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This paper presents a computational algorithm for identifying power frequency variations and integer harmonics by using wavelet-
based transform. The continuous wavelet transform (CWT) using the complex Morlet wavelet (CMW) is adopted to detect the
harmonics presented in a power signal. A frequency detection algorithm is developed from the wavelet scalogram and ridges.
A necessary condition is established to discriminate adjacent frequencies. The instantaneous frequency identification approach
is applied to determine the frequencies components. An algorithm based on the discrete stationary wavelet transform (DSWT)
is adopted to denoise the wavelet ridges. Experimental work has been used to demonstrate the superiority of this approach as
compared to the more conventional one such as the fast Fourier transform.

Copyright © 2007 N. C. E Tse and L. L. Lai. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly

cited.

1. INTRODUCTION

Power quality has become a major concern for utility, facility,
and consulting engineers in recent years. International as well
as local standards have been formulated to address the power
quality issues [1]. To the facility managers and end users, fre-
quent complaints by tenants/customers on occasional power
failures of computer and communication equipment and the
energy inefficiency of the LV electrical distribution system are
on the management’s agenda. Harmonic currents produced
by nonlinear loads would cause extra copper loss in the dis-
tribution network, which on one hand will increase the en-
ergy cost and on the other hand would increase the elec-
tricity tariff charge. The benefits of using power electronic
devices in the LV distribution system in buildings, such as
switch mode power supplies, variable speed drive units, to
save energy are sometimes offset by the increased energy loss
in the distribution cables by current harmonics and the cost
of remedial measures required. Voltage harmonics caused by
harmonic voltage drops in the distribution cables are affect-
ing the normal operation of voltage-sensitive equipment as
well.

In order to improve electric power quality and energy
efficiency, the sources and causes of such disturbance must
be known on demand sides before appropriate corrective or
mitigating actions can be taken [2, 3].

A traditional approach is to use discrete Fourier trans-
form (DFT) to analyze harmonics contents of a power sig-
nal. The DFT which is implemented by FFT has many attrac-
tive features. That theory of FFT has been fully developed
and well known; scientists and engineers are familiar with
the computation procedures and find it convenient to use as
many standard computation tools as readily available. It is
however easily forgotten that Fourier transform is basically
a steady-state analysis approach. Transient signal variations
are regarded by FFT as a global phenomenon.

Nowadays power quality issues, such as subharmonics,
integer harmonics, interharmonics, transients, voltage sag
and swell, waveform distortion, power frequency variations,
are experienced by electricity users. This paper attempts to
develop an algorithm based on continuous wavelet trans-
form to identify harmonics in a power signal [4].

2. WAVELET TRANSFORM AND
ANALYZING WAVELET

Wavelet transform (WT) has been drawing many attentions
from scientists and engineers over the years due to its ability
to extract signal time and frequency information simultane-
ously. WT can be continuous or discrete. Continuous wavelet
transform (CWT) is adopted for harmonic analysis because
of its ability to preserve phase information [5, 6].
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The wavelet transform of a continuous signal, f(t), is de-
fined as [5],

Wﬂmw=um%>=ﬁzﬂn%w%

where y* (¢) is the complex conjugate of the wavelet function
y(t); s is the dilation parameter (scale) of the wavelet; and u
is the translation parameter (location) of the wavelet.

The wavelet function must satisfy certain mathematical
criteria [7]. These are the following:

t—u

)dt, (1)
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(i) a wavelet function must have finite energy; and
(ii) a wavelet function must have a zero mean, that is, has
no zero frequency component.

The simplified complex Morlet wavelet (CMW) [8, 9] is
adopted in the algorithm for harmonic analysis as shown in
Figure 1, defined as

W(t) = — L e, (2)
ﬂfb

where fj, is the bandwidth parameter and f. is the center fre-
quency of the wavelet.

The CMW is essentially a modulated Gaussian func-
tion. It is particularly useful for harmonic analysis due to its
smoothness and harmonic-like waveform. Because of the an-
alytic nature, CMW is able to separate amplitude and phase
information.

Strictly speaking, the mean of the simplified CMW in (2)
is not equal to zero as illustrated in (3),
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However the mean of the CMW can be made arbitrarily
small by picking the f, and f, parameters large enough [9].
For example, the mean of the CMW in (3) with f, = 2 and
fe = 1is2.6753 x 10~° which is practically equal to zero. The
frequency support of the CMW in (2) is not a compact sup-
port but the entire frequency axis. The effective time support
of the CMW in (2) is from —8 to 8 [10] provided that f; is
not larger than 9.

