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Abstract 

Interrupted-sampling repeater jamming (ISRJ) is a type of intra-pulse coherent jam-
ming that poses a significant threat to radar detection and tracking of targets. This 
paper proposes an ISRJ suppression method based on frequency agile waveform 
and sparse recovery, starting from the temporal discontinuity and modulation char-
acteristics of ISRJ. This method is particularly suitable for scenarios with high jamming 
duty ratio (JDR) and high jammer sampling duty ratio (SDR). By dividing the transmit-
ted waveform into sub-pulses with different carrier frequencies and applying a two-
round block sparse algorithm, the method accurately recovers three parameters of ISRJ, 
achieving effective jamming identification, reconstruction, and cancellation. Addi-
tionally, a target detection technique based on robust sparse recovery is proposed, 
significantly improving the stability and accuracy of target detection. Comparative 
experimental results conducted in three scenarios confirm the effectiveness and supe-
riority of this method under high JDR and SDR conditions.
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1 Introduction
In modern electronic warfare, radar’s anti-jamming ability plays a pivotal role in deter-
mining combat effectiveness and achieving information superiority [1–3]. Digital radio 
frequency memory (DRFM) technology allows jammers to accurately intercept and rep-
licate radar signals quickly. In intermittent sampling storage mode, DRFM can repeat-
edly transmit jamming slices within the current pulse repetition period (PRI), creating 
intra-pulse coherent interrupted-sampling repeater jamming. Leveraging the coherence 
characteristics of pulse compression (PC) radar and the high Doppler tolerance of wide-
band signals, ISRJ appears as a false target cluster on the range profile, with a primary 
false target and symmetric secondary ones, achieving both blanket and deceptive jam-
ming effects [4, 5]. Currently, ISRJ is widely employed in electronic countermeasures. 
Compared with traditional jamming, ISRJ is more difficult to counter with current meth-
ods like intra-pulse waveform agility [6, 7] and multi-carrier frequency phase encoding 
[8] than traditional jamming, highlights the need to research and develop of effective 
anti-jamming strategies.
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To address the challenges posed by ISRJ, scholars have developed a series of counter-
measures. Due to the flexibility and diversity of ISRJ, there is currently no unified clas-
sification method for these measures. However, they can generally be divided into two 
main categories: active counter-strategies and passive counter-strategies. The passive 
strategies focus on signal processing at the receiver end. Within this category, time–fre-
quency (TF) analysis stands out as an effective method. It helps distinguish the target 
signals from ISRJ by analyzing their differences in the time and frequency domains. 
Chen et al. analyzed the time–frequency characteristics of the target echo after stretch-
ing, introducing the max-TF function for jamming-free period extraction and a smooth-
ing filter for jamming elimination [9]. Wei et al. proposed an efficient filter for extended 
targets based on time–frequency analysis for ISRJ suppression [10]. Based on the con-
cept of reconstruction-cancellation, Zhou et  al. used TF analysis to estimate jamming 
slices number and forwarding times, allowing iterative jamming component cancel-
lation [11]. Meng et  al. used TF analysis and Hilbert transform to estimate sampling 
pulse width and intervals, further calculating sampling and forwarding times [12]. Chen 
et al. applied TF analysis to distributed radar systems, identifying jamming and extract-
ing data for adaptive beamformer training. [13]. The TF analysis method’s limitation 
emerges under high jamming duty ratio. In this case, obtaining jamming-free periods 
proves to be particularly challenging, leading to a substantial decrease in the accuracy 
of jamming parameter estimation. While collaborative spatial processing can mitigate 
the effects of high JDR to some extent, the deployment of a distributed radar system 
necessitates additional resources. Based on time–frequency analysis, several derivative 
signal processing methods have been developed to counter ISRJ. Han et  al. first used 
short-time fractional Fourier transform to initially locate the jamming fragments, fur-
ther refined the jamming edges through differential filtering and deconvolution, thus 
improving the parameter estimation accuracy [14]. Yuan et  al. designed the energy 
function to detect the jamming-free period, and used a specific filtering method to sup-
press ISRJ [15]. However, the performance of the two methods significantly decreases 
with weaker jamming intensity. Chen et al. designed a neural network filtering method 
to improve the extraction accuracy of jamming-free periods [16]. However, this method 
cannot cope with high JDR situations. Wu et al. developed an efficient ISRJ identifica-
tion method based on integral decomposition [17], focusing on energy distribution dif-
ferences. While successful in real-time radar applications, its effectiveness against strong 
jamming is constrained by its post-CFAR implementation.

