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1 Introduction
In the paper, we investigate the problem of joint user activity detection and channel 
estimation within the massive machine-type communications (mMTC) scenario. As a 
key technology in 5G mobile communication networks, mMTC enables wireless con-
nectivity among a massive number of devices in various applications, such as smart 
cities, monitoring, asset tracking, the Internet of Things (IoT), semantic communica-
tion [1, 2], and others [3, 4]. Compared to traditional human-centric communications, 
mMTC’s traffic features include massive user devices, sporadic user activity, and short 
data packets [5]. In the context of mMTC, the grant-free access protocol has been 
regarded as a feasible approach, facilitating access for massive user devices [6, 7]. The 
protocol pre-allocates a unique pilot sequence to each device for identification and 
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channel estimation. In general, massive user devices primarily remain in a sleep state 
for energy efficiency. When a device is activated by external events, it will transmit its 
own sequence directly to the base station without requiring permission. Subsequently, 
the base station receives the observed signal, which is then utilized to jointly detect user 
activity and estimate channel.

Typically, in addressing the problem of joint user activity detection and channel esti-
mation, characterized as a high-dimensional sparse signal recovery, various compressed 
sensing methods have been proposed, such as the neural network method [8], the spar-
sity-constrained method [9], the standard compressed sensing algorithm of orthogonal 
matching pursuit and basis pursuit denoising [10], the variants of approximate message 
passing (AMP) algorithm [6, 7, 11–13], and the variants of vector approximate message 
passing (VAMP) algorithm [14], and others. But these above algorithms have a limita-
tion, i.e., they assume that all user devices maintain an active or inactive state through-
out the entire consecutive intervals for jointly detecting user activity and estimating 
channel.

Indeed, in various practical applications of mMTC, devices cannot maintain a single 
state consistently throughout the entire consecutive intervals, i.e., their state undergoes 
multiple transitions between active and inactive states across whole consecutive inter-
vals. Such situation means that the device activities are temporally-correlated. Therefore, 
to fully exploit the temporally-correlated user activity, [15–17] reformulate the prob-
lem of joint user activity detection and channel estimation of interest as dynamic com-
pressed sensing (DCS), taking into account both sporadic user activity and the temporal 
correlation of user activities. For such DCS problem, various high-dimensional sparse 
signal recovery methods have been proposed, such as the convex relaxation methods 
[15, 18], the Bayesian framework [16, 19], the methods based on message passing [20, 
21], and others. Specifically, [20] establishes a probabilistic model to depict the tem-
poral correlation of user activity, provides the associated message passing schedule for 
executing the message passing algorithm [22], and introduces a novel sequential mes-
sage passing algorithm for the recursive recovery of the target signal. [23] introduces 
the HyGAMP-DCS algorithm, aiming to fully leverage temporally-correlated user activi-
ties across the whole consecutive intervals. This algorithm integrates the computation-
ally efficient GAMP algorithm [24–26] for channel estimation and the standard message 
passing algorithm [22] for updating user activity. However, the GAMP algorithm is frag-
ile, as even small deviations from the i.i.d. sub-Gaussian model can cause the algorithm 
to diverge [27, 28]. Conversely, the VAMP algorithm is robust and holds under a much 
broader class of large random matrices H . Additionally, the fixed points of VAMP’s state 
evolution align with the replica prediction of the minimum mean-squared error [27, 28]. 
The HyVAMP-DCS’s complexity order is dominated by matrix inversion per iteration [in 
Line 5 and 30]. However, after performing an initial singular value decomposition (SVD), 
HyVAMP-DCS has similar complexity to HyGAMP-DCS but is much more robust with 
respect to matrix H [27, 28].