From the classical uncertainty principle, it is well known
that there is a fundamental trade-off between the time and
frequency localization of a signal. In other words, localization
in one domain necessarily comes at the cost of localization in
the other. The time-frequency localization is measured in the
mean squares sense and is represented as a Heisenberg box.
The area of the Heisenberg box is limited by

Swdt > % (4)

where dw is the frequency resolution, and §t is the time res-
olution.
For a dilated complex Morlet wavelet,
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FIGURE 1: The real part and imaginary part of the complex Morlet
wavelet.

Complex Morlet Wavelet achieves a desirable compromise
between time resolution and frequency resolution, with the
area of the Heisenberg box equal to 0.5. From (5), it is seen
that the frequency resolution is dependent on the selection
of f, and the dilation. As will be discussed in Section 4, the
dilation is dependent on the selection of f. and the sampling
frequency.

3. HARMONICS FREQUENCY DETECTION
Given a signal f(t) represented as

f(t) = a(t) cos P(1), (6)
the wavelet function in (2) can be represented as [11],

P(t) = g(t)el". (7)
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The dilated and translated wavelet families [11] are rep-
resented as

t—u

1 .
Woult) = ﬁw( ) =g, ®

where g ,.¢(t) = /sg((t — u)/s)e/**; and & = w/s.
The wavelet transform of the signal function f(¢) in (6)
is given as [11],

Wf () = Lae @6[€ - @) +ew ), (9)

where g(w) represents the Fourier transform of the function
g(1).

The corrective term &(u, &) in (9) is negligible if a(t) and
¢’ (t) in (6) have small variations over the support of v, in
(8) andif ¢’ (u) = Aw/s [11]. If a power signal contains only a
single frequency, the corrective term can be neglected safely.
However for a power signal containing harmonics from low
frequency to high frequency, the corrective term will con-
tribute to the wavelet coefficients, making the frequency de-
tection not straightforward.

The instantaneous frequency is measured from wavelet
ridges defined over the wavelet transform. The normalised
scalogram defined by [11, 12]

| W f(u,s)|
S

%PWf(u, £) = (10)

is calculated with

2

(11)
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Since |g(w)] in (11) is maximum at w = 0, if one neglects
e(u, &), (11) shows that the scalogram is maximum at

n _ Y
) §(u) = ¢'(w). (12)

The corresponding points (u, &(u)) calculated by (12) are
called wavelet ridges [13]. For the complex Morlet wavelet,
g(t) in (7) is a Gaussian function. Since the Fourier trans-
form of a Gaussian function is also a Gaussian function, the
wavelet ridge plot exhibits a Gaussian shape.

Figure 2 shows the wavelet ridges plot for a 40 Hz signal.
It can be seen that the wavelet ridges can accurately detect the
frequency of the signal.

Figure 3 shows the wavelet ridges plot for the detection
of a 40 Hz signal component in a signal containing frequen-
cies at 40 Hz and 240 Hz, respectively. There are some fluc-
tuations at the peak of the wavelet ridges, introducing small
errors in the frequency detection. The fluctuations are due
to imperfection of the filters produced by the dilated CMWs
and the corrective term in (9).

Discrete stationary Wavelet transform (DSWT) [14] is
adopted to remove the fluctuations of the wavelet ridges. In
view of the shape of the wavelet ridges, the Symlet2 wavelet
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FIGURE 2: Wavelet ridges plot for a 40 Hz signal.
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F1GURE 3: Wavelet ridges plot for a 40 Hz signal component in signal
containing 40 Hz and 240 Hz.

developed by Daubechies is used. It is found that a decom-
position level of 5 is sufficient to remove the fluctuations.
Figure 4 shows the denoised wavelet ridges plot of the sig-
nal containing frequencies at 40 Hz and 240 Hz, respectively.
The 40 Hz frequency component of the signal is accurately
detected by the wavelet ridges after denoising.

4. DISCRIMINATION OF ADJACENT FREQUENCIES

The Fourier transform of a dilated CMW in (8) is represented
as [11]

Y(sf) = Jse s f)? (13)

The function W(sf) can be regarded as a bandpass filter
centered at the frequency f.. The bandwidth of the bandpass
filter can be adjusted by adjusting f,. The CWT of a signal is
the convolution of the signal with a group of bandpass filters
which is produced by the dilation of the CMW.
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FIGURE 4: Denoised wavelet ridges plot of the wavelet ridges plot in
Figure 3.
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FIGURE 5: Frequency plot of (15) for two CMWs at scales S; and S,
respectively.