Active anti-jamming strategies that combine waveform design and signal processing 
show great promise. Shen et  al. compared ISRJ performance of different waveforms, 
showing stepped frequency and linear frequency modulation waveforms yield similar 
jamming, while random frequency waveforms, in direct forwarding, create only one 
false target, with effectiveness declining with more sub-pulses [18]. Dai et al. analyzed 
down-chirp and up-chirp’s quasi-orthogonal properties to design an orthogonal wave-
form, identifying ISRJ false targets by comparing peak positions [19]. However, this is 
effective only in direct forwarding. Zhou et  al. developed a phase coding-based adap-
tive transmission scheme that dynamically suppresses ISRJ by estimating jammer posi-
tion and duration with jamming perception, and optimizing the waveform using a 
genetic algorithm [20]. Liu et al. designed an intra-pulse agile waveform to enhance the 
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distinction between ISRJ and targets, combining fractional Fourier transform and filter 
design to suppress ISRJ [21]. However, the above four methods are less effective under 
intense jamming conditions. Zhang et al. utilized segmented LFM pulse orthogonality 
to achieve the sorting of jamming and targets [22]. They further designed an LFM wave-
form with intra-pulse Costa frequency stepped, which effectively reduced the jamming 
bands and jamming harmonics caused by segmented pulse compression [23]. However, 
this method cannot cope with the high SDR of the jammer. In summary, although vari-
ous strategies have achieved certain results against ISRJ, each has limitations and spe-
cific application scenarios. Most methods recognize targets and ISRJ primarily in the 
time–frequency domain, which is a limited approach. This is particularly evident when 
the target and ISRJ overlap in the time domain, as the inability to discern target periods 
covered by jamming based solely on TF information forces the discarding of target echo 
segments contaminated by jamming. This significantly reduces the processing gain of 
subsequent PC for target identification, leading to poor performance in subsequent tar-
get recognition and jamming suppression stages. Especially in scenarios with high JDR 
and high jammer SDR, these methods suffer from a more severe decline in performance. 
Therefore, it is necessary to explore more efficient and robust strategies to effectively 
counter ISRJ.

In recent years, some scholars have successfully applied sparse recovery algorithms 
for anti-jamming and target identification, making some progress [24–27]. The central 
premise is that, even within complex electromagnetic environments, target signals can 
be accurately or approximately represented in specific transform domain with mini-
mal basis vectors. Radar systems can detect the sparsity characteristics of these signals 
in the transform domain, enabling the effective separation of the target from jamming 
signals, ensuring stable target detection and tracking. However, current anti-jamming 
approaches based on sparse recovery still face challenges. The low signal-to-noise ratio 
(SNR) before PC complicates the stable recovery of target parameters. Furthermore, 
while designing dictionary matrices, most methods primarily focus on the waveform 
of real target, often simplistically treating the jamming slice as target echo with short 
pulse width. This approach overlooks the incompleteness of the ISRJ waveform caused 
by interrupted sampling in DRFM. Such an oversight can led to difficulties in accurately 
representing jamming echo sparsely, especially when the number of jamming slices is 
excessive, rendering the initial assumptions of sparsity no longer valid [28]. Moreover, 
few techniques consider designing radar transmission waveform at the transmission 
end, leading to dictionary matrices that often do not satisfy the restricted isometry prop-
erty (RIP) [29], compromising the stability of sparse recovery.

To this end, this paper proposes an ISRJ suppression method with intra-pulse fre-
quency agility, based on sparse recovery. Given that the intensity of ISRJ in actual scenar-
ios is usually higher than that of real targets, the recoverability of ISRJ in sparse domains 
is more stable. Therefore, our work focuses on accurate recovery of jamming parame-
ters. The method includes the following steps: First, divide the transmit pulse into mul-
tiple sub-pulses, and destroy the correlation between each sub-pulse through carrier 
frequency agility. This involves designing a dictionary matrix that satisfies the RIP, ena-
bling effective sparse representation of both the target and ISRJ. Secondly, the received 
data undergo a sparse representation of delay-frequency to extract the modulation delay 
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and frequency information from the DRFM. Based on this information, the block delay-
slicing dictionary is designed and updated. Finally, based on the sparse recovery results 
in the two domains of delay and slice, the jamming characteristics of ISRJ are identified 
and the jamming data is reconstructed to achieve the purpose of suppressing ISRJ. Fur-
thermore, to address the potential impact of residual jamming on target recognition, we 
propose a robust method for the sparse representation of targets in the range domain. 
In contrast to traditional approaches, we have optimized the adaptive selection of regu-
larization parameters, significantly improving the method’s practicality. Combining this 
method with the PC results after jamming suppression can further enhance target rec-
ognition accuracy. Experimental results show that our method can effectively suppress 
ISRJ. Particularly, our method demonstrates stable anti-ISRJ performance when both the 
JDR and the total jammer SDR exceed 90%.

The structure of the paper is organized as follows. In Sect. 2, the signal model is intro-
duced. In Sect.  3, an improved ISRJ parameter recovery and suppression method is 
proposed. In Sect. 4, numerical simulation experiments are presented to verify the effec-
tiveness and analyze the performance. Finally, Sect.  5 presents some conclusions and 
discusses future work.

2  Signal model
2.1  Principle of ISRJ

The basic principle of ISRJ is shown in Fig. 1. When the DRFM operates in intermittent 
sampling storage mode, reconnaissance and jamming are performed alternately, with 
the jammer antenna operates asynchronously. The jammer first intercepts and samples 
the signal emitted by the radar. According to the research by Oliver [30], the current 
leading DRFM performance specifications are approximately an internal bandwidth of 
800 MHz and 10 to 12 bits of ADC and DAC sampling at a frequency of 2000 MHz. This 
ensures high-fidelity sampling of radar emission signals by the DRFM. The jammer then 
retransmits the current sampled signal, continuing this process until the radar pulse 

Fig. 1 Principle of ISRJ (Forwarding times K = 2)
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transmission ceases. Assuming the jammer samples using a rectangular pulse sequence, 
the sampling timing can be specifically expressed as:

where L represents the jammer sampling times. Ts = τ
/
L is the time interval of inter-

cepted slices, and τj is the jammer sampling pulse width. Generally, τj remains fixed.
Assume that the radar transmits signal is s(t) , and there is a moving target with a 

radial velocity of vs at the distance Rs from the radar. Then, the target signal echo can be 
expressed as:

where τs = 2Rs c represents the real target delay and c is the speed of light. Correspond-
ingly, the intercepted signal slices can be expressed as:

The study in [31] reveals that by modulating the jamming slices with a fixed positive 
frequency, DRFM is able to change the position of the jamming peak after PC. This tech-
nique allows for the generation of advanced false target jamming, making it unreliable to 
distinguish between real and false targets based solely on time-delay. In light of this situ-
ation, the subsequent discussion in this paper is based on the assumption that the jam-
mer modulates a fixed frequency-shift onto all jamming slices of the same forwarding 
within a single PRI. These modulated jamming slices are then continuously forwarded by 
the jammer K times, and thus, the forwarded signals from the jammer can be expressed 
as follows:

where fF represents the modulation frequency, and τF is the forwarding delay of the 
jammer.

By comparing (2) and (4), it can be seen that the modulation of radar signals mainly 
consists of three domains. Firstly, there is slice modulation: the intercepted signal 
slices contain only part of the sub-pulses of the original emitted signal, and our inter-
est lies in identifying the specific positions of these sub-pulses in the original emit-
ted signal. Secondly, time-delay modulation is involved: If the jammer does not apply 
additional modulation delay to the intercepted signal slices, then all the slices for-
warded by the jammer on its kth forwarding within a single PRI can be considered 
as a composite signal, with the time-delay between these composite signals exactly 
equal to the jammer sampling pulse width τj . Lastly, there is frequency modulation: 
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compared to the corresponding sub-pulses in the original emitted signal, the jam-
ming sub-pulses exhibit a fixed modulation frequency-shift. Moreover, the Doppler 
caused by the radial movement of the target or jammer is also considered a form of 
frequency modulation. Therefore, by accurately estimating these three parameters, we 
can precisely reconstruct the jamming waveform. This discussion provides the pos-
sibility for effectively suppressing ISRJ from the perspectives of jamming reconstruc-
tion and cancellation.

2.2  Intra‑pulse frequency agile waveform

Traditionally, the radar system emits linear-frequency modulation pulse with large 
time-bandwidth product to achieve high Doppler resolution and long-range detec-
tion. In order to design the dictionary matrix that satisfies the recoverable condi-
tions, in this research, the LFM pulse is divided into M sub-pulses. By modulating the 
carrier frequency of these sub-pulses, the frequency bands between sub-pulses are 
staggered, and the sub-pulses are approximately orthogonal. Different from the tra-
ditional step frequency, the carrier frequency of the sub-pulse is not stepped sequen-
tially, but arranged randomly. Therefore, the transmitted signal can be expressed as 
follows:

where τsub represents the sub-pulse width, f0 refers to the carrier frequency. cm is the 
frequency modulation code, �f  is the step size of the carrier frequency. The transmitted 
signal is shown in Fig. 2. The reasons for adopting intra-pulse frequency agile waveform 
will be discussed in detail in 3.4. In fact, we primarily take advantage of the ambiguity 
function characteristics of this type of waveform. As shown in Fig. 3, there is a signifi-
cant difference between the ambiguity functions of stepped frequency LFM waveform 
and agile frequency LFM waveform. As mentioned in [22], the ambiguity function of 
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Fig. 2 Linear Frequency Modulation-Frequency Agile Waveform
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the stepped frequency resembles a ‘slanted knife-edge’, indicating the presence of cou-
pling between range and frequency-shift. In contrast, the ambiguity function of the agile 
frequency is closer to the ideal pushpin shape, showing lower sidelobe levels in both the 
zero-delay plane and the zero-frequency plane.

Therefore, the target echo after down-conversion received by the radar can be 
expressed as:

and the jamming echo after down-conversion can be expressed as:

When the sampling slice of the jammer happens to contain several complete sub-
pulses, Eq. (7) can be simplified to:
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Fig. 3 Ambiguity function: a Agile frequency LFM waveform. b Stepped frequency LFM waveform
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Therefore, the complete received echo x(t) can be expressed as:

where n(t) represents the white Gaussian noise.

3  Proposed method
3.1  Sparse recovery of ISRJ time‑delay and frequency‑shift

According to the analysis in Sect. 2.1 and 2.2, under the premise that the sub-pulse 
width is much shorter than the DRFM sampling pulse width, both the target echo 
and ISRJ can be regarded as a collection of partial transmitted signal sub-pulses 
modulated by time-delay and frequency-shift. In other words, the specific forms of 
the target and jamming echo can be determined by three parameters: time-delay, fre-
quency-shift and the sub-pulse sequence number. If the jammer frequency-shift can 
be accurately estimated, then it is possible to extract the other two key parameters 
of ISRJ using sparse recovery techniques on the delay-slice plane, thereby effectively 
achieving jamming identification.

Based on the previous assumptions, all slices belonging to the same forwarding from 
the jammer have the same amount of frequency modulation within a single PRI. Thus, 
the jamming echo can be regarded as multiple synthetic signals equivalent to the num-
ber of forwarding K  . For the two most common jamming modes: intermittent sampling 
direct forwarding and intermittent sampling repeated forwarding, to ensure strong 
coherence between the jamming echo and the real target echo, the jammer usually for-
wards each intercepted signal slice no more than 3 times. This implies that the sampling 
duty ratio of the jammer,which is also the duty ratio of the synthesized signal is at least 
25%. Therefore, when estimating the frequency-shift parameter, these synthetic signals 
can be considered as target echoes that have undergone frequency shift modulation at 
different time delays. Additionally, these echoes only present as a few scatter points on 
the delay-frequency plane, exhibiting significant sparsity. Consider all possible time-
delays and frequency-shifts in the echo, we assume that all time-delays are concentrated 
in [τmin, τmax] . By sampling it at an interval of �τ , the number of atoms in the time-delay 
domain is N = (τmax − τmin)

/
�τ + 1 . Similarly, all frequency-shifts are concentrated in 

[fmin, fmax] . By sampling it at an interval of �f  , the number of atoms in the frequency-
shift domain is J =

(
fmax − fmin

)/
�f + 1 . Thus, for the received P snapshots from t1 to 

tP , the following block model can be used for sparse representation:

where X = [x(t0), x(t1), · · · , x(tP)]
T is the received data, N = [n(t1), n(t2), · · · , n(tP)]

T 
is the noise data. α ∈ R

NJ represents the unknown coefficient vector, which can be 
expressed as follows:

where αn represents the nth block of α.
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Furthermore, the block dictionary matrix � ∈ C
P×NJ  can also be expressed as a 

concatenation of column blocks �n ∈ C
P×J :

where �n[q] is the qth column of �n . �n[q] is designed as the waveform atom correspond-
ing to time-delay τn = τmin + (n− 1)�τ and frequency-shift fq = fmin + (q − 1)�f  . 
Referring the transmitted signal shown in (5), it is designed as follows:

Although the window function in (13) may appear dissimilar to the function in (8), in 
reality, the former can be represented as a superposition of several instances of the latter. 
Therefore, employing the dictionary in Eq.  (12) enables an accurate sparse representa-
tion of the jamming echo.

The structure of � is shown in Fig. 4.
From (10), the coefficient vector α can be recovered by solving the following problem:
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Fig. 4 The structure of delay-frequency dictionary
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where �α�2,0 =
∑N

n=1 I(�αn�2 > 0) , I(·) represents the indicator function. To solve 
the NP hard problem like (14), it is usually approximated as the following problem in 
practice:

where �α�2,1 =
∑N

n=1 �αn�2 . In 2010, Eldar proposed the block orthogonal matching 
pursuit (BOMP) algorithm [32], which is a fast solution to the above block sparsity prob-
lem. Typically, after the sparse reconstruction is completed, we can observe the target 
signal in the delay-frequency plane. The frequency shift of the target signal is usually 
zero, or equal to the Doppler frequency. Moreover, the jamming signal is composed of 
K  synthesized signals of the same frequency modulation amount, and they appear as 
a few scattering points with the same frequency shift. The delay interval of these scat-
tering points is equal to the sampling pulse width of the jammer. Therefore, by using 
the BOMP algorithm, the peak value generated by the jamming signal can be accurately 
located. The time-delay set τJam ∈ C

K×1 and the frequency-shift amount fJam of the jam-
mer synthetic signals can be effectively extracted.

3.2  Sparse recovery of ISRJ time‑delay and sub‑pulse

In the delay-frequency recovery process described in 3.1, we have determined the fre-
quency shift modulation amount of the jammer. Despite this, the specific sequence 
numbers of each sub-pulse in the jamming echo are still unknown, which makes the 
specific forwarding mode of the jamming unclear. Therefore, in this section a more 
in-depth delay-slice sparse recovery of the jamming signal will be performed using 
the known information about the amount of jammer frequency modulation. The 
implementation of this recovery process is based on the following two core condition:

 (i) Since all sub-pulses from the same forwarding share the same time-delay, the sub-
pulses in the received echo occupy only a limited number of time-delay blocks. 
This number is determined by the number of forwarding from the jammer plus 
the number of targets. Based on this, we can achieve a sparse representation of the 
jamming signal on the delay-sub-pulse plane.

 (ii) In practical scenarios, the intensity of the target echo is often lower than the noise 
intensity, which makes it more difficult to identify the delay block containing the 
target echo. However, the intensity of the interfering signal fragments usually 
exceeds that of the target signal, which means that the interfering sub-pulses are 
easier to detect and locate on the delay-sub-pulse plane, thus making the param-
eter estimation of the interfering sub-pulses more accurate.

Therefore, the delay-slice block sparse model can be constructed as:

where β ∈ R
NM represents the coefficient vector, which can be expressed as:

(14)min �α�2,0 s.t.�X −�α�2 ≤ ε

(15)min �α�2,1 s.t.�X −�α�2 ≤ ε

(16)X = �β +N
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where βn represents the nth block of β.
Similarly, the block dictionary matrix � ∈ C

P×NM can also be expressed as the con-
catenation of column blocks �n ∈ C

P×M:

where �n[m] is the mth column of �n . The structure of � is shown in Fig. 5.
The setting of � is similar to � , but the difference is that the atoms within the block 

are set to correspond to different sub-pulses under the block delay. Therefore, �n[m] is 
designed as the waveform atom corresponding to time-delay τn = τmin + (n− 1)�τ and 
the mth sub-pulse. However, this design does not consider the influence of frequency-
shift. Using the time-delay and frequency-shift information of the jamming synthetic 
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Fig. 5 The structure of delay-slice dictionary
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signal obtained in 3.1, the waveforms of the sub-pulses in the time-delay block where the 
jamming echo is located can be corrected in batches. Therefore, �n[m] can be expressed 
as follows:

Similar to (15), the solution of β can be transformed into the following problem:

After applying the BOMP method to solve the block sparse problem, the jamming 
slices can be identified on the recovered delay-slice plane according to the following 
characteristics:

 (i) Target echo The target echo contains all sub-pulses in the transmitted signal. The 
time-delay of these sub-pulses is equal to the real target time-delay. Therefore, on 
the delay-slice plane, the target echo appears as a continuous envelope. This con-
tinuous envelope is formed due to the ability of the target echo to retain the time-
intact structure of the transmitted signal.

 (ii) Jamming echo On the contrary, because the jamming slices belonging to the same 
forwarding have the same time-delay modulation amount, the jamming echo 
appears as K  discontinuous envelopes on the plane. The JDR of these discontinu-
ous envelopes is equal to the sampling duty ratio of the jammer. In addition, the 
energy of jamming signal is usually significantly stronger than the background 
noise, making the jamming echo more conspicuous on the plane.

 (iii) Noise In contrast, noise appears on the delay-slice plane as a scattered envelope 
distributed over the entire block, with an irregular amplitude distribution, thereby 
contrasting with target echo and jamming echo.

In summary, if the duty ratio of a block is between 20 and 60%, and its energy is sig-
nificantly higher than the noise level, then the recovered sub-pulses on the block can be 
considered to correspond to ISRJ.

3.3  Jamming cancelation and target extraction

Based on the estimated time-delay and sub-pulse sequence number of ISRJ, all sub-
pulses in each jamming block can be reconstructed and integrated into � , by which ISRJ 
can be linearly represented. The jamming amplitude vector γ can be calculated by LS 
(linear solution):

Although there is a slight error in the estimation of jamming amplitude, this does 
not prevent the effective suppression of most jamming slices. After the jamming can-
cellation is completed, only sporadic jamming fragments remain in the received echo, 
further enhancing the waveform difference between the jamming echo and the radar 
transmitted waveform. Such changes mean that the jamming echo cannot approximate 

(19)
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the original transmit waveform through simple time-delay modulation. In addition, the 
energy of these residual jamming slices is weakened but still higher than the target echo, 
and can be treated as a stronger noise signal during processing.

Thus, the remaining signal x̂ can be expressed as:

It can be seen that the real target is still submerged in strong noise after jamming sup-
pression. Although this kind of noise exhibits the characteristics of color noise, its wave-
form is still significantly different from the echo waveform of the real target. In addition, 
real targets show sporadic and discontinuous distribution characteristics in the time-
delay domain. Therefore, we propose to transform the real target detection problem 
into a sparse recovery problem by sparsely representing the processed echo signal in the 
time-delay domain. The corresponding sparse model can be expressed as:

where ξ is the coefficient vector. �̂ ∈ C
P×N represents the time-delay dictionary matrix, 

which can be expressed as:

which is actually the sum of atoms in �n . The design of �̂ does not consider the influence 
of the Doppler effect, because the phase change caused by the Doppler frequency within 
a single PRI is small, and the impact on the waveform envelope is negligible.

In 2016, Chen et al. proposed the adaptive regularized smoothing l0 norm algorithm 
(AReSl0) [33, 34]. This method is specifically designed to handle robust sparse recovery 
problems such as (23). The core idea is to use the Gaussian function family to approxi-
mate the discontinuous l0 norm, thus transform solving (23) into an optimization prob-
lem with constraints. According to the philosophy of this method, the coefficient vector 
ξ can be reconstructed by solving the following problem:

where Fσ (ξ) =
N∑

i=1

fσ (ξi) . In fact, fσ can be any family of functions that approaches the 

Kronecker-Delta function, such as the family of Gaussian functions. ε represents the 
noise level.

A small σ results in multiple local maxima for Fσ (ξ) , which makes it difficult to apply 
the steepest descent method to find the global optimal solution. Fortunately, Fσ (ξ) will 
smooth out as σ increases. Therefore, we design a nested loop, and adapt a large value 
of σ at the beginning of the external loop to avoid the iterative solution from falling into 

(22)

X̂ = X̂ −�γ

= X̂s +
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a local optimum. As σ decreases, Fσ (ξ) will more accurately approximate the l0 norm. 
The internal loop iterates a small fixed value, which can be described as the following 
two steps: Firstly, iteratively optimizes the solution of the coefficient matrix through the 
steepest descent algorithm, then projects the solution into the feasible set. In the first 
step, the iterative form of the steepest descent method is:

where ξ̃ represents the iterative solution and ∇Fσ (ξ) is the derivative of Fσ (ξ) . The step 
µj should be proportional to σ 2 , we choose a fixed constant µ such that µj = µσ 2.

The iterative solution ξ̂ obtained by the first step does not satisfy the constraints of 
(25), so it needs to be projected into the feasible set, which is equivalent to solve the fol-
lowing optimization problem:

A common solution to (27) is the Lagrange multiplier method, and the Lagrange form 
of (27) is:

where � represents the regularization parameter, it is used to balance the sparsity and 
residual fitting ξ . Then the projection solution ξ(j) can be calculated by the weighted 
least squares (WLS):

The update of regularization parameter � directly affects the recovery performance. 
However, Chen et al. did not provide a suitable method for selecting the regularization 
parameter in [34]. Therefore, we design an adaptive iterative method for the update of 
� . Since the number of iterations in the internal loop is small and fixed, � is updated 
along with the external loop. It can be seen from (28) that the former term of J (ξ) is 
used to control the approximation of the solution to the steepest descent solution, aim-
ing to ensure the sparsity of the result. The latter term is the regularization term that 
minimizes the residual. Therefore, an ideal � should balance the sparsity and robustness 
of the solution, The partial derivative of J (ξ) can be calculated by the following formula:

Let ∂J (ξ)
∂ξ

= 0 then taking the l2 norm of the both sides of the equation, we have:

(26)ξ̃ ← ξ + µj∇Fσ (ξ)
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The projected solution ξ in (31) is an unknown prior. The projected solution ξ(j−1) of 
the j − 1th external loop is chosen as its replacement in [34], then � can be estimated by:

where ξ̂ (j) represents the iterative solution of the jth loop. However, it will bring the fol-
lowing two problems:

 (i) In general, large � corresponds to small σ [34]. σ is a large value under strong noise. 
For the initial solution ξ0 , the minimum norm solution with X̂ = �̂ξ is generally 
selected as the initial solution, which causes the denominator of (32) to be a very 
small value, resulting in the initial solution �̂1 being too large.

 (ii) Since the projection solution ξ(j−1) of j − 1th external loop satisfies the following 
equation:

Equation (32) can be simplified to �̂j = uj−1�̂j−1 , where uj−1 is the iteration factor. It 
can be expressed as:

where 
(

ξ̂ (j)−ξ(j−1)
)

 represents the variation of the gradient solution in the jth external 

loop, 
(

ξ(j−1)−ξ̂ (j−1)
)

 represents the variation of the projection solution in the j − 1th 

external loop. It can be seen that �̂ is not strictly decreasing.
The above two points make it difficult for �̂ to converge to an appropriate order of 

magnitude. Therefore, we give the following iterative formula:

by replacing ξ(j−1) in the denominator with ξ̂ (j) , the problem of too large initial solution 
is solved. Compared with ξ(j−1) , the new expression contains the gradient information 
of this loop, which is closer to the estimated value of ξ(j) . Therefore, the new �̂j is more 
accurate than the traditional method. The pseudocode of the optimized robust SL0 algo-
rithm is shown in Algorithm 1.
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Algorithm 1 The optimized robust SL0 algorithm

. . .

. . .

. . .

By using the optimized robust sparse recovery algorithm, the coefficient vector ξ can be 
stably restored even in a strong noise environment. Finally, referring to the recovery results 
and the PC results after jamming suppression, the real target is accurately detected and its 
position information is extracted. The flowchart of the proposed method is shown in Fig. 6.

3.4  Recovery condition

In this section, we discuss the recovery condition of block sparse model and regular sparse 
model respectively.

3.4.1  Recovery condition of block model

The restricted isometric property is a common criterion for evaluating the recovery capa-
bilities of dictionary matrices. In 2010, Eldar proposed that for the block models such as 
(10), to be stably restored by BOMP, the sufficient condition is [32]:

where U is the block sparsity. µS represents the sub-coherence, which is defined as:

(36)UJ <
1

2

(

µ−1
B + J − (J + 1)µSµ

−1
B

)
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Fig. 6 Flowchart of the proposed method
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µS is used to measure the similarity between sub-pulses. In order to satisfy the recov-
ery condition, µS should be as low as possible. �l[i] represents the echo signal with time-
delay τl and frequency modulation fi.Therefore, �l[i]

H�l[j] represents the correlation 
between echoes with the frequency modulation fi and fj under the same time-delay, 
which is essentially equivalent to the transmitted signal’s ambiguity function with zero 
time-delay and the Doppler of fi − fj . Therefore, in order to design intra-block atoms 
with low sub-coherence, it is critical to ensure that the side lobes of the Doppler plane of 
the transmitted waveform ambiguity function at zero delay are low.
µB represents the block-coherence, it is defined as:

µB is used to measure the similarity between time-delay blocks. In order to satisfy 
the recoverability condition, µB should be as low as possible. From an intuitive point of 
view, the block-coherence of the dictionary matrix � reflects the correlation between 
echoes with different time-delays and frequency modulations. Similar to the analysis of 
µS , if the transmitted waveform exhibits low side-lobe characteristics on both time-delay 
plane and Doppler plane, low block-coherence can be ensured.

Similar to (10), the recovery condition of (16) can also be defined by the sufficient con-
dition in (36). �l[i] represents the ith sub-pulse echo with time-delay τl . Considering that 
the frequency bands between sub-pulses are staggered from each other, it can be reason-
ably assumed that these sub-pulses are approximately orthogonal, so their sub-coher-
ence is close to zero. In addition, the block-coherence of dictionary matrix � reflects 
the correlation between transmitted waveforms at different time-delays. Different from 
the stepped frequency waveform, the sub-pulse frequency bands of the agile frequency 
waveform are randomly distributed. This feature significantly reduces the similarity of 
waveforms under different time-delays, thereby ensuring low block-coherence of �.

3.4.2  Recovery condition of regular model

Calculating the RIP constant of a given dictionary matrix is very challenging, but in 
recent years a friendlier property has emerged—Mutual Incoherence Property (MIP). 
It has been widely applied in analyzing the performance guarantees of sparse recovery 
algorithms. Simply put, if a matrix satisfies the MIP condition, then the performance of 
the sparse recovery algorithms is theoretically guaranteed. Typically, discussing the MIP 
property of a matrix is easier than its RIP property. The maximum coherence coefficient 
of the dictionary matrix �̂ is defined as:
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If µ
(

�̂

)

< 1
2U−1 , then �̂ has the MIP property and can be recovered stably. Since �̂i 

represents the signal echo of time-delay τi , µ
(

�̂

)

 is equivalent to the highest side lobe of 

the transmitted waveform ambiguity function on the time-delay plane. Therefore, if the 
ambiguity function of the transmitted waveform has a low time-delay plane side lobe, 
then �̂ can be stably recovered.

Based on the above analysis, in order to ensure the stability of the three sparse recov-
ery processes proposed in this article, it is necessary to ensure that the transmitted 
waveform meets a series of specific conditions. These conditions mainly involve the 
ambiguity function of the transmitted waveform, requiring its side-lobe levels to be kept 
low in the time-delay plane and Doppler plane. In addition, the frequency bands of each 
sub-pulse in the transmitted waveform should be appropriately staggered. The ambi-
guity function of the agile frequency LFM waveform shown in Fig. 3 presents a unique 
“pushpin” shape. This feature ensures that the recovery conditions are met and provides 
an important guarantee for achieving stable sparse recovery.

4  Experiments
4.1  Analysis of block sparse recovery results

In this section, we first explore the characteristic differences between the target and 
ISRJ on the delay-frequency plane and the delay-slice plane under noise-free condi-
tions. Please refer to Table 1 for specific parameter settings. During the two rounds of 
sparse recovery, we set the following meshing parameters: τmin and τmax are chosen as 
1000µs and 1100µs , with an interval of 1µs , so there were a total of grids in the time-
delay domain. fmin and fmax are chosen as 0 MHz and 20 MHz, with an interval of 0.2 
MHz, so there were a total of grids in the frequency-shift domain. This is mainly because 
in order to ensure that the false target after PC is ahead of the real target, the frequency 
modulation amount of the jammer is positive and maintained at the MHz level. In order 
to ensure that the jammer can sample sub-pulses approximately completely, we set the 
number of sub-pulses to M = 100 , and the pulse width of each sub-pulse is 1us. The two 
sparse recovery processes share the same sparsity upper limit U, and the specific value 
of this parameter will be determined according to the actual application scenario. All 
simulation experiments are conducted on a personal computer equipped with a 3.2 GHz 
i7 CPU and 32 GB RAM (Table 1).

As shown in Fig. 7, the delay-frequency recovery results of the target and ISRJ with 
two different forwarding times are shown. In the delay-frequency plane analysis, the tar-
get appears as a single peak, and since it is not frequency modulated, its frequency-shift 
amount is zero. In contrast, the peak number of ISRJ depends on the forwarding time of 
the jammer. Specifically, jamming 1 only produces a peak value of nonzero frequency-
shift in the plane. Jamming 2 presents three peaks with similar amplitudes and the same 
amount of frequency-shift. It is worth noting that since all jamming slices for each for-
warding are treated as a complete target in the modeling, this causes the recovered peak 
amplitude to decrease relatively as the forwarding time increases. However, in order 
to ensure the coherence of the jamming, the jammer limits the forwarding time, thus 
ensuring the effectiveness of the recovery process.
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Table 1 Parameters settings of radar and source

Parameter Value

Pulse duration 100 µs

Number of sub-pulses 100

Sub-pulse bandwidth 0.5 MHz

Agile bandwidth 0.5 MHz

Synthetic bandwidth 99.5 MHz

Sampling frequency 200 textMHz

Target

 Time-delay 1050 µs

 Modulation frequency 0 MHz

Jammer 1

 Forwarding time 1

 Modulation delay 2 µs

 Modulation frequency 8 MHz

Jammer 2

 Forwarding time 3

 Modulation delay 4 µs

 Modulation frequency 16