In this work, inspired from [14, 29], we investigate the DCS problem of joint user 
activity detection and channel estimation across consecutive intervals, taking the tem-
poral correlation of user activity and the correlated pilot cases into account.
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The main contributions of this work are summarized as follows:

• The paper proposes to address the DCS problem of joint user activity detection and 
channel estimation across consecutive intervals, considering the temporal correla-
tion of user activity;

• Unlike [20, 21], based on GAMP [24–26], this paper introduces the hybrid VAMP 
algorithm for the above DCS problem, abbreviated as HyVAMP-DCS. The proposed 
algorithm utilizes the computationally efficient VAMP algorithm [27, 28, 30, 31], 
which is suitable for correlated cases, for channel estimation. Additionally, it employs 
the loopy belief propagation (LBP) [32] for detecting user activities. The numerical 
results demonstrate the superiority of HyVAMP-DCS.

Notation: Throughout this document, we adopt the following notation conventions: 
Non-bold lowercase letters (e.g., m and v) represent scalars, bold lowercase letters (e.g., 
m and v ) denote column vectors, and capital letters (e.g., V  and C ) signify matrices. δ(·) 
denotes a Dirac delta function. N[m,C] denotes a Gaussian distribution with mean m 
and covariance C , defined as N[x|m,C] � |2πC|−

1
2 e[− 1

2
(x −m)TC−1(x −m)] . For any 

matrix A , ai,j represents the element at the i-th row and j-th column of A . AT denotes the 
transpose of matrix A . D(v) is a diagonal matrix with diagonal elements equal to the ele-
ments of vector v . d(C) is a diagonal operator, returning a N-dimensional column vector 
containing the diagonal elements of matrix C . 1N is a column vector of size N consisting 
of all ones. ⊙ and ⊘ denote element-wise vector multiplication and division, respectively.

2  System model
In the work, we investigate the uplink of a mMTC scenario, consisting of a single base 
station and N devices, where they both equip with a single antenna. The observed signal 
Y ∈ C

M×K  at base station can be modeled as:

where H ∈ C
M×N is the determined pilot matrix and X ∈ C

N×K  is the composite chan-
nel matrix to be estimated. Firstly, we characterize xn,k as a composition of channel and 
the user activity an,k , which can be described by a Bernoulli–Gaussian distribution as:

where an,k ∈ {0, 1} indicates the status for user n at the k-th interval. Next, we model the 
transition of temporally-correlated user activities for user n across entire consecutive 
intervals as a Markov chain. Then, assuming that the activation probability of user n at 
the k-th interval is pa , the transition probability matrix of the Markov chain is expressed 
as:

(1)Y ∼ p(Y |Z) �

M

i=1

K

j=1

p(yi,j|zi,j), Z � HX ,

(2)p(xn,k |an,k) � (1− an,k)δ(xn,k)+ an,kN[xn,k |0, vx],

B �

[

b00 b01
b10 b11

]

,
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where b10 � p(an,k = 0|an,k−1 = 1) and other three similar transition probabilities are 
denoted as: b01 = pab10/(1− pa) , b00 = 1− b01 , and b11 = 1− b10 . Finally, we repre-
sent the aforementioned Markov chain as a probability form as:

3  The HyVAMP‑DCS algorithm
In this paper, our goal is to jointly detect the temporally-correlated user activities A and 
estimate the composite channels X from the observed signal Y  with the determined pilot 
matrix H . We introduce the HyVAMP-DCS algorithm, which incorporates the VAMP 
[26, 28, 33] block for channel estimation and the LBP block for user activity detection.

By combining (2)–(4), the joint probability of system model (1) is expressed as:

 Then, following the Bayes’ rule, we can calculate the posterior probability of Z , X , and 
A as:

 In the Bayesian inference framework, we compute the minimum mean square error 
(MMSE) estimators for xn,k and an,k based on the principle of MMSE, i.e.,

with

(3)p(an,1|an,0) �(1− pa)(1− an,1)+ paan,1,

(4)
p(an,k |an,k−1) �(1− an,k−1)an,kb01 + an,k−1(1− an,k)b10+

(1− an,k−1)(1− an,k)b00 + an,k−1an,kb11.

(5)p(Y ,Z,X ,A) �

K
∏

k=1

[

p(yk |zk)δ(zk −Hxk)

N
∏

n=1

p(xn,k |an,k)p(an,k |an,k−1)

]

.