Suppose that (13) is represented as
Y(sf) = x, (14)

where x represents an arbitrary magnitude to be defined
later.
Combining (13) and (14) gives

P

?isﬂi/ﬁ,/’ln(%ﬂ, (15)

where f./s is the center frequency of the dilated bandpass fil-

ter; and the bandwidth is (Z/Sﬂ\/ﬁ)w” In(x//s)].

Figure 5 shows the plot of the frequency support of two
dilated CMWs at scales S; and S,, respectively.

If the two dilated CMWs are used to detect two adjacent
frequencies in a signal, with their frequencies represented
as [10]

fi= ffc - ffc (16)

For §; = 200 and x = 0.5,

‘m (%)’ = 0.58. (19)

Substituting (19) into (18) gives

folfo > 0.58x]€ i]}i

§1 <200, x<0.5. (20)

It is estimated that the magnitude of x should not be
larger than 0.5. Equation (20) is used to determine the val-
ues of f; and f; in (2) for the continuous wavelet transform
with complex Morlet wavelet which is a necessary condition
to discriminate adjacent frequencies contained in the power
signal.

5. HARMONICS AMPLITUDE DETECTION

Theoretically, once the algorithms developed in Sections 3
and 4 detect the harmonics contained in the power signal, the
corresponding harmonics amplitudes would be determined
readily by

2\/(5/'1)ow(”,5) B 2\/|Wf(u,s)|2/s
18(0) ] - 1

2| Wf(u,s)]

-

The values of 2,/| W f(u,s)|?/sin (21) are produced in the
process of generating the scalogram.

Due to the imperfection of the filters produced by the
dilated CMWs and the corrective terms in (9), the ampli-
tudes detected exhibit fluctuations. Simulation results show
that the amplitudes for harmonics frequencies from 50 Hz to
1000 Hz have errors of the order of +5%. Figure 6 shows a
plot of the absolute wavelet coefficients generated by (21) for
a 991.5 Hz harmonic frequency component of a power sig-
nal containing frequencies ranging from 50 Hz to 1000 Hz.
The smoothness of the absolute wavelet coefficients plot is
also related to the number of data points taken per cycle of
the harmonic frequency component. It is found that a mini-
mum of 25 data points per cycle should be used to provide a
smoother absolute wavelet coefficients plot.

a(u) =
(21)
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FI1GURE 6: Absolute wavelet coefficients plot generated by CWT (us-
ing complex Morlet wavelet, f, = 9, f. = 7) for harmonic frequency
at 991.5 Hz.
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Fiure 7: Coefficients generated by discrete stationary wavelet
transform (Haar wavelet, level 5 decomposition) of the absolute
wavelet coefficients plot in Figure 6.

Discrete stationary wavelet transform (DSWT) [14] is
adopted to remove the fluctuations. Since the absolute wa-
velet coefficients plot should exhibit a constant magnitude
for a harmonic frequency of constant amplitudes, the Haar
wavelet is used for the DSWT to denoise the absolute wavelet
coefficients. It is found that a decomposition level of 5 is suf-
ficient for harmonics up to 1000 Hz.

Figure 7 shows the output of the DSWT of the absolute
wavelet coefficients shown in Figure 6. The fluctuations are
removed resulting in an accurate detection of the amplitude
of the harmonics frequency.

TaBLE 1: Harmonics in the simulated signal.

Harmonics (Hz) Amplitude Phase angle (degree)
49.2 311 0
102 280 5

149.5 248 7
249 217 10
362 186 15
442 155 20
540 155 25
640 124 -30
770 93 42
902 62 -20

TABLE 2: Settings of the proposed detection algorithm.

Frequency Sampling Data length/time

range (Hz) frequency (Hz) period (seconds) o fe
40-75 5000 3000/0.6 s 6-2
75-275 7500 3000/0.4 s 6-2
275-575 15000 3000/0.2 s 6-3
575-925 25000 4000/0.16s 6-3

6. THE PROPOSED HARMONICS DETECTION
ALGORITHM

The proposed harmonics detection algorithm is presented in
Figure 8.

