilization at some link in the
vicinity of the target of the attack. Results have shown that
mutual information is especially useful in detecting flooding
attacks such as CBR attacks. Other attacks, like SYN, which
disrupts the normal sequencing of control and data pack-
ets, would require a distinction between control and data
packets, which is left for further research. From a broader
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Figure 9: 100-node transit-stub topology. The plot shows the nonlinear mutual information.
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Figure 10: Time series of Sk , the cumsum of the mutual informa-
tion. This data is from a backbone link. The steep increase at around
the 10000th sample is due to a UDP flooding attack.

perspective, it appears that TCP traffic has a mutual infor-
mation signature distinct from that of non-TCP traffic, so
that any deviation, malicious or not, from TCP would be de-
tectable. While the utility of mutual information has been
demonstrated through simulations and experiments, further
work is required to determine the performance under the
wide range of traffic scenarios found in real networks.
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