(6)
p(Z,X ,A|Y ) �

1

p(Y )
p(Y ,Z,X ,A),

p(Y ) �

∫

dZdXdA p(Y ,Z,X ,A).

(7)x̂n,k �

∫

dxn,k xn,kp(xn,k |Y ),

(8)ân,k �

∫

dan,k an,kp(an,k |Y ),

(9)p(xn,k |Y ) �

∫

dZdX\n,kdA p(Z,X ,A|Y ),

(10)p(an,k |Y ) �

∫

dZdXdA\n,k p(Z,X ,A|Y ).
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Although directly computing high-dimensional integral in (9)–(10) is intractable, vari-
ants of message passing can empirically approximate these.

Following the approach of hybrid decentralized generalized expectation consistent 
(HyDeGEC) [14], we introduce the HyVAMP-DCS algorithm for our interested DCS 
problem, involving joint temporally-correlated user activity detection and channel esti-
mation. The HyVAMP-DCS algorithm consists of VAMP block for channel estimation 
and LBP block for temporally-correlated user activity detection. Throughout the itera-
tive process, the two blocks exchange messages, leading to a significant enhancement 
in both channel estimation and user detection performance. We introduce the details 
of the HyVAMP-DCS algorithm in the following literature. Firstly, a factor graph is pro-
posed to illustrate the joint probability (5), as depicted in Fig. 1. Then, we define all mes-
sages in the factor graph, as described in Tab. 1.

3.1  VAMP block for channel estimation

In the part, we introduce the VAMP algorithm [27, 28] for channel estimation. Specifi-
cally, we provide an approximate derivation of (9). The VAMP block includes all mes-
sages of the area between variable nodes {xk} and factor nodes {p(yk |zk)} . Then, the 

Fig. 1 The factor graph representation of the joint distribution (5)

Table 1 Message definitions in the factor graph

p
−,t
a1

(an,1) Message from an,1 to p(an,1)

p
+,t
a1

(an,1) Message from p(an,1) to an,1

p
−,t
a1

(an,k) Message from an,k to p(an,k |an,k−1) , k ≥ 2

p
+,t
a1

(an,k) Message from p(an,k |an,k−1) to an,k , k ≥ 2

p
−,t
a2

(an,k) Message from p(an,k+1|an,k) to an,k , k ≤ K − 1

p
+,t
a2

(an,k) Message from an,k to p(an,k+1|an,k) , k ≤ K − 1

p
−,t
a3

(an,k) Message from p(xn,k |an,k) to an,k

p
+,t
a3

(an,k) Message from an,k to p(xn,k |an,k)

p
−,t
x (xk) Message from δ(zk − Hxk) to xk

p
+,t
x (xk) Message from xk to δ(zk − Hxk)

p
−,t
z (zk) Message from p(yk |zk) to zk

p
+,t
z (zk) Message from δ(zk − Hxk) to zk
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basic VAMP algorithm is given in Lines 2-8 and 27-35 of Algo. 1. Specifically, to com-
pute the MMSE estimator of X , we substitute the message p+,t

a3 (an,k) into p(xn,k |an,k) to 
derive p(xn,k):

Then, we proceed to merge p(xn,k) into p−,t
x (xn,k) to produce the approximate posterior 

marginal distribution of xn,k:

with v̂n,k � ( 1

vx
+ 1

v−,t
x,n,k

)−1 and m̂n,k � v̂n,k
m−,t

x,n,k

v−,t
x,n,k

 . Finally, we can obtain explicit expression 

of the posterior mean and variance of xn,k in the Line 27 of Algo. 1 as:

Given that the LBP block updates p+,t+1

a3 (an,k) at every iteration, Eqs. (11)–(12) can also 
be updated at each iteration.

3.2  LBP block for user activity detection

In the subsection, we introduce the LBP block [32] for user activity detection. The LBP 
block includes all messages of the area between factor nodes {p(an,1)} and factor nodes 
{p(xn,k |an,k)} . Moreover, we employ the LBP block to update the activity probability of 
each user using the message p−,t

x (xn,k) received from the VAMP block. We now schedule 
the messages in the LBP block by the following manner:

• Backward propagation: For any interval, p−,t
a3 (an,k) is denoted as: 

 For K-th interval, p−,t
a1 (an,K ) is represented as: 

p(xn,k) =

∫

dan,k p(xn,k |an,k)p
+,t+1

a3 (an,k)

=(1− q+,t+1

a3,n,k )δ(xn,k)+ q+,t+1

a3,n,kN[xn,k |0, vx].

p(xn,k |Y ) =
1

Cn,k
N[xn,k |m

−,t
x,n,k , v

−,t
x,n,k ]p(xn,k)

=
1

Cn,k
{(1− q+,t+1

a3,n,k )N[m
−,t
x,n,k |0, v

−,t
x,n,k ]δ(xn,k)

+ q+,t+1

a3,n,kN[m
−,t
x,n,k |0, vx + v−,t

x,n,k ]N[xn,k |m̂n,k , v̂n,k ]},

Cn,k =

∫

dxn,k N[xn,k |m
−,t
x,n,k , v

−,t
x,n,k ]p(xn,k)

=(1− q+,t+1

a3,n,k )N[m
−,t
x,n,k |0, v

−,t
x,n,k ] + q+,t+1

a3,n,kN[m
−,t
x,n,k |0, vx + v−,t

x,n,k ],

(11)m̂+,t+1

x,n,k =wn,km̂n,k ,

(12)
v̂+,t+1

x,n,k =wn,k v̂n,k + (wn,k − w2
n,k)m̂

2
n,k ,

wn,k �
1

Cn,k
q+,t+1

a3,n,kN[m
−,t
x,n,k |0, vx + v−,t

x,n,k ].

(13)p−,t
a3 (an,k) =

∫

dxn,k p
−,t
x (xn,k)p(xn,k |an,k).
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 For k-th interval ( k = 1, · · · ,K − 1 ), p−,t
a2 (an,k) and p−,t

a1 (an,k) are sequentially com-
puted as: 

• Forward propagation: For 1-st interval, p+,t+1

a1 (an,1) , p+,t+1

a2 (an,1) , and p+,t+1

a3 (an,1) 
are sequentially calculated as: 

 For k-th interval ( k = 2, · · · ,K − 1 ), p+,t+1

a1 (an,k) , p+,t+1

a2 (an,k) , and p+,t+1

a3 (an,k) are 
sequentially denoted as: 

 For K-th interval, p+,t+1

a1 (an,K ) and p+,t+1

a3 (an,K ) are sequentially expressed as: 

Before the iteration, we initial all the messages as Bernoulli distribution.
For (13), we evaluate p−,t

a3 (an,k) as:

(14)p−,t
a1 (an,K ) =p−,t

a3 (an,K ).

(15)p−,t
a2 (an,k) =

∫

dan,k+1 p
−,t
a1 (an,k+1)p(an,k+1|an,k),

(16)p−,t
a1 (an,k) =p−,t

a2 (an,k)p
−,t
a3 (an,k);

(17)p+,t+1

a1 (an,1) =p(an,1),

(18)p+,t+1

a2 (an,1) =p+,t+1

a1 (an,1)p
−,t
a3 (an,1),

(19)p+,t+1

a3 (an,1) =p+,t+1

a1 (an,1)p
−,t
a2 (an,1).

(20)p+,t+1

a1 (an,k) =

∫

dan,k−1 p(an,k |an,k−1)p
+,t+1

a2 (an,k−1),

(21)p+,t+1

a2 (an,k) =p+,t+1

a1 (an,k)p
−,t
a3 (an,k),

(22)p+,t+1

a3 (an,k) =p+,t+1

a1 (an,k)p
−,t
a2 (an,k).

(23)p+,t+1

a1 (an,K ) =

∫

dan,K−1 p(an,K |an,K−1)p
+,t+1

a2 (an,K−1),

(24)p+,t+1

a3 (an,K ) =p+,t+1

a1 (an,K ).

p−,t
a3 (an,k) =

∫

dxn,k p
−,t
x (xn,k)p(xn,k |an,k)

=(1− q−,t
a3,n,k)(1− an,k)+ q−,t

a3,n,kan,k ,
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with

For (14), we compute p−,t
a1 (an,K ) with q−,t

a1,n,K = q−,t
a3,n,K .

For (15), we represent q−,t
a2,n,k as:

with

For (16), we evaluate p−,t
a1 (an,k) as:

with

For (17), we denote p+,t+1

a1 (an,1) with q+,t+1

a1,n,1 = pa.

For (18) and (21), we evaluate p+,t+1

a2 (an,k) as:

with

For (19) and (22), we compute p+,t+1

a3 (an,k) as:

with

q−,t
a3,n,k �

N[m−,t
x,n,k |0, vx + v−,t

x,n,k ]

N[m−,t
x,n,k |0, v

−,t
x,n,k ] + N[m−,t

x,n,k |0, vx + v−,t
x,n,k ]

.

p−,t
a2 (an,k) =

∫

dan,k+1 p
−,t
a1 (an,k+1)p(an,k+1|an,k)

=(1− q−,t
a2,n,k)(1− an,k)+ q−,t

a2,n,kan,k ,

q−,t
a2,n,k �

b11q
−,t
a1,n,k+1

+ b10(1− q−,t
a1,n,k+1

)

(b00 + b10)(1− q−,t
a1,n,k+1

)+ (b01 + b11)q
−,t
a1,n,k+1

.

p−,t
a1 (an,k) =p−,t

a2 (an,k)p
−,t
a3 (an,k)

=(1− q−,t
a1,n,k)(1− an,k)+ q−,t

a1,n,kan,k ,

q−,t
a1,n,k �

q−,t
a2,n,kq

−,t
a3,n,k

(1− q−,t
a2,n,k)(1− q−,t

a3,n,k)+ q−,t
a2,n,kq

−,t
a3,n,k

.

p+,t+1

a2 (an,k) =p+,t+1

a1 (an,k)p
−,t
a3 (an,k)

=(1− q+,t+1

a2,n,k )(1− an,k)+ q+,t+1

a2,n,k an,k ,

q+,t+1

a2,n,k �
q+,t+1

a1,n,k q
−,t
a3,n,k

(1− q+,t+1

a1,n,k )(1− q−,t
a3,n,k)+ q+,t+1

a1,n,k q
−,t
a3,n,k

.

p+,t+1

a3 (an,k) =p+,t+1

a1 (an,k)p
−,t
a2 (an,k)

=(1− q+,t+1

a3,n,k )(1− an,k)+ q+,t+1

a3,n,k an,k ,

q+,t+1

a3,n,k �
q+,t+1

a1,n,k q
−,t
a2,n,k

(1− q+,t+1

a1,n,k )(1− q−,t
a2,n,k)+ q+,t+1

a1,n,k q
−,t
a2,n,k

.
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For (20) and (23), we represent p+,t+1

a1 (an,k) as:

with

For (24), we denote p+,t+1

a3 (an,K ) with q+,t+1

a3,n,K � q+,t+1

a1,n,K .
So far, we can summarize the HyVAMP-DCS algorithm as given in Algo. 1. For con-

ciseness, we define several functions as following:

• Extrinsic function: (m2, v2) � Ext[m̂, v̂,m1, v1] , with 

• linear minimum mean square error (LMMSE) estimation: (m̂x, Ĉx) �

E[mx, vx,mz, vz,H] , with 

• Activity detection: Â = Act[Q̂] = sign[Q̂ ≥ 0.5] , where sign[·] is a sign function.

4  Validation and discussion
To compare the performance of HyGAMP-DCS and HyVAMP-DCS (proposed), we 
carry out the Monte Carlo simulations and present the results below. We adopt a typical 
setting of (M,N ,K ,T , vx, pa, b10) = (200, 50, 300, 20, 0.02, 0.1, 0.6) . Then, we apply an B-
bit analog-to-digital converter (ADC) for p(y|z), whose detailed formula could be found 
in [14, 28] among many others. The transitional density from z to y, denoted by p(y|z), 
then particularizes into the following form

where �(x) is the cumulative distribution function (CDF) of unit normal distribution. 
aR and aI denote the real and imaginary parts of the complex number a. [ql(ya), qh(ya)] 
defines the input interval for an output ya . Then, we define the signal-to-noise ratio 
(SNR) as σ−2.

To better simulate the impact of channel correlation, we assume a Kronecker model 
for the generation of correlated pilot matrix, i.e., H = HwR

1
2 , where R is a correlation 

matrix with Ri,j � ρ|i−j| , for i, j = 1, · · · ,N  and ρ ∈ [0, 1) is the correlated coefficient of 
the pilot matrix, and Hw is taken from the constellation of 4-QAM. For correlated case 
of the pilot matrix H , we use ρ = 0.6 , while in the i.i.d. case, ρ = 0.

p+,t+1

a1 (an,k) =

∫

dan,k−1 p(an,k |an,k−1)p
+,t+1

a2 (an,k−1)

=(1− q+,t+1

a1,n,k )(1− an,k)+ q+,t+1

a1,n,k an,k ,

q+,t+1

a1,n,k �b11q
+,t+1

a2,n,k−1
+ b01(1− q+,t+1

a2,n,k−1
).

v2 =1⊘ (1⊘ v̂ − 1⊘ v1),

m2 =v2 ⊙ (m̂⊘ v̂ −m1 ⊘ v1);

Ĉx =[D(1⊘ vx)+HHD(1⊘ vz)H]−1
,

m̂x =Ĉx[mx ⊘ vx +HH(mz ⊘ vz)];

p(y|z) =p(yR|zR)p(yI|zI),

p(ya|za) =�[
qh(ya)− za

σ
] −�[

ql(ya)− za

σ
].
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In all experiments, the performance metric used for user activity detection is defined 
as the time-averaged activity error ratio (TAER), denoted as

Furthermore, we utilize the normalized mean square error (NMSE) as the performance 
metric of channel estimation, expressed as:

where ‖A‖F denote the Frobenius norm of A . Then, we have these remarks:

• Per-iteration behavior of HyVAMP-DCS: Given B = 5 and SNR = 10 , we compare 
the MSE performance of HyVAMP-DCS with HyGAMP-DCS. As shown in Fig. 2, 
the HyVAMP-DCS proposed is extremely effective: For the i.i.d. case, HyVAMP-DCS 
converges in only a few iterations, which is much faster than HyGAMP-DCS; for the 
correlated case, HyVAMP-DCS outperforms HyGAMP-DCS significantly.

TAER �

∑N
n=1

∑K
k=1 |m̂

+,T+1

a,n,k − an,k |

NK
.

NMSE �E[
�M̂

+,T+1

x − X�2F
�X�2F

],
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Fig. 2 Per-iteration NMSE and TAER for HyGAMP-DCS and HyVAMP-DCS. a, b: i.i.d. case, c, d: Correlated case
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Algorithm 1 HyVAMP-DCS
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• Robustness to parameter change: We keep the above setting and vary the param-
eters of ρ , SNR, and B, alternatively. Fig. 3 and 4 show that HyVAMP-DCS is robust 
to such parameter change.
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Fig. 3 NMSE and TAER versus SNR for HyGAMP-DCS and HyVAMP-DCS. a, b: i.i.d. case, c, d: Correlated case
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Fig. 4 NMSE and TAER versus ρ for HyGAMP-DCS and HyVAMP-DCS
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5  Conclusion
In this work, we investigate the DCS problem of joint user activity detection and channel 
estimation within the mMTC scenario, considering the device activities are temporally-
correlated across the entire consecutive intervals. Then, we present the HyVAMP-DCS 
algorithm, comprising a VAMP block for channel estimation and an LBP block for 
detecting temporally-correlated user activities. Simulation results demonstrate the supe-
riority of the HyVAMP-DCS algorithm.
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