The proposed algorithm is implemented with Matlab
software.

7. SIMULATION SETTINGS

A simulated signal is used to test the proposed harmonics de-
tection algorithm. The simulated signal contains signal fre-
quency components as shown in Table 1. The simulated sig-
nal does not contain 50 Hz frequency component.

The simulated signal is sampled at 25 kHz. The number
of data points per cycle of the highest harmonics of 890 Hz in
the simulated signal is approximately 28. In any case, a min-
imum of 25 data points per cycle of any harmonics should
be maintained for accurate amplitude detection. A higher
sampling frequency would give a better detection of the am-
plitudes of the harmonics frequencies, but more data points
are required resulting in slow computation. For faster CWT
computation, the simulated signal will be down-sampled for
the detection of lower harmonics. The down-sampling set-
tings are as shown in Table 2. In accordance with the classical
uncertainty principle, a larger time window is required at low
frequencies, and a smaller time window is sufficient at high
frequencies.

The necessary condition discussed in Section 4 for dis-
crimination of adjacent frequencies requires that the com-
plex Morlet wavelet should be set at f, = 6 and f. = 2to 3
depending on the frequencies to be detected.
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Determine the ranges of frequency
compartmentation based on the
power signal characteristics

Determine for each frequency range:

1) The sampling frequency,

2) The setting of f; and f; of the
complex Morlet wavelet,

3) The data length (time period).

Estimate the wavelet coefficients by

continuous wavelet transform with
complex Morlet wavelet

Estimate the wavelet ridges

Denoise the wavelet ridges by The frequency of the

discrete stationary wavelet
transform and determine the scale(s) [

harmonics is represented by the

scale at which the wavelet
Repeat the procedures at which the wavelet ridges ridges is at maximum
for another frequency (is/are) at maximum
range

Extract the absolute wavelet
coefficients at the scales where the
wavelet ridges are at maximum

Denoise the absolute wavelet
coefficients by discrete stationary
wavelet transform and determine
the amplitudes of the harmonics

F1GURE 8: The flow chart of the proposed harmonics detection algorithm.

From (5) and (16), the frequency resolution is dependent TasLE 3: Harmonics detection results.
on the bandwidth parameter f; and the center frequfency fe _ Detected ,
of the dilated complex Morlet wavelet, and the sampling fre- Harmonics (Hz) harmonics (Hz) % Error

quency f;. For detection of higher harmonics, frequency res-

0,

olution would be improved by using higher sampling fre- 49.2 49.19 0.02%

quency and larger f, and f. as shown in Table 2. 102 102.04 0.04%

149.5 149.55 0.03%

8. SIMULATION RESULTS 249 248.76 0.09%

362 362.1 0.03%

The simulation results for harmonics detection are shown in 442 442.15 0.03%

Tab'le 3. I.t can be seen -that the accuracy of t-he proposed al- 540 539.57 0.08%

gorithm is very promising. The small errors in the frequency 640 640.04 0.01%
detection are mainly due to the computation errors of the

. . 770 770.18 0.02%
conversion from frequency to scale and vice versa. The scale

902 902.53 0.06%

increment size in the dilation of the wavelet, that is, the step
size of the scales used in decomposition, is deterministic in
the frequency detection accuracy. Higher resolution can be
used if needed with a sacrifice in computation speed. It is
proved that the necessary condition established in Section 4 The detection results of the amplitudes of the harmonics
is sufficient in distinguishing adjacent frequencies. are very satisfactory, as shown in Table 4.
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TasLE 4: Amplitudes detection results.

Harmonics (Hz) ?nigfil&ndts ?;?ﬁ:iie % Error
49.2 311 311.05 0.02%
102 280 280.09 0.03%

149.5 248 248.12 0.05%
249 217 216.67 0.15%
362 186 185.98 0.01%
442 155 155.02 0.01%
540 155 154.63 0.22%
640 124 124.27 0.21%
770 93 92.99 0.01%
902 62 61.94 0.09%

Table 5 shows the FFT of the simulated signal for com-
parison. The sampling frequencies are set at 2kHz and
25kHz, respectively. A hamming window was applied to the
data.

Table 6 shows the comparison of the detection errors of
the proposed harmonic detection algorithm and the FFT.
It can be seen that FFT has very good frequency detection
capability, except for harmonic frequencies with decimal
place. In the simulation test by FFT, the frequency detec-
tion errors are quite significant at harmonics of 49.2 Hz and
149.5 Hz. On amplitude detection, the proposed harmonics
detection algorithm is more accurate than FFT for harmonic
frequencies with decimal place.

9. EXPERIMENTAL RESULTS

Figure 9(a) shows a waveform captured from the red phase
input current of a 3-phase 6-pulse variable speed drive (VSD)
with the VSD output voltage set at 20 Hz. The sampling fre-
quency is 10 kHz. The rated frequency of the low voltage elec-
trical power supply source to the VSD is 50 Hz.

Figure 9(b) shows two cycles of the waveform in Figure
9(a). The shape of the waveform is a typical input current
waveform of a 3-phase 6-pulse VSD. It is expected that the
current would contain integer harmonics at 5th, 7th, 11th,
13th, 17th, 19th, and so forth harmonics of the fundamen-
tal frequency. Since the waveform is not exactly symmetrical,
there are some even harmonics present in the waveform.

The proposed harmonics detection algorithm is used
to analyze the waveform in Figure 9(a). Table 7 shows the
ranges of frequency compartmentation, f, and f. settings of
the complex Morlet wavelet, the sampling frequencies, data
lengths, and time period used.

Table 8 shows the detection results, together with the re-
sults produced by FFT for comparison.

From Table 8, the fundamental frequency estimated by
the proposed harmonics detection algorithm is 49.95Hz.
While FFT estimates that the fundamental frequency is
50 Hz , Table 9 compares the estimated harmonics by FFT
and the proposed harmonics detection algorithm, respec-
tively, to the integer multiples of respective fundamental fre-
quencies.

7

6 T T T T T T T T T
4.

g 2

2

§=

&

g 0

=

c

o0

P2
,4.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Data point

(a) Waveform of the red phase input current of a 3-phase 6-pulse
variable speed drive (sampling frequency = 10 kHz).
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(b) Two cycles of the waveform in Figure 9(a).

FIGURE 9

For the proposed harmonics detection algorithm, the
harmonics estimated conform to the integer multiples of the
fundamental frequency at 49.95Hz. Some deviations from
the integer multiples of the fundamental frequency are how-
ever found only at even harmonics which have very small
magnitudes.

The harmonics estimated by FFT do not conform to the
integer multiples of the fundamental frequency estimated
at 50 Hz. The errors are possibly due to the comparatively
fine frequency resolution of 0.05Hz. As a result, there are
some frequency leakages in the FFT decomposition. The am-
plitudes of the harmonics estimated by FFT are therefore
smaller than the amplitudes estimated by the proposed har-
monic detection algorithm.

By counting zero crossings of the measured waveform,
it was found that the average frequency for 50 cycles (time
period = 1s) of the fundamental frequency component is
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TaBLE 5: FFT of the simulated signal.

Sampling rate = 2kHz Sampling rate = 25 kHz
Harmonics (Hz) Amp. DeTta lengt.h = 2000 Da.ta lengtl} = 25000
Time period = 1 Time period = 1's
Detected freq. (Hz) Detected amp. Detected freq. (Hz) Detected amp.

49.2 311 49 301.2 49 301.3
102 280 102 279.8 102 279.9
149.5 248 150 202.8 150 202.8
249 217 249 216.9 249 217
362 186 362 185.9 362 186
442 155 442 155 442 155
540 155 540 155 540 155
640 124 640 124 640 124
770 93 770 92.98 770 92.97
902 62 902 62.03 902 62.01

TAaBLE 6: Comparison of simulation results by the proposed detection algorithm and FFT.

FFT

Proposed detection algorithm Sampling rate = 2 kHz Sampling rate = 25 kHz

Data length = 2000 Data length = 25000

Time period = 1s Time period = 1

Freq. error Amp. error Freq. error Amp. error Freq. error Amp. error

0.02% 0.02% 0.41% 3.15% 0.41% 3.12%
0.04% 0.03% 0% 0.07% 0% 0.04%
0.03% 0.05% 0.33% 18.23% 0.33% 18.23%
0.09% 0.15% 0% 0.05% 0% 0%
0.03% 0.01% 0% 0.05% 0% 0%
0.03% 0.01% 0% 0% 0% 0%
0.08% 0.22% 0% 0% 0% 0%
0.01% 0.21% 0% 0% 0% 0%
0.02% 0.01% 0% 0.02% 0% 0.03%
0.06% 0.09% 0% 0.05% 0% 0.02%

TABLE 7: Settings of the proposed detection algorithm.

Frequency Sampling Data length/time
range (Hz) o fe frequency (Hz) period (seconds)
40-75 6-1 5000 5000/1's

75-125 6-3 5000 5000/1's
125-225 6-3 10000 5000/0.5s
225-375 6-3 10000 5000/0.5s
375-975 6-6 10000 5000/0.5s

49.95 Hz. This serves to confirm that the fundamental fre-
quency estimated by the proposed harmonics detection al-
gorithm is very accurate.

10. CONCLUSIONS

The proposed harmonics detection algorithm is able to iden-
tify the frequency and amplitude of harmonics in a power
signal to a very high accuracy. The accuracy of the proposed
harmonic detection algorithm has been verified by tests con-
ducted to a computer-simulated signal and a field signal. Two
techniques are adopted to achieve accurate frequency identi-
fication.

Firstly, complex Morlet wavelet is used for the contin-
uous wavelet transform and secondly, wavelet ridges plot
is used to extract the frequency information. Given that
the complex Morlet wavelet is a Gaussian modulated func-
tion, the area of the Heisenberg box on the time-frequency
plane is equal to 0.5. The bandwidth of the complex Morlet
wavelet can be adjusted by carefully selecting the bandwidth
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TaBLE 8: Experimental results.
FFT with hamming window
Sampling rate = 10 kHz
Harmonic no. Data length = 10000 Proposed detection algorithm
Time period = 1
Frequency Amplitude Frequency Amplitude
1 50 1.521 49.95 1.547
2 100 0.06 99.93 0.069
3 150 0.284 149.85 0.303
4 200 0.051 199.6 0.066
5 250 1.209 249.79 1.351
7 350 0.861 349.65 1.014
8 400 0.029 398.94 0.038
9 450 0.117 449.78 0.137
10 500 0.016 500.83 0.024
11 550 0.451 549.45 0.564
12 Not detected Not detected 597.61 0.015
13 649 0.256 649.35 0.307
15 749 0.04 748.13 0.048
17 849 0.118 848.66 0.131
19 949 0.043 949.37 0.054

TasLE 9: Comparison of accuracy in harmonics estimation.

FFT Prop(?sed detection
Harmonic algorithm
no. Expected Detected Expected  Detected
frequency  frequency | frequency frequency
1 50 50 49.95 49.95
2 100 100 99.9 99.93
3 150 150 149.85 149.85
4 200 200 199.8 199.6
5 250 250 249.75 249.79
7 350 349.5 349.65 349.65
8 400 399.5 399.6 398.94
9 450 449.5 449.55 449.78
10 500 499.5 499.5 500.83
11 550 549.5 549.45 549.45
12 600 Not detected 599.4 597.61
13 650 649.5 649.35 649.35
15 750 749.5 749.25 748.13
17 850 849.5 849.15 848.66
19 950 949 949.05 949.37

parameter f, and the dilation factor. The dilation factor in
turn can be adjusted by the wavelet center frequency f. and
the sampling frequency. A narrow bandwidth is therefore
achieved at the expense of time resolution. For an extremely
narrow bandwidth, the time window would be large.

A second technique based on discrete stationary wavelet
transform is adopted such that harmonic frequency can be

determined accurately without the need of a large time win-
dow. It is seen that the wavelet ridges plot is a Gaussian; the
scale at which the wavelet ridges plot is maximal represents
the frequency of the harmonics in the signal. Discrete sta-
tionary wavelet transform is used to remove small fluctua-
tions near the peak of the wavelet ridges plot so that a smooth
Gaussian-like wavelet ridges plot is revealed, the peak of the
wavelet ridges plot can then by identified.

Discrete stationary wavelet transform is proved to be use-
ful in denoising the absolute wavelet coefficients of the con-
tinuous wavelet transform for amplitudes detection.

The disadvantage of the proposed algorithm is that the
accuracy of both frequency and amplitude detections is de-
pendent on the data points taken per cycle of the highest har-
monics in the signal. In other words, a higher sampling fre-
quency than twice the Nyquist frequency is required.

11. FURTHER WORKS

A future paper will show simulation results that the proposed
harmonic detection algorithm could be used to detect non-
integer harmonics. Further experimental tests would need to
be conducted for noninteger harmonics detection as well as
subharmonics detection.
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