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Abstract 

Reliable urban navigation using global navigation satellite system requires accu-
rately estimating vehicle position despite measurement faults and monitoring 
the trustworthiness (or integrity) of the estimated location. However, reflected signals 
in urban areas introduce biases (or faults) in multiple measurements, while blocked 
signals reduce the number of available measurements, hindering robust localiza-
tion and integrity monitoring. This paper presents a novel particle filter framework 
to address these challenges. First, a Bayesian fault-robust optimization task, formulated 
through a Gaussian mixture model (GMM) measurement likelihood, is integrated 
into the particle filter to mitigate faults in multiple measurement for enhanced posi-
tioning accuracy. Building on this, a novel test statistic leveraging the particle filter 
distribution and the GMM likelihood is devised to monitor the integrity of the localiza-
tion by detecting errors exceeding a safe threshold. The performance of the proposed 
framework is demonstrated on real-world and simulated urban driving data. Our locali-
zation algorithm consistently achieves smaller positioning errors compared to existing 
filters under multiple faults. Furthermore, the proposed integrity monitor exhibits fewer 
missed and false alarms in detecting unsafe large localization errors.

Keywords: Particle filter, Integrity monitoring, Gaussian mixture model

1 Introduction
Global navigation satellite system (GNSS) in urban environments is often affected by 
limited satellite visibility, signal attenuation, non-line-of-sight signals, and multipath 
effects [55]. Such impairments to GNSS signals result in fewer measurements as com-
pared to open-sky conditions as well as time-varying biases, or faults, simultaneously 
in multiple measurements. Improper handling of these faults during localization may 
unknowingly result in large positioning errors, posing a significant risk to the safety 
of the navigating vehicle. Therefore, safe navigation in urban environments requires 
addressing two challenges: accurately estimating the position of the navigating vehicle 
from the faulty measurements and determining the estimated position’s trustworthiness, 
or integrity [55].
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1.1  Position estimation under faulty GNSS measurements

For estimating the position of a ground-based vehicle, many existing approaches use 
GNSS measurements in tandem with odometry measurements from an inertial naviga-
tion system. Many of these approaches rely on state estimation by means of filters, such 
as Kalman filter and particle filter [36]. These filters track the probability distribution of 
the navigating vehicle’s position across time, approximated by a Gaussian distribution 
in a Kalman filter and by a multimodal distribution represented as a set of samples, or 
particles, in a particle filter. However, the traditional filters are based on the assumption 
of Gaussian noise (or overbounds) in GNSS measurements, which is often violated in 
urban environments due to faults caused by multipath and non-line-of-sight errors [55].

Several methods to address non-Gaussian measurement errors in filtering have been 
proposed in the area of robust state estimation. Karlgaard [27] integrated the Huber esti-
mation technique with Kalman filter for outlier-robust state estimation. Pesonen [40], 
Medina et al. [34], and Crespillo et al. [8] developed robust estimation schemes for local-
ization using fault-contaminated GNSS measurements. Lesouple et al. [30] incorporated 
sparse estimation theory in mitigating GNSS measurement faults for localization. How-
ever, these techniques are primarily designed for scenarios where a large fraction of non-
faulty measurements are present at each time instant, which is not necessarily the case 
for urban environment GNSS measurements.

In the context of achieving robustness against GNSS measurement faults, several tech-
niques have been developed under the collective name of Receiver Autonomous Integ-
rity Monitoring (RAIM) [25]. RAIM algorithms mitigate measurement faults either by 
comparing state estimates obtained using different groups of measurements (solution-
separation RAIM) [6, 25, 28] or by iteratively excluding faulty measurements based on 
measurement residuals (residual-based RAIM)  [19, 23, 38, 46]. Furthermore, several 
works have combined RAIM algorithms with filtering techniques for robust position-
ing. Grosch et al. [15], Hewitson and Wang [18], Leppakoski et al. [29], and Li et al. [32] 
utilized residual-based RAIM algorithms to remove faulty GNSS measurements before 
updating the state estimate using KF. Boucher et al. [4], Ahn et al. [1], and Wang et al. 
[52, 53] constructed multiple filters associated with different groups of GNSS measure-
ments and used the logarithmic likelihood ratio between the distributions tracked by 
the filters to detect and remove faulty measurements. Pesonen [41] proposed a Bayesian 
filtering framework that tracks indicators of multipath bias in each GNSS measurement 
along with the state. A limitation of these approaches is that the computation required 
for comparing state estimates from several groups of GNSS measurements increases 
combinatorially both with the number of measurements and the number of faults con-
sidered  [25]. Furthermore, recent research has shown that poorly distributed GNSS 
measurement values can cause significant positioning errors in RAIM, exposing serious 
vulnerabilities in these approaches [47].

In a recent work [16], we developed an algorithm for robustly localizing a ground vehi-
cle in challenging urban scenarios with several faulty GNSS measurements. To handle 
situations where a single position cannot be robustly estimated from the GNSS meas-
urements, the algorithm employed a particle filter for tracking a multimodal distribu-
tion of the vehicle position. Furthermore, the algorithm equipped the particle filter with 
a Gaussian mixture likelihood model of GNSS measurements to ensure that various 
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position hypotheses supported by different groups of measurements are assigned large 
probability in the tracked distribution.

1.2  Integrity monitoring in GNSS‑based localization

For assessing the trustworthiness of an estimated position of the vehicle, the concept of 
GNSS integrity has been developed in the previous literature [42, 55]. Integrity is defined 
through a collection of metrics that together express the ability of a navigation system to 
provide timely warnings when the system output is unsafe to use [36, 39]. Some metrics 
of interest for monitoring integrity are defined as follows

• Positioning Failure is defined as the event that the position error exceeds a specified 
maximum value, known as the alarm limit (AL).

• Accuracy represents the statistical uncertainty in the position output of a navigation 
system, expressed as the radius of a circle that contains a specified percentage of the 
positioning solutions.

• Availability of a navigation system indicates whether the system output is safe to use 
at a given time instant. A system is considered available if it meets the required accu-
racy threshold and has not detected a positioning failure.

• Integrity Risk is the probability of the event where the position error exceeds AL, but 
the system is declared available by the integrity monitoring algorithm.

Different approaches for monitoring integrity have been proposed in the literature. Solu-
tion-separation RAIM algorithms monitor integrity based on the agreement between 
the different state estimates obtained for different groups of measurements [6, 25, 28]. 
Residual-based RAIM algorithms determine the integrity metrics from statistics derived 
from the measurement residuals for the obtained state estimate  [19, 23, 38, 46]. Tanil 
et al. [48] utilized the innovation sequence of the Kalman filter to derive integrity met-
rics and determine the availability of the system. However, the approach is designed 
and evaluated for single satellite faults and does not necessarily generalize to scenarios 
where several measurements are affected by faults. Furthermore, these techniques have 
been designed for the Kalman filter and cannot directly be applied to a particle filter-
based framework. In Bayesian RAIM [41], the availability of the system is determined by 
comparing statistics computed from the tracked probability distribution with a vector-
valued threshold. The proposed technique is general and can be applied to a variety of 
filters, including the particle filter. However, the tracked filter probability distribution 
is concentrated about the mean and has poor modeling fidelity in the tail regions of the 
probability distribution. Hence, the derived statistics have limited performance in integ-
rity monitoring, which focuses on the tail distributions [37].

1.3  Our approach

In this paper, we build upon our prior work on a particle filter-based framework [16] 
to present a novel algorithm for urban GNSS-based localization and integrity moni-
toring. Our algorithm tackles the challenges of limited visibility and multiple faults by 
integrating an optimization objective for fault mitigation through a Gaussian mixture 
model (GMM)  [13] measurement likelihood that handles faults present in multiple 
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measurements. The GMM likelihood enables the particle filter to effectively capture 
the multimodal uncertainty in localization that arises due to potential faulty measure-
ments, by considering particles that support different subsets of measurements, as 
depicted in Fig. 1. By integrating vehicular dynamics with these particles and meas-
urements, our algorithm assimilates measurement information over time within the 
particle filter framework. This allows mitigating the impact of erroneous measure-
ments while accurately tracking the multimodal uncertainty in the vehicle’s location. 
Furthermore, it continuously monitors the integrity of the estimated location and 
raise an alarm when the error exceeds a specified limit.

The contributions of this paper are threefold: 

1. We present a novel particle filter-based localization algorithm that integrates an opti-
mization objective for fault mitigation and estimates the location using a Gaussian 
mixture model measurement likelihood. This algorithm offers enhanced robustness 
and accuracy in urban environments by effectively handling multiple faults in GNSS 
measurements.

2. We propose a statistical testing technique that leverages measures derived from 
the particle filter probability distribution and the available GNSS measurements to 
evaluate the integrity of the estimated location. This technique enables the system to 
detect situations where the error exceeds a predefined threshold and trigger an alarm 
accordingly.

3. We evaluated the performance of our algorithm by testing it in real-world and simu-
lated driving scenarios. To assess its effectiveness, we compare the performance of 
our framework against existing localization baselines and integrity monitoring tech-
niques. The results demonstrate the superior performance of our framework, par-

Particles supported by 
measurement subset B

Particles supported by 
measurement subset ATrue position

Measurement subset A 
(non-faulty)

Measurement subset B 
(faulty)

Fig. 1 Our proposed particle filter-based algorithm for fault-robust GNSS localization. The algorithm 
incorporates GNSS pseudorange measurements, divided into unknown subsets of non-faulty (A, blue) 
and faulty (B, orange) measurements. By considering particles that support either subset, our algorithm 
effectively captures the multimodal uncertainty in localization, accommodating the potential presence of 
faulty measurements
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ticularly in challenging urban environments, where it outperforms the existing meth-
ods.

Our approach provides several advantages over prior approaches for fault-robust locali-
zation and integrity monitoring. This is due to our weighting scheme that simultaneously 
assigns weights to GNSS measurements and particles instead of individually considering 
several subsets of the measurements. Since our approach tracks several position hypoth-
eses for mitigating measurement faults, it can track the position probability distribu-
tion in scenarios with a large fraction of faulty GNSS measurements, unlike the existing 
robust state estimation approaches. Unlike existing particle filter-based approaches that 
rely on a known map of the environment  [20, 21, 35] or a known transition model of 
faults [41], our approach requires no assumptions about existing environment informa-
tion for mitigating faults. Furthermore, our integrity monitor accounts for the multi-
modal probability distribution of errors present in the measurements, unlike the purely 
filter-based approach presented in [41].

The rest of the paper is organized as follows: Section 2 presents related work in the 
field of urban GNSS-based localization. Section 3 provides the problem setup and back-
ground information. In Sect. 4, we describe our proposed framework in detail. Section 5 
presents the experimental results and performance evaluation. Finally, Sect. 6 concludes 
the paper, summarizing the contributions and discussing future research directions.

2  Problem formulation
Consider a vehicle navigating in an urban environment, equipped with an onboard 
GNSS receiver and an IMU. At each time step, denoted by t, the vehicle acquires a 
set of Kt GNSS pseudorange measurements. We denote this set of measurements as 
mt = {ρk

t }
Kt

k=1 , where each ρk
t ∈ R is the pseudorange measurement from the k-th satel-

lite at time t.
In addition to pseudorange measurements, the vehicle also obtains an odometry meas-

urement at each time step, denoted as ut ∈ R
3 , representing the vehicle’s velocity at the 

time step.
The objective of our estimation problem is twofold. Firstly, we aim to estimate the 

vehicle’s state (or position) at time t, denoted as xt ∈ R
3 . This estimate is based on the 

sequence of GNSS pseudorange measurements M1:t = {m1, . . . ,mt} and odometry 
measurements U1:t = {u1, . . . ,ut} , where Mt0:t and Ut0:t denote all pseudorange and 
odometry measurements from time t0 to time t, respectively.

The second objective is to raise an alarm whenever the positioning error �xt exceeds 
a user-specified alarm limit αAL

t  . In this paper, we refer to these events as positioning 
failures. Here, the positioning error �xt represents the difference between the estimated 
state, xt , and the true state, x∗t  . The alarm limit, αAL

t  , is a user-defined threshold that 
specifies the maximum allowable positioning error in the system at time t.

3  Background on GNSS pseudorange‑based localization
After defining the problem, we give an overview of the localization methods based 
on GNSS pseudorange measurements. We begin by discussing the snapshot least-
squares estimation (LSE)-based positioning algorithm, which leverages all the available 
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measurements at a given time instance for positioning. We then explore fault mitigation 
strategies based on residuals, aimed at improving positioning accuracy in the presence 
of a single fault. Subsequently, we delve into the extension of these strategies to multiple 
time steps within a filtering framework, enabling robust algorithms that utilize informa-
tion from multiple time steps while considering a single fault at each time step. Finally, 
we formalize the objective of detecting positioning failures for integrity monitoring.

3.1  Snapshot LSE GNSS‑based positioning

GNSS positioning requires the solution of a set of nonlinear equations, which arise from 
the satellite positioning geometry and the signal’s time-of-flight. Each equation links the 
receiver’s unknown position and clock bias to the known positions of several satellites 
and their respective transmission times.

Snapshot LSE positioning can be expressed as the following optimization problem:

Here, xt and βt denote the estimated receiver’s position and the estimated clock bias 
at time t, respectively. The objective function represents the sum of squared residuals 
rkt  , which represent the differences between the observed and the estimated pseudor-
anges for all satellites scaled by a standard deviation σ k

t  . The standard deviation σ k
t  is 

typically obtained empirically, through the satellite geometry, or using received signal 
characteristics.

The term hk(xt ,βt) is the estimated pseudorange for the k-th satellite given by a model 
of satellite signal propagation:

In the above equation, Xk
t  denotes the position of the satellite corresponding to the k-th 

measurement at time t, and βk
t  denotes the estimated clock bias error of the k-th satel-

lite. The terms ǫiono, ǫtropo, and ǫmp account for the estimated errors from ionospheric 
and tropospheric, and multipath effects, respectively. The term c denotes the speed of 
light. The satellite position and clock bias are determined from the navigation message 
embedded in the signal, while the ionospheric and tropospheric corrections are typically 
obtained from physical models or augmentation systems  [14]. As the multipath error 
is dependent on the receiver’s surroundings, it is assumed to be zero within this model 
unless additional environmental data are available.

The nonlinear optimization problem is usually solved using the Newton–Raphson 
algorithm, an iterative method designed to successively improve approximations of 
the solution [26]. Beginning with an initial estimate for the receiver position and clock 
bias, the algorithm iteratively enhances this estimate by taking steps in the direction 
that maximally reduces of the objective function, guided by its gradient. The primary 

(1)min
xt ,βt

Kt

k=1

rkt
2

(2)where rkt =
ρk
t − hk(xt ,βt)

σ k
t

,

(3)hk(xt ,βt) = �xt − Xk
t � + c

(

βt − βk
t

)

+ ǫiono + ǫtropo + ǫmp.
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advantage of the Newton–Raphson method in snapshot GNSS positioning is its ability 
to quickly converge on a precise solution, despite the nonlinear nature of the problem. 
However, when multipath or other sources of error result in significant discrepancies 
between the modeled and observed pseudoranges, termed as faults, the application of 
more advanced algorithms becomes necessary for reliable positioning [9].

3.2  Snapshot LSE positioning with residual‑based fault mitigation

In the context of reliable GNSS-based positioning, it is common practice to address 
scenarios where one of the available measurements exhibits faults. Initially, an all-
measurement solution for the position and clock bias is estimated by solving the pre-
viously discussed optimization problem (Eq. 1). Subsequently, the residuals for each 
measurement from the all-measurement solution are analyzed to determine faults. By 
identifying the measurement with the largest residual, potential faults can be identi-
fied and mitigated. This process of identifying and removing fault-containing meas-
urements is also referred to as fault exclusion in literature.

For improved positioning performance, several algorithms such as Receiver Auton-
omous Integrity Monitoring (RAIM) incorporate both a fault detection test and 
a fault mitigation algorithm that relies on residuals  [5]. This test utilizes statistical 
tools, such as a Chi-squared-based detector, to detect the presence of faults. If a fault 
is not detected, the all-measurement solution is used for positioning.

Conversely, upon successful fault detection, an improved solution can be obtained 
by re-solving the optimization problem, excluding the measurement identified as 
faulty. The revised optimization problem can be formulated as follows:

Here, k ′ is the index of the identified faulty measurement. The rest of the variables retain 
their previous definitions.

While the residual-based fault mitigation strategy improves localization perfor-
mance in some cases, the solution of the aforementioned optimization problem does 
not guarantee an accurate solution. Certain combinations of fault magnitudes and 
satellite geometry may mislead the algorithm into incorrectly flagging a non-faulty 
measurement as faulty, resulting in erroneous positioning [33]. Nevertheless, in prac-
tical applications with occasional measurement faults, such as aviation, this modified 
approach often improves the accuracy of the positioning solution and enhances the 
robustness of the snapshot LSE positioning process.

This robustness, however, is contingent on a few important assumptions—the given 
set of GNSS measurements contains only one faulty measurement and that there 
are an adequate number of non-faulty measurements to derive a reliable initial solu-
tion. These assumptions hold true in aviation, where several satellites are within the 
line-of-sight of the receiver and measurement faults are infrequent. However, urban 
environments often present challenges like signal obstruction and reflections, which 
frequently violate this assumption.

(4)min
xt ,βt

Kt∑

k=1,k �=k ′

(

rkt

)2
.
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Furthermore, while the aforementioned strategy can be repeated after each fault 
exclusion to identify and remove multiple faults, the likelihood of missing faulty meas-
urements increases with more than one fault, resulting in significantly diminished effec-
tiveness of the approach in urban environments. In these scenarios, the initial solution, 
derived from all the measurements, often deviates significantly from the actual solution. 
Consequently, distinguishing between faulty and non-faulty measurements based on 
residuals becomes challenging.

3.3  Sequential positioning with residual‑based fault mitigation

Addressing the limitations of snapshot LSE algorithms, several methods have been 
developed that leverage information across multiple time steps to improve the locali-
zation accuracy and robustness to measurement errors [23, 32]. These methods aim to 
mitigate the impact of insufficient fault-free measurements at individual time steps by 
combining measurements and incorporating knowledge of the vehicle dynamics over 
time.

In the context of sequential localization, the optimization problem can be formulated 
as follows:

where T represents the total number of time steps, x1:T and β1:T correspond to the 
sequences of receiver positions and clock biases, respectively, spanning the entire time 
frame. The function ft(·) represents the state transition at time t, derived from the vehi-
cle dynamics. The objective of this optimization problem (Eq. 5) is to minimize the sum 
of squared residuals over all time steps and satellites, with the exclusion of satellite k ′t at 
each time step t, which is considered faulty. By considering information from multiple 
time steps, this sequential localization approach offers improved robustness compared 
to snapshot LSE methods.

To efficiently solve this optimization problem, it can be tackled incrementally at each 
time step t within a filtering framework, using the following probabilistic optimization 
formulation:

The term p(xt ,βt) denotes the probability distribution of the joint state space comprising 
of position xt and clock bias βt . Filtering algorithms, such as Kalman filters (employing 
multivariate Gaussian distributions) or particle filters (utilizing collections of weighted 

(5)min
x1:T ,β1:T

T∑

t=1

Kt∑

k=1,k �=k ′t

(

rkt

)2
,

(6)s.t. xt ,βt = ft(xt−1,βt−1).

(7)min
p(xt ,βt )

E





Kt�

k=1,k �=k ′t

�

rkt

�2



,

(8)xt ,βt = ft(xt−1,βt−1),

(9)xt−1,βt−1 ∼ p(xt−1,βt−1).
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samples), can effectively estimate the location and clock bias by modeling the probability 
distribution.

To mitigate faults using residuals in the sequential setting, similar strategies as in the 
snapshot LSE case are often employed. These strategies involve estimating a solution using 
all available measurements and subsequently removing the measurement with the largest 
residual from the solution. While this approach can be more robust in the sequential setting 
due to the initial proximity of the all-measurement solution to the true solution, it is limited 
to handling single or few faults. In scenarios with multiple faults, the initial solution can 
exhibit significant bias, leading to challenges in fault detection and accurate positioning [3].

4  Formalism for detecting positioning failures
GNSS-based localization has an essential requirement of integrity—despite the adoption 
of fault-tolerant strategies, the localization error is not guaranteed to be insignificant. This 
is often the product of various influencing factors, such as sub-optimal satellite geometry, 
inadequate visibility, and the existence of unmodeled errors, all of which can substantially 
compromise the positioning performance [2]. Consequently, to counteract this limitation, a 
majority of integrity monitoring algorithms are equipped to detect positioning failures and 
trigger alarms when the solution is unreliable.

A practical approach to detecting positioning failures at time t involves the formulation of 
the following optimization problem:

where Alarmt and Alarmt denote the complementary binary events that represent 
whether an alarm is triggered (or not) by the system at time t to signal the presence 
of positioning failures. The term pMD represents an upper limit on the probability of 
missed detection, which is a non-detection of a positioning failures scenario. Therefore, 
the primary objective underpinning the design of a good detection algorithm is one that 
minimizes the likelihood of false alarms—situations where an alarm is triggered errone-
ously under nominal system conditions—while meeting the missed identification per-
formance requirement.

In view of the above outlined optimization problem, the criteria for triggering an alarm 
can be informed either by a single time step’s measurement, similar to snapshot LSE algo-
rithms, or by multiple time steps’ measurements, similar to sequential algorithms.

4.1  Snapshot integrity monitoring

In the case of snapshot algorithms, the event Alarm is typically determined by the following 
equation:

In this equation, τ (·) is a test statistic derived from the current measurements and solu-
tions, and αt is a threshold for the statistic at time t. For snapshot integrity monitor-
ing, both the statistic and the threshold are structured around Gaussian statistics or 

(10)min
Alarmt

p(�xt ≤ αAL
t | Alarmt)

(11)where p(�xt > αAL
t |Alarmt) ≤ pMD,

(12)Alarmt = {τ (mt , xt ,βt) > αt},
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the Chi-squared test, with degrees of freedom equivalent to the difference between the 
number of available measurements and the dimensionality of the solution space [28].

4.2  Sequential integrity monitoring

The previous statistical testing framework for detecting positioning failures in snapshot 
settings can be generalized to sequential settings. In this case, the test statistic τ (·) is 
computed using measurements M1:t spanning all previous time steps, in conjunction 
with an estimated probability distribution of the joint sequence of positions x1:t and 
clock biases β1:t . The resulting detection criterion can be formulated as follows:

This general formulation encompasses a variety of detection criteria that have been 
developed within existing sequential integrity monitoring algorithms. For instance, in 
the context of localization systems utilizing Kalman filters, a typical test statistic used is 
the sum of squared innovations [23]. This statistic depends on the measurements as well 
as the mean and covariance of the probability distribution tracked by the Kalman filter at 
each time step.

In systems employing a bank of filters for localization, a common test statistic incorpo-
rates the likelihood ratios between different components of the probability distribution 
tracked by the bank [44]. Similarly, in particle filter-based methods, vector-valued test 
statistics that depend on the tracked probability distribution have been employed [41].

While a majority of the test statistics have been designed for aviation contexts, where 
stringent assumptions about faults and measurement noise apply, they exhibit a broader 
applicability to integrity monitoring in complex urban environments. By conservatively 
tailoring the threshold to meet the missed identification requirement while simultane-
ously minimizing false alarms, these algorithms can be employed to detect positioning 
failures in a variety of challenging settings [12]. However, it is crucial to note that cur-
rent algorithms have yet to demonstrate the capacity to concurrently maintain rates of 
false alarms and missed detections in urban environments that are comparable to avia-
tion. This highlights the necessity to focus on designing novel methods aimed at improv-
ing the integrity monitoring performance in urban environments.

Having defined the problem setting and the background on GNSS-based fault-robust 
localization and integrity monitoring, we are now ready to present our approach for 
sequential fault-robust localization and integrity monitoring in the presence of multiple 
faults and limited measurements.

5  Methodology
In this section, we present our approach to address the challenges of fault-robust 
localization and integrity monitoring in scenarios involving multiple faults and limited 
measurements. We begin by generalizing the residual-based fault-robust localization 
optimization problem, enabling simultaneous mitigation of the faulty measurement 
while determining the position and clock bias solution. This generalized optimization 
problem is further extended to handle sequential settings and situations with multiple 
faults.

(13)Alarmt = {τ (M1:t , p(x1:t ,β1:t)) > αt}.
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Subsequently, we derive our Gaussian mixture model (GMM) likelihood of measure-
ments, which is constructed based on the aforementioned optimization problem. The 
GMM likelihood captures the multimodal nature of the measurement errors and of the 
fault-robust localization optimization problem.

Next, we introduce our particle filter-based algorithm, which estimates a multimodal 
probability distribution of the position and clock bias using the GMM likelihood. By lev-
eraging the particle filter framework, our algorithm effectively captures the multimodal 
nature of the solution-space, enabling accurate and robust localization and representa-
tion of uncertainty.

Furthermore, we present our method that detects positioning failures by utilizing the 
available measurements and the estimated probability distribution. This allows us to 
identify potential risks and trigger alarm to ensure the safety of the vehicle.

Finally, we provide a computational analysis of our algorithm, assessing its perfor-
mance and discussing the computational complexity of our approach.

5.1  Generalized fault‑robust localization using residuals

5.1.1  Optimization problem

We extend the optimization problem for fault-robust localization presented in Sect. 3.3 
extends the generalized setting of identifying and removing faulty measurements. The 
generalized problem includes a measurement selection vector, st ∈ {0, 1}Kt with kth ele-
ment denoted by skt  , within the optimization variables. The problem is thus formulated 
as:

Here, st assumes the value 1 for all except one measurement, for which it is zero. The 
optimization objective is minimized when st allocates zero to the largest residual-bear-
ing measurement, given optimal position xt and clock bias βt estimates. Expanding the 
approach to sequential settings, we can formulate the probabilistic optimization objec-
tive in a manner similar to Eq. 7:

By formulating the optimization problem in this manner, we can simultaneously mitigate 
a faulty measurement while estimating the position and clock bias. Moreover, we can 
further extend this formulation to handle the mitigation of multiple faults by including 
k different measurement selection vectors. This is equivalent to setting k entries of the 
selection vector s to zero while keeping the rest as one. In this context, minimizing the 
objective function involves removing the k largest residuals from the optimal solution. It 

(14)min
xt ,βt ,st

Kt∑

k=1

skt (r
k
t )

2.

(15)min
p(xt ,βt ),p(st )

E

[
Kt∑

k=1

skt

(

rkt

)2
]

,

(16)xt ,βt = ft(xt−1,βt−1),

(17)xt−1,βt−1 ∼ p(xt−1,βt−1).
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is important to note, however, that the number of faulty measurements must be known 
in advance for this method of optimization. Furthermore, the potential values that the 
selection vector can assume grow combinatorially with the number of faults, making the 
optimization computationally demanding for more than a single fault.

In addressing the challenges of localization in complex urban environments, it is 
important to account for uncertainty and multiple potential faults. Therefore, we con-
sider an extreme case where the measurement selection vector st assumes the value 1 
for only a single measurement while assigning 0 to the remaining measurements. The 
optimization problem with this selection vector can be formulated similarly to Eq. 14. 
The extreme scenario provides a safety-oriented perspective, particularly when the 
true measurement quality or fault conditions are unknown.

The efficient optimization of this extreme scenario is facilitated by the fact that 
the number of potential values that the selection vector can assume is equal to the 
number of measurements. This enables optimization by effectively exploring different 
configurations of the selection vector, and allows identifying the optimal assignment 
that minimizes the residuals and achieves fault-robust localization.

Building upon this formulation of the optimization problem, we next construct a 
Gaussian mixture model (GMM) likelihood for the measurements. This likelihood 
serves as a fundamental component of our algorithm, which is based on a particle fil-
ter framework, designed for fault-robust localization and integrity monitoring in the 
presence of multiple faults.

5.1.2  Gaussian mixture model likelihood of measurements

Traditional GNSS localization approaches that rely on filter-based techniques design 
the measurement likelihood model under the assumption that all incorporated meas-
urements are both independent and devoid of any faults. The probability p(ρk

t | xt) 
associated with the kth measurement at time t for xt is modeled as a Gaussian distri-
bution [7, 24, 41, 54].

However, this model evaluates each position based on its ability to concurrently sat-
isfy all measurements, thereby generating a unimodal probability distribution around 
a single solution point xt . This methodology, although effective under conditions of 
independent and fault-free measurements, fails to maintain its efficacy when multi-
ple GNSS measurements are faulty. In such instances, the unimodal model tends to 
oversimplify the measurement errors, as it is incapable of handling the complex, mul-
timodal errors arising from multiple faults. Hence, in scenarios with multiple faults, 
an alternative modeling approach capable of representing a multimodal probability 
distribution is required to model the measurement likelihood.

In response to this, we derive a novel measurement likelihood grounded in our 
optimization problem for sequential fault-robust localization (Eq.  14). In line with 
the probabilistic interpretation of optimization problems, we construct the objec-
tive function as the expected value of the negative logarithm of the measurement. 
To efficiently solve this optimization problem, it can be tackled incrementally at each 
time step t within a filtering framework, using the following probabilistic optimiza-
tion formulation:
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where ℓt(xt ,βt , st) denotes the measurement probability p(mt | xt ,βt , st) . Using this 
interpretation, we can determine the form of the likelihood as follows:

Applying the law of total probability and eliminating st , we arrive at the following 
expressions:

where pN (µ,σ 2)(·) denotes the probability under normal distribution with mean µ and 
variance σ 2.

These equations lead us to model the likelihood ℓt(xt ,βt) = p(mt | xt ,βt) as a GMM. 
This model leverages additive contributions of each measurement to the likelihood, 
ensuring that faults in any small subset of measurements do not dominate the overall 
likelihood.

In the GMM likelihood, each measurement component is associated with a weight 
coefficient γ k

t = p(skt = 1) which modulates the impact of that component on the 
overall likelihood. Consequently, the likelihood maps the space of potential xt and βt 
values to the multimodal GMM probability distribution via a nonlinear residual com-
putation function. The resulting GMM implies a multimodal probability distribution 
over the solution space, marked by peaks at positions supported by different subsets 
of component measurements. The measurement weights γ k

t  determine the relative 

(18)min
p(xt ,βt ),p(st )

E

[
Kt∑

k=1

skt (r
k
t )

2

]

≡ min
p(xt ,βt ),p(st )

E[− log ℓt(xt ,βt , st)],

(19)− log ℓt(xt ,βt , st) ∝

Kt∑

k=1

skt (r
k
t )

2,

(20)ℓt(xt ,βt , st) ∝

Kt∏

k=1

e−C1s
k
t (r

k
t )

2
, (For some constant C1 > 0)

(21)∝

Kt∑

k=1

1[skt = 1]e−C1(r
k
t )

2
.

(22)p(mt | xt ,βt) =

Kt∑

k=1

ℓt(xt ,βt , st)p(s
k
t = 1),

(23)=

Kt∑

k=1

C2p(s
k
t = 1)e−C1(r

k
t )

2
, (For some constant C2 > 0)

(24)ℓt(xt ,βt) =

Kt∑

k=1

γ k
t pN (0,1)

(

rkt

)

s.t.

Kt∑

k=1

γk = 1,
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confidence among these modes, implying that with identical standard deviation val-
ues, the mode with a higher measurement weight has a higher probability value [13].

In the subsequent sections, we will employ this interpretation of the GMM likelihood 
in relation to our optimization problem. We incorporate the likelihood into our parti-
cle-filter-based algorithm for fault-robust localization and integrity monitoring, with 
the goal of improving the localization accuracy and integrity in situations with multiple 
faults.

5.2  Particle filter‑based fault‑robust localization and integrity monitoring

In this section, we describe our algorithm for fault-robust localization and integrity 
monitoring. Our overall algorithm can be subdivided into seven components: 

1. The Propagation step receives as input the previous time particle distribution of 
receiver state and the odometry measurement and generates as output propagated 
particles in the extended state-space, which are associated with different GNSS 
measurements. The extended state-space consists of the receiver state along with an 
integer-valued selection of a GNSS measurement associated with the particle.

2. The Iterative Weighting step receives as input the extended state-space particles and 
the GNSS measurements and infers the particle weights and GMM weight coeffi-
cients in three steps: First, the Measurement Voting step computes a probabilistic 
confidence, referred to as vote, in the association between the extended state-space 
particle and the chosen GNSS measurement. Next, the Vote Pooling step combines 
the votes to obtain an overall confidence in each GNSS measurement, referred to as 
measurement weights. Finally, the GMM Weighting step updates the particle weights 
using the GMM constructed from the measurement weights as the measurement 
likelihood function. The process is then repeated for a fixed number of iterations, or 
till convergence.

3. The Reduced Resampling step receives as input the extended state-space particles 
and their computed weights and generates a new set of particles in the receiver state 
space.

4. For detecting positioning failure, we compute a vector-valued statistic comprising 
of precision and Probability of Positioning Failures using the particles and the GMM 
likelihood. Then, we trigger alarm by comparing the obtained precision and probabil-
ity of positioning failure against user-specified thresholds.

Figure  2 illustrates the architecture of our algorithm. We first describe our model for 
the particle-based probability distribution, followed by details about the individual com-
ponents of our method. Finally, we end the section with the run-time analysis of our 
approach.

5.2.1  Particle‑based multimodal state probability distribution

The vehicle’s state probability distribution, denoted as πt , is approximated via a particle 
filter in the following manner:
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In this expression, π̂t denotes the approximate state probability distribution represented 
using particles; x(i)t  denotes the state of the ith particle, and includes the position, clock 
bias, and additional tracked terms (e.g., heading); w(i)

t  denotes the weight of the ith parti-
cle satisfying 

∑N
i=1 w

(i)
t = 1 ; δ(x = xt) denotes the Dirac delta function that assumes the 

value of zero everywhere except xt [10]; and N  is the total number of particles.
To design our particle filter-based localization algorithm, we assume that the 

state of the vehicle follows the Markov property, i.e., given the present state of the 
vehicle, the future states are independent of the past states. By the Markov prop-
erty among (x1, . . . , xt) , the conditional probabilities p(xt | xt−1,mt ,ut) and 
p(xt | x1, . . . , xt−1,M1:t ,u1:t) are equivalent. Applying Bayes’ theorem with independ-
ence assumptions on Mt ,ut , the probability distribution is factored as:

where ℓt(xt) can be interpreted as the likelihood of receiving mt at time t from xt ; and π̃t 
denotes the probability distribution at time t predicted using π̂t−1 and ut.

(25)πt = p(xt | xt−1,mt ,ut) ≈ π̂t =

N∑

i=1

w
(i)
t δ(x = x

(i)
t ).

(26)p(xt | xt−1,mt ,ut) ∝ p(mt | xt , xt−1,ut) · p(xt | xt−1,ut)

(27)
∝ p(mt | xt)

︸ ︷︷ ︸

ℓt (xt )

· p(xt | xt−1,ut)
︸ ︷︷ ︸

π̃t

,

Fig. 2 Architecture of the proposed algorithm for fault-robust localization and integrity monitoring. The 
algorithm incorporates GNSS and odometry measurements to infer the probability distribution of the 
vehicle state as a set of weighted particles in a particle filter. Robustness to faults in GNSS measurements is 
achieved using the GMM weighting, measurement voting and vote pooling steps. By analyzing the estimated 
probability distribution and GNSS measurements, the framework derives metrics of precision and probability 
of positioning failure, enabling continuous detection of positioning failure to trigger alarm across all time 
steps
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In our approach, we concurrently perform state estimation and fault mitigation via an 
extended state-space (x, s) of particles, with s ∈ {1, . . . ,Kt} indicating an integer corre-
sponding to one of the GNSS measurements in mt . This is analogous to the selection 
vector s in the optimization problem Eq.  14. Here, the integer value of s signifies the 
index corresponding to the value 1 in the vector. Each particle in the extended state-
space is assigned a value of s at the time of creation during the propagation step, which 
remains constant until the resampling step. These extended state-space particles are 
used subsequently to determine the weight coefficients in the GMM likelihood as well as 
the weights of the particles.

5.2.2  Propagation step

Firstly, we generate Kt uniform-weighted copies of each existing particle x(i)t−1 , each cor-
responding to a unique s value in the set {1, . . . ,Kt} . This overall set of particles captures 
the joint state-space that includes s . Following this, the particles in this extended state-
space, denoted as x(i,s)t−1 , are propagated in accordance with state dynamics as:

where f  is the function to propagate state x using odometry u based on system dynam-
ics. The term γt is initialized uniformly across measurements, and ν(i,s) ∼ N (0, (σ ν)2) 
denotes the stochastic term involved in the propagation of each particle with standard 
deviation σν . This is equivalent to drawing samples from the predicted state probability 
distribution at time t based on the history of measurements [11].

Following this, we compute the measurement likelihood model and update the weights 
associated with each particle in the weighting step.

5.2.3  Iterative weighting step

To determine the values for {γk}
Kt

k=1 and {w(i)
t }Ni=1 using the GMM likelihood, we employ 

an iterative approach inspired by the expectation–maximization (EM) algorithm for 
GMM [50]. Our approach involves three steps, namely measurement voting, vote pool-
ing and GMM weighting. The steps are described in detail below.

5.2.3.1 Measurement Voting  Assuming no prior knowledge about measurement faults, 
we initialize the value of γ k

t  uniformly with K−1
t  for all k ∈ {1, . . . ,Kt} . For the weights 

{w
(i,s=k)
t }Ni=1 , we set their initial values based on the previous time step weights as

(28)x
(i,s)
t = f (x

(i,s)
t−1,ut)+ ν(i,s) ∀ s = {1, . . . ,K },

(29)π̃
(i)
t =

K∑

k=1

γ k
t δ(x = x̃

(i,s=k)
t ),

(30)π̃t ≈

N∑

i=1

w
(i)
t−1π̃

(i)
t ,
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This initialization scheme ensures equal weight distribution across the measurement 
components for each particle at the start of the iterative process.

In order to compute the updates for both {w(i)
t }Ni=1 and {γk}

Kt

k=1 , we introduce a set of 
random variables {V k}

Kt

k=1 , referred to as votes. These votes allow us to indirectly express 
the confidence associated with each measurement k based on a given value of the state 
xt . Unlike {γk}

Kt

k=1 , the votes {V k}
Kt

k=1 depend on xt and depend on the normalized residu-
als rkt  for each particle x(i,s=k)

t  in πt . The residuals rkt  are defined as:

Using the initial values of {w(i)
t }Ni=1 and {γk}

Kt

k=1 as well as the computed residuals 
{r

(i,k)
t }

N ,Kt

i=1,k=1 , we proceed to infer the probability distribution of the random variables 
{V k}

Kt

k=1 in the expectation-step of the EM algorithm [50]. We model this probability dis-
tribution using samples of V k , which we refer to as weighted votes {v(i,k)t }Ni=1 ∼ V k:

where pN 2(0,1)(·) denotes the probability density function of the square of a standard 
normal distribution [45]. The use of the squared standard Gaussian distribution assigns 
smaller probability values to larger residuals, aligning with RAIM algorithms that use 
the Chi-squared distribution for detecting GNSS faults [38].

5.2.3.2 Vote pooling In the vote pooling step, we normalize and combine the votes 
cast by each particle to determine the updated values of γk for each measurement. The 
total empirical probability π tot

t  of measurements mt at time t, incorporating the votes 
{v

(i,k)
t }

N ,Kt

i=1,k=1 and measurement weights {γk}
Kt

k=1 , is expressed as

To maximize π tot
t  while satisfying the constraint 

∑Kt

k=1 γk = 1 , we derive an update rule 
for vote pooling as

This update rule assigns an empirical probability to each γk based on the weighted votes, 
enabling us to combine the confidences from multiple particles and measurements.

5.2.3.3 GMM weighting Using the computed measurement weights {γk}
Kt

k=1 , we 
update the weights of each extended state-space particle. To ensure numerical stabil-
ity, we perform the weight update in the logarithmic scale. The GMM log-likelihood, 
however, contains additive terms inside the logarithm, making direct distribution 

(31)w
(i,s=k)
t =

1

Kt
· w

(i)
t−1, i ∈ {1, . . . ,N }.

(32)rkt = (σ k
t )

−1(ρ
(k)
t − h(x

(i,s=k)
t )).

(33)v
(i,k)
t = pN 2(0,1)

(

(r
(i,k)
t )2

)

,

(34)π tot
t =

N∑

i=1

Kt∑

k=1

γkw
(i,k)
t v

(i,k)
t .

(35)γk =

∑N
i=1 w

(i,k)
t v

(i,k)
t

∑N
i=1

∑Kt

k ′=1 w
(i,k ′)v

(i,k ′)
i

.
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infeasible. To address this, we perform the weighting using the extended state-space 
that includes the measurement association variable s.

The measurement likelihood conditioned on s can now be expressed as a categorical 
distribution likelihood as per Sect. 5.1.2:

where I[·] denotes an indicator function that equals 1 if the condition in its argument is 
true and 0 otherwise. Here, 

∑Kt

k=1 γk = 1.
Taking the logarithm of the likelihood, we obtain:

To compute the new weights {w(i,k)
t }

N ,Kt

i=1,k=1 for each particle in a stable manner, we use 
the log-likelihood expression as follows:

The iterative weighting algorithm is summarized in Algorithm 1. In successive iterations 
of the iterative weighting algorithm, we can additionally repeat the propagation step 
to compute new votes instead of reusing the same propagated particles, thus avoiding 
overfitting.

5.2.4  Reduced resampling step

The reduced resampling step is used to obtain the updated particle distribution 
{x

(i)
t }Ni=1 = π̂t by redistributing the weighted extended state-space particles using the 

sequential importance resampling (SIR) procedure  [17]. This step also reduces the 
number of particles from N × Kt to the original number of N particles, assigning equal 
weight to each particle. The algorithm is described in Algorithm 2.

The algorithm redistributes the particles based on their weights across the extended 
state-space and ensures that the number of particles remains constant. The resulting 
mean state estimate xt is calculated as xt =

∑N
i=1 w

(i)
t x

(i)
t .

(36)ℓt(xt) = p(mt | xt , s) =

Kt∏

k=1

(

γkpN (0,1)(r
(k)
t )

)I[s=k]
,

(37)log ℓt(xt) =

Kt∑

k=1

1[s = k]
(

log γk + log pN (0,1)(r
(k)
t )

)

.

(38)l
(i)
k = log ℓt

(

x
(i,s=k)
t

)

−max
i,k

(

log ℓt

(

x
(i,s=k)
t

))

,

(39)w
(i,k)
t =

exp
(

l
(i)
k

)

∑N
i=1

∑Kt

k=1 exp
(

l
(i)
k

) .
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Algorithm 1 Iterative weighting procedure

Algorithm 2 Reduced resampling procedure
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5.2.5  Integrity monitoring

One of the key features of our algorithm is the integrity monitoring component, which aims 
to detect positioning failure conditions. Our integrity monitor incorporates a non-Gaussian 
probability distribution represented by particles to capture the uncertainty in the vehicle 
state estimation. It operates based on three fundamental assumptions: (1) The existence of 
a fault-free measurement at each timestep, (2) redundant positioning information across 
multiple satellites (over time), odometry, and dynamics, and (3) Gaussian probability distri-
bution of individual fault-free GNSS measurements.

At each time instant, the integrity monitor calculates a vector-valued test statistic 
comprising of the probability of positioning failure τPF and precision τP . These meas-
ures are derived and computed based on the probability distribution tracked by the fil-
ter along with the available GNSS measurements. Subsequently, the algorithm compares 
these measures against user-specified thresholds to detect positioning failures. If a posi-
tioning failure is detected, an alarm is triggered, and the system is declared as unavaila-
ble. Our integrity monitoring algorithm is inspired by the Bayesian framework proposed 
in [41].

We compute the probability of positioning failure τPF based on the probability dis-
tribution of positions that lie outside the specified alarm limit. In previous particle 
filter-based methods [41], τPF is computed by integrating the filter probability distribu-
tion over all positions that lie outside the specified alarm limit. However, this approach 
often leads to inaccurate estimations of τPF since filtering approaches are convention-
ally designed to estimate the probability distribution in the vicinity of the most probable 
states and not the tail-ends [49].

To address this limitation, we derive an alternative approach to estimate τPF as an 
approximate upper bound of the positioning failures risk directly from our GMM likeli-
hood. The estimation is based on the filter probability distribution along with the avail-
able GNSS measurements. We estimate τPF as follows:

Here, �I denotes the set of positions that lie within the alarm limit around the mean state 
estimate xt and |�I | denotes its total area. To simplify the computation, we approximate 

(40)p(PF) = p(xt /∈ �I | Mt ,ut , π̂t−1)

(41)= 1− p(xt ∈ �I | Mt ,ut , π̂t−1)

(42)= 1−
p(xt ∈ �I | ut , π̂t−1)

p(Mt | ut , π̂t−1)
p(Mt | xt ∈ �I ,ut , π̂t−1)

(43)≤ 1− p(xt ∈ �I | ut , π̂t−1)p(Mt | xt ∈ �I ,ut , π̂t−1)

(44)≈ 1− p(xt ∈ �I | ut , π̂t−1)

∫

xt∈�I

|�I |
−1

Kt∑

k=1

γkp
N (ρ̂kxt

,
(

σ k
xt

)2
)

(

ρ
(k)
t

)

dxt

(45)= τPF
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the conditional distribution p(xt | {xt ∈ �I },ut , π̂t−1) ≈ p(xt | {xt ∈ �I }) as a uniform 
distribution |�I |

−1 ∀xt ∈ �I . While this approximation does not necessarily correspond 
to the worst-case computation of p(Mt | xt ∈ �I ,ut , π̂t−1) , it admits fast computation 
using numerical techniques and therefore we adopt it in this work. Future research will 
explore advanced techniques, such as importance sampling, to improve the approxima-
tion while accounting for the worst case. Nevertheless, τPF is subject to approximation 
errors from filter, the measurement likelihood, uniform prior distribution, and numeri-
cal integration, and can therefore trigger false alarms or missed detections for different 
choices of threshold.

To efficiently compute the integral, we employ cubature techniques for two-dimensional 
disks, as described in  [31]. The term p({xt ∈ �I } | ut , π̂t−1) is computed by adding the 
weights of particles that lie inside the alarm limit based on the propagated distribution π̃t . 
This approximation enhances computational efficiency over exact calculation while provid-
ing a reasonable estimate of τPF for determining positioning failure.

We define precision τP as the radius of the smallest disk around the estimated posi-
tion xt that contains the true vehicle position with at least 0.5 probability. Unlike the 
probability of positioning failure τPF , precision is determined primarily by the probabil-
ity mass near the state estimate rather than the tail-ends. This is in line with the way 
precision (called “accuracy” in the paper) is computed in [41]. Unlike classical accuracy, 
which measures closeness to ground truth, τP captures the precision (or resolution) of 
positions that the filter can distinguish with the particles at a timestep. While the term is 
limited in capturing integrity information on its own, it helps identify situations where 
the filter distribution itself has a high variance and therefore can lead to incorrect esti-
mation of τPF , which relies on the filter distribution.

To compute precision, we approximate the particle distribution by a Gaussian distri-
bution with the mean parameter xt and the covariance matrix �t . The covariance matrix 
�t is computed as a weighted estimate from the particle samples, where the weights are 
denoted as w(i)

t  and the particle samples x(i)t  . The computation of �t is given by:

Once we have the covariance matrix �t , we estimate the precision τP using the inverse 
cumulative probability distribution of the Gaussian distribution. Specifically, we com-
pute τP as follows:

where �−1(·) denotes the inverse cumulative probability function for standard Gaussian 
distribution, and pP denotes the desired precision level, which we set to 0.5. A smaller 
value of τP implies higher precision in positioning.

To detect positioning failures, we compare the vector-valued statistic 
[
τPF, τP

]
 against 

a user-specified threshold 
[

αPF,αA
]

 . The integrity monitor checks the following 

condition:

(46)�t =
1

1−
∑N

i=1

(

w
(i)
t

)2

N∑

i=1

w
(i)
t (x

(i)
t − xt)(x

(i)
t − xt)

⊤.

(47)τP = max
i=1,2

√

�t,i,i�
−1(pP),
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Hence, if either the estimated probability of positioning failure or the estimated preci-
sion exceeds their respective thresholds, the integrity monitor detects a positioning fail-
ure and triggers an alarm.

5.3  Computation requirement

The computational requirement of our algorithm is proportional to the number of meas-
urements k, just like existing least-squares and robust state estimation approaches. For 
residual-based RAIM algorithms  [19, 23, 38, 46], the maximum required computation 
grows proportionally to mk, where m is the maximum number of iterations. For exist-
ing particle filter-based methods that run a separate filter for each fault hypothesis  [1, 
4, 52, 53], the computation depends on the number of filters (fault hypotheses) and on 
the number of particles n, which scales proportionally to nkm , where m is the maximum 
number of simultaneous faults considered within the set of measurements.

In contrast to existing particle filter-based methods, our approach grows linearly in 
computation with the number of available measurements. For n particles and k avail-
able measurements, each component in our algorithm has a maximum computational 
requirement proportional to nk irrespective of the number of faults present. Hence, our 
approach exhibits smaller computational requirements than existing particle filter-based 
methods, and similar requirements to residual-based RAIM, least-squares and robust 
state estimation algorithms with respect to the number of GNSS measurements.

Furthermore, each of these steps can be parallelized across particles and measure-
ments, which can further reduce the computational requirement. For example, all votes 
from particles to measurements can be computed in parallel, and pooling of votes can be 
performed at the same time across different measurements. Additionally, weights for all 
the particles can be computed simultaneously from the likelihood model. This can lead 
to significant speedups, especially for large state spaces.

However, the number of particles required to adequately approximate the probabil-
ity distribution increases exponentially with the size of the state space [11]. This means 
that the computational requirement of our algorithm can also increase exponentially 
with the size of the state space. In order to maintain a small computation cost with large 
state-spaces, more complex strategies, such as Rao–Blackwellization or using factored 
probability distributions, need to be employed.

6  Experimentation results
This section presents results evaluating the performance of the algorithm for localiza-
tion and integrity monitoring. First, localization performance is examined in simulated 
and real-world driving scenarios. Next, integrity monitoring results are shown for a sim-
ulated scenario with multiple faults. Finally, the results are discussed.

6.1  Localization performance

In order to assess the performance of our fault-robust localization algorithm, we con-
ducted evaluations using both simulated and real-world scenarios. On each scenario, we 
compared the results against existing baselines for fault-robust localization.

(48)(τPF ≥ αPF) or (τP ≥ αA).
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The rest of this section is organized as follows: first, we defined the setup for the simu-
lated and real-world experiments. Then, we introduced the baselines against which we 
compare our approach. Next, we outlined the metrics used to evaluate the performance. 
Subsequently, we presented the localization results obtained from the experiments. 
Finally, we conducted a sensitivity analysis to investigate the impact of the noise param-
eters on the performance of our approach.

6.1.1  Simulated experiment scenario

Our choice of simulations is motivated by two factors: the availability of accurate 
ground-truth information and the ability to obtain multiple measurement sequences 
with distinct noise values. To evaluate the effectiveness in localization by our approach 
and the baselines, we introduced varying noise profiles in GNSS and odometry 
measurements.

To create a realistic simulation environment, we designed a scenario in which a vehi-
cle traversed a horizontal surface along 50 randomly generated trajectories, each span-
ning approximately 4000 m in length. During the simulation, the vehicle obtained GNSS 
ranging measurements from simulated satellites, which were subject to noise, as well 
as noisy odometry measurements. The satellites were simulated to move at a constant 
velocity of 1000 m/s along separate paths, randomly selected, while maintaining a fixed 
height of 2× 107 m from the horizontal surface.

The odometry measurements included vehicle speed readings and the heading direc-
tion of the vehicle. Each driving scenario lasted for a duration of 400 s, with meas-
urements acquired at frequency of 1 Hz. In our state estimation algorithms for the 
simulated scenario, we focused on tracking the 2D state of the vehicle, specifically the 
coordinates (x, y). This restriction as motivated by the computational constraints associ-
ated with handling larger state-spaces. The simulation and filter parameters used in our 
experiments are given in Table 1.

To emulate real-world scenarios, we introduced two distinct noise profiles in our 
pseudorange measurements during the simulation process. Firstly, we incorporated 
zero mean random noise in all measurements. Secondly, we introduced random bias 

Table 1 Experimental parameters for simulated scenario

Parameter Value

# of satellites 5–10

GNSS ranging noise σGNSS 5–10 m

GNSS ranging bias error magnitude 50–200 m

Maximum # of faulty measurements 1–6

GNSS fault change probability 0.2

Vehicle speed 10 m/s

Odometry noise σν 5 m/s

# of particles 500

Filter initialization σinit 5 m

Filter measurement model noise {σ k}K
k=1

5 m

Filter propagation model noise σf 5 m

Alarm limit AL 15–20 m
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noise in a subset of measurements. The subset of measurements subject to bias noise 
as randomly initialized and had a small probability of transitioning to a different ran-
dom subset at each time instant. The number of affected measurements was stochasti-
cally determined, ranging from zero up to a predetermined maximum number of faults 
during each transition. Additionally, the Gaussian noise applied to measurements was 
adjusted to have double the variance for biased measurements.

By employing our noise model, we effectively simulated the impact of non-line-of-
sight signals and multipath propagation on pseudorange measurements within the con-
text of urban GNSS navigation scenarios.

6.1.2  Real‑world experiment scenario

In the real-world case, we utilized GNSS pseudorange and odometry measurements 
from the publicly available urban GNSS dataset collected by TU Chemnitz for the 
SmartLoc project  [43]. Specifically, we focused on the Frankfurt Westend-Tower tra-
jectory from the dataset for evaluating our approach. This trajectory had a length of 
approximately 2300 m and encompassed both dense and sparse urban regions, with 
approximately 32% of the total measurements being NLOS signals. Figure 3a visualizes 
the trajectory with the start and end points.

The dataset was collected using a low-cost u-blox EVK-M8T GNSS receiver operat-
ing at a frequency of 5 Hz, along with CAN (control area network) data for odometry 
obtained at a frequency of 50 Hz. The odometry data provided velocity and yaw-rate 
measurements from the vehicle’s CAN bus. To establish a reliable ground truth, a high-
cost NovAtel GNSS receiver operating at 20 Hz was employed to provide reference posi-
tions. Additionally, corrections to satellite ephemeris data were provided in the form of 
an SP3 file.

The receiver collected approximately 12 pseudorange measurements at each time 
instant from the GPS, GLONASS, and Galileo constellations. We assume that the 
starting position of the vehicle and an estimate of the clock drift rate are known and 
use this information to correct for clock biases at the start. Specifically, we removed 

Fig. 3 Real-world dataset for validation of our approach. We use Frankfurt Westend-Tower sequence from 
smartLoc project dataset collected by TU Chemnitz [43]. The trajectory followed by the vehicle is shown in (a). 
The vehicle moves from the start point (green) to end point (red) along the trajectory (cyan) in the direction 
specified by red arrows. (b) The residuals of the pseudorange measurements with respect to ground-truth 
position spread across 2 min (receiver clock drift errors removed via filtering). Multiple measurements 
demonstrate bias errors due to multipath and non-line-of-sight effects in the urban environment
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inter-constellation clock error differences by subtracting the initial measurement resid-
uals from all measurements. The adjustment ensured that the measurements had zero 
residuals at the initial position, enhancing the accuracy of subsequent calculations. Fig-
ure 3b illustrates the measurement residuals with respect to the ground-truth position 
in a dense urban region over a duration of 2 minutes.

In our state-space model, we considered the vehicle position (x,  y), heading θ , and 
clock bias error β . To mitigate the impact of clock drift, β represents the difference 
between the true receiver clock bias and a simple linear drift model with precomputed 
drift rate based on initial measurement samples. We estimated this difference across 
time instants without explicitly tracking the clock drift, thereby maintaining a manage-
able state size for computational tractability. It should be noted that in practical applica-
tions, the clock parameters can be determined separately using least-squares techniques, 
while our approach can focus on tracking the positioning parameters for efficient com-
putation. In our approach, we employed 1000 particles to accommodate the larger 
state space compared to the simulated scenario. Additionally, we utilized 5 iterations of 
weighting in our approach, which was determined empirically to yield small positioning 
errors in the given scenario.

6.1.3  Baselines

For evaluating the localization performance, we consider two baselines: 

1. Joint state-space particle filter (J-PF): J-PF is based on the particle filter algorithm 
proposed in [41]. In J-PF, both the vehicle state and the measurement fault vector are 
considered in the particle filter state-space. This is in contrast to traditional particle 
filter, which only consider the vehicle state. We refer to the combined state-space 
comprising of all the parameters as the joint state-space.

  Since J-PF independently considers both the measurement faults and the state, it can 
also be interpreted as a bank of particle filters [51, 53]. This means that J-PF is able 
to track multiple hypotheses of faults simultaneously, each using a separate particle 
filter with its own probability distribution of the vehicle state. However, the compu-
tational requirement of J-PF is combinatorial in the number of considered measure-
ment faults, increasing exponentially as the number of faults increase.

  In our experiments, we limit the algorithm to consider at most two faults. Further-
more, we assume a uniformly distributed fault transition probability in the particle 
filter.

2. Kalman filter RAIM (KF-RAIM):  KF-RAIM is a residual-based RAIM algorithm [38] 
that uses a Kalman filter to track the state of the vehicle. The algorithm is initialized 
with the ground-truth position and velocity of the vehicle with a specified standard 
deviation σinit . The algorithm then iteratively detects and removes measurement 
faults using a global and a local test, similar to existing approaches  [22]. The local 
test is repeated until the global test succeeds and declares the estimated position safe 
to use. The algorithm is terminated if the global test fails or if the number of itera-
tions exceeds a specified maximum value. We set the maximum number of iterations 
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to 5 in our experiments. Furthermore, the detection thresholds have been tuned to 
achieve the best localization performance on the dataset.

6.1.4  Metrics

For evaluating the positioning performance of our approach, we compute the metrics of 
horizontal root-mean-square error (RMSE) as well as the percentage of estimates that 
deviate more than 15 m from the ground truth ( %>15 m). We compute these metrics as

where T denotes the total number of time steps for which the algorithm is run; x∗t  
denotes the ground-truth state of the receiver; � · �pos denotes the Euclidean norm of the 
horizontal position coordinates in state; and N(I) denotes the number of occurrences of 
event I. The metric %>15 m is analogous to probability of positioning failure, defined in 
Section 1.2 with an alarm limit of 15 m.

6.1.5  Localization performance

In the simulated case, we evaluated the localization performance on scenarios with vary-
ing number of available and faulty GNSS measurements at each time instant. The total 
number of measurements and the maximum number of faults considered in our analysis 
were as follows: (total # of measurements, max # of faults): (5, 1), (5, 2), (7, 4), (10, 6). To 
induce noise degradation, we introduced a bias error of 100 m with a standard deviation 
of 5 m to the faulty GNSS measurements. The localization metrics were computed based 
on 50 full runs, each with a duration 400 s and utilizing different randomly generated 
trajectories.

The trajectories for two selected scenarios, (5, 1) and (10, 6), are presented in Fig. 4, 
illustrating the comparison between our approach, J-PF, and KF-RAIM. The correspond-
ing localization metrics are recorded in Table 2. The qualitative and quantitative results 

(49)RMSE =

√
√
√
√

1

T

T∑

t=1

�xt − x∗t �
2
pos

(50)%>15 m =
N (�xt − x∗t � > 15)

T

Table 2 Comparison of localization performance on the simulated dataset

The dataset consists of varying total number of measurements and maximum number of measurement faults (total # of 
measurements, max # of faults). Our approach demonstrates better localization performance in scenarios with large number 
of faults in comparison with J-PF and KF-RAIM. Bold values indicate the best performance in each category

Few faults Many faults

(5, 1) (5, 2) (7, 4) (10, 6)

KF-RAIM RMSE(m) 7.6 21.5 34.3 34.4

%>15 m 5.9 68.7 87.4 91.1

J-PF RMSE(m) 4.8 5.8 33.5 22.9

%>15 m 1.2 3.1 94.2 85.4

Ours RMSE(m) 11.0 12.4 13.2 12.4

%>15 m 23.4 26.6 33.1 28.7
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clearly indicate that our approach outperforms the compared approaches in scenarios 
with high levels of noise degradation while maintaining a low rate of large positioning 
errors. Specifically, J-PF demonstrates better performance than its counterparts in sce-
narios with a single fault, as it considers all possibilities of faults separately. However, its 
performance deteriorates in scenarios with more than two measurement faults. Simi-
larly, KF-RAIM excels in identifying and removing faults in scenarios with few faulty 
measurements, resulting in lower positioning errors, but exhibits poor performance in 
many-fault scenarios.

Figure 5 presents a visualization of the estimated vehicle trajectories and positioning 
mean-squared error over time based on real-world data. Our approach produces tra-
jectories that closely align with the ground-truth trajectory compared to J-PF and KF-
RAIM. The horizontal RMSE values, averaged over 20 runs with different randomness 
in initialization and propagation, indicate that our approach achieves better localization 
accuracy. Notably, in regions where multiple measurements are affected by bias errors, 
our approach outperforms the baselines by assigning high measurement weights to the 
measurements consistent with the particle filter’s probability distribution of the vehicle 
state.

In summary, our approach demonstrates superior localization performance compared 
to J-PF and KF-RAIM in scenarios with a significant number of faulty measurements. 
The qualitative and quantitative assessments consistently highlight the efficacy of our 
approach in mitigating the adverse effects of noise degradation while maintaining accu-
rate and reliable positioning estimates.

Fig. 4 Localization accuracy comparison between our approach, J-PF, and KF-RAIM approaches for (i) 
few-fault scenario and (ii) many-fault scenario. We fix the underlying ground-truth trajectory to be a square 
of side 1000 m with (0, 0) as both the start and end positions. In single fault scenario, all approaches exhibit 
similarly small positioning errors. Our approach estimates the vehicle state with better accuracy that J-PF and 
KF-RAIM in scenarios with many faulty measurements
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6.1.6  Sensitivity analysis on simulated scenario

In this experiment, we conducted a sensitivity analysis to examine the impact of 
GNSS measurement noise bias and standard deviation on the performance of our 
algorithm. We conducted two separate studies: one varying bias while keeping the 
standard deviation fixed, and the other varying the standard deviation while keeping 
the bias fixed.

In the first study, we fixed the GNSS measurement standard deviation at 5 m and 
varied the bias between 10 and 100 m in increments of 10 m. For each bias value, we 
performed 20 runs and computed RMSE as the performance metric. The results of 
this study are presented in the first plot of Fig. 6.

Fig. 5 Estimated vehicle trajectories and mean-squared errors on real-world data. Our approach (a) produces 
trajectories that consistently have smaller positioning errors as compared to trajectory from J-PF (b) and 
KF-RAIM (c). The horizontal RMSE values are computed by averaging over 20 runs with different randomness 
values in initialization and propagation. In regions where multiple measurements contaminated with bias 
errors, our approach is able to localize better than the baselines by assigning high measurement weights to 
measurements that are consistent with the particle filter probability distribution of vehicle state

Fig. 6 Sensitivity analysis of the localization performance of our approach with varying values of GNSS 
measurements: a bias and b standard deviation. For low values of bias, the faults do not significantly impact 
the navigation solution, resulting in low RMSE values. Beyond the value of 50 m, our approach is able to 
remove the impact of faulty measurements resulting in low RMSE values. The performance of the algorithm 
increasingly deteriorates with higher standard deviation in GNSS measurement noise since both the 
capability to remove faulty measurements and localization are hampered by an increased noise
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The analysis reveals that the localization performance of our approach initially 
deteriorates and then improves as the bias value increases. For low bias error values, 
the presence of faulty GNSS measurements has a minimal impact on the localization 
solution, even if the algorithm fails to remove them. However, beyond a bias error 
value of 50 m, our approach successfully assigns lower measurement weights to faulty 
measurements, effectively mitigating their influence on the localization solution. 
Consequently the RMSE decreases for higher bias error values, indicating improved 
performance.

In the second study, we kept the bias fixed at 100 m and varied the standard devia-
tion between 5 and 25 m in increments of 5 m. Similarly, we conducted 20 runs for each 
standard deviation value and computed the RMSE. The results are presented in the sec-
ond plot of Fig. 6.

The findings from this study demonstrate the impact of high measurement noise 
standard deviation on our approach. As the standard deviation increases, the RMSE 
exhibits a super-linear increase. The performance deteriorates with higher noise stand-
ard deviation since both the fault mitigation capability and the localization accuracy 
are adversely affected by increased measurement noise. Building upon this work, future 
research could integrate the proposed method with more robust state estimation meth-
ods, such as factor graphs, to address high-noise situations more effectively.

Overall, the sensitivity analysis highlights the importance of managing GNSS meas-
urement noise bias and standard deviation in our approach. The results indicate that 
our algorithm is capable of effectively mitigating the impact of faulty measurements and 
achieving accurate localization when the bias error is relatively high. Moreover, the anal-
ysis emphasizes the sensitivity of our approach to increased measurement noise stand-
ard deviation, as it negatively affects both fault mitigation and localization performance. 
These insights provide valuable guidance for optimizing the performance of our algo-
rithm in practical GNSS-based localization applications.

6.2  Integrity monitoring performance

6.2.1  Simulated experiment scenario

Due to the difficulty and scope limitations in obtaining a large amount of real-world 
data for statistical validation, we focused our primary analysis of integrity monitoring 
performance on simulated data. For the simulated scenario, we generated 400-s-long 
trajectories with GNSS pseudorange measurements acquired at a rate of 1 Hz (Fig. 7a). 
The GNSS pseudorange measurements were simulated from 10 satellites. To introduce 
faults, we added bias errors to up to 60% of the available measurements between 125 
and 175 s, resulting in faulty measurements that deviate from the ground-truth position. 
The position offset for each fault was randomly selected between 50 and 150 m across 
different runs. For the simulations, we only utilized GNSS pseudorange measurements 
and did not simulate any odometry measurements. Therefore, the localization was per-
formed solely using the GNSS pseudorange measurements for all the filters. This leads 
to a more challenging setting where the filters observe frequent positioning failures, and 
hence the ability of the integrity monitoring algorithm can be properly evaluated. In 
the particle filter algorithm, we set the propagation noise standard deviation to 20 m to 
ensure the tracking of the position even in the absence of odometry measurements.
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6.2.2  Baseline

To evaluate the integrity monitoring performance of our particle filter-based method, 
we compared our approach against the particle filter-based Bayesian RAIM [41], which 
detects positioning failures based on statistics computed by integrating the J-PF proba-
bility distribution. We note that other integrity monitoring methods have been explored 
in research, such as methods based on Kalman filter innovations [24], however they can-
not be readily applied to our particle filter setting and therefore have not been compared 
against.

6.2.3  Metrics

The integrity monitoring performance metrics we employed valuate the capability of our 
integrity monitor in triggering the alarm when it is under positioning failures. The per-
formance metrics include the estimated probability of false alarm P̂(FA) and empirical 
integrity risk ˆIR (analogous to probability of missed detection) which are computed as:

where Ial(Ial) denotes the event when the navigation system triggers the alarm (does 
not trigger alarm) and Iho(Iho) denotes the event of positioning failures (nominal opera-
tions). These metrics are sensitive to the choice of threshold used in the integrity moni-
toring algorithm. For instance, if a large threshold is used, fewer detections would occur 
and correspondingly the likelihood of missing a correct detection would increase, 

(51)P̂(FA) =
N (Ial ∩ Iho)

T
,

(52)ˆIR =
N (Ial ∩ Iho)

T
,

Fig. 7 a Simulation experiment for analyzing integrity monitoring performance. The start and end of the 
400-s-long trajectory are marked in green and red, respectively. Bias errors are induced in upto 60% of 
the total 10 simulated GNSS measurements between 125 and 175 s (yellow region). b Minimum attained 
probability of false alarm and integrity risk across different threshold values for our approach and Bayesian 
RAIM [41] for different number of particles (100, 500) and alarm limit (15 m, 20 m). The different methods 
are denoted by the triplet (approach, alarm limit, particles). Probability of false alarm and integrity risk are 
estimated from more than 104 samples across multiple runs. Our approach exhibits lower false alarms and 
smaller integrity risk than Bayesian RAIM across all thresholds for each configuration of the number of 
particles and alarm limit
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driving up ˆIR . Conversely, if a small threshold is used, several detections will occur that 
might reduce ˆIR , but would increase P̂(FA).

Both Bayesian RAIM [41] and our approach rely on different thresholds to determine 
positioning failures. Optimal threshold values for minimum false alarms and missed 
detections depend on the scenario and algorithm. Varying these threshold values results 
in a trade-off between P̂(FA) and ˆIR . To compare the performance of the integrity moni-
tor, we computed P̂(FA) and ˆIR across different values for two settings: the number of 
particles (100, 500) and the alarm limit (10 m, 15 m) (Fig. 7b). All the metrics were cal-
culated using more than 104 samples across multiple simulation runs for each algorithm. 
The results b) demonstrate that our approach consistently generates lower false alarms 
and missed-identifications compared to Bayesian RAIM across different threshold val-
ues for each considered parameter setting.

6.2.4  Real‑world experiment

To complement our simulation-based experiments and address the limitations of 
simulation fidelity, we additionally tested our integrity monitoring algorithm on 
real-world data utilized in the localization experiments. Given the small size of the 
dataset which limits the independent samples available for evaluating the integrity 

Fig. 8 Detection of positioning failures using our method, visualized against positioning errors on real-world 
data. Our method is able to detect positioning failures at times where position error exceeds the alarm limit 
(shown as the dotted line), highlighting its potential for real-world integrity monitoring. However, periods 
of missed detections exist between correct ones, underlining the need for future research to enhance the 
algorithm’s ability to consistently detect positioning failures

Table 3 Comparative analysis of P̂(FA) and ˆIR between Bayesian RAIM and our approach on real-
world data

Our method maintains lower integrity risk without compromising on the rate of false alarms, highlighting its potential for 
reliable integrity monitoring in urban environments

P̂(FA) ˆIR

Bayesian RAIM 0.07 0.80

Our approach 0.06 0.58
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monitor, we executed the filtering algorithms multiple times, aggregating 104 sam-
ples for each algorithm while keeping the measurement data constant. The alarm 
limit for the experiments was set to 20 m, and the parameters were tuned to achieve 
similar false alarms P̂(FA) for ease of comparison. The results, detailed in Table 3, 
present the estimated probabilities of false alarms P̂(FA) and integrity risk ˆIR . Nota-
bly, our method achieved a lower integrity risk at a comparable rate of false alarms, 
demonstrating its efficacy.

However, at this false alarm configuration ( < 10% ), the integrity risk remains high 
for both algorithms ( > 50% ). This is because the algorithm struggles to consist-
ently detect positioning failures with the changing filter distribution, even though it 
detects the events at several timesteps. Figure  8 illustrates this limitation, showing 
our algorithm’s detections (tuned for higher false alarm allowance at 30% for clarity) 
alongside position errors and alarm limit. While detections align with periods when 
errors surpass the alarm limit, validating our method’s sensitivity to such events, 
missed detections between correct detections lead to higher ˆIR and indicate areas 
for improvement. Future research can explore temporal consistency in detections to 
enhance the algorithm’s performance in identifying positioning failures.

6.3  Discussion

The analysis and experiments conducted on both simulated and the real-world driv-
ing data indicate several key findings regarding the performance of our algorithm.

First, our framework demonstrated lower positioning errors compared to existing 
approaches in environments with a high fraction of faulty GNSS measurements. This 
highlights the effectiveness of our fault mitigation technique and the ability to accu-
rately estimate the vehicle’s state even in the presence of multiple faults.

Second, our framework exhibits superior performance in detecting hazardous oper-
ating conditions compared to existing particle filter-based integrity monitoring algo-
rithms. The integrity monitoring component successfully identifies situations where 
positioning error exceeds the alarm limit, ensuring that hazardous operating condi-
tions are detected in a timely manner.

However, there are some limitations and areas for improvement in our framework. 
In scenarios with few faults, the performance may be inferior to existing approaches. 
This is due to the conservative design choices made in the framework, particularly 
in the design of the fault-robust optimization problem and the associated GMM 
measurement likelihood model. While the conservative design ensures robust state 
estimation in challenging urban scenarios with multiple faults, it may result in poor 
performance when the number of faults is small. Exploring hybrid approaches that 
can switch between localization algorithms may be a promising avenue for future 
research to address this limitation.

Another drawback of our framework is the generation of false alarms when deter-
mining system availability. This is primarily caused by the large uncertainty within the 
GMM likelihood components, which leads to a conservative estimate of the probability 
of positioning failures. To mitigate this issue, future work can explore methods to reduce 
uncertainty by incorporating additional measurements and sources of information such 
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as camera images, carrier-phase data, and road networks. Incorporating these additional 
sources of information can help improve the accuracy in detecting positioning failure 
and reduce false alarm rates.

7  Conclusion
In this paper, we presented a novel probabilistic framework for fault-robust localiza-
tion and integrity monitoring in challenging scenarios with faults in several GNSS 
measurements. The presented framework leverages GNSS and odometry measure-
ments to compute a fault-robust probability distribution of the position and declares 
the navigation system unavailable if a reliable position cannot be estimated. We 
employed a particle filter for state estimation and developed a novel GMM likeli-
hood for computing particle weights from GNSS measurements while mitigating the 
impact of measurement errors due to multipath and NLOS signals. Our approach 
for mitigating these errors is based on the expectation-maximization algorithm and 
determines the GMM weight coefficients and particle weights in an iterative manner. 
To determine the system availability, we derived the probability of positioning failures 
and precision that are compared with specified reference values. Through a series of 
experiments on challenging simulated and real-world urban driving scenarios, we 
have shown that our approach achieves lower positioning errors in state estimation as 
well as small probability of false alarm and integrity risk in integrity monitoring when 
compared to the existing particle filter-based approach. Furthermore, our approach is 
capable of mitigating multiple measurement faults with lower computation require-
ments than the existing particle filter-based approaches. We believe that this work 
offers a promising direction for real-time deployment of algorithms in challenging 
urban environments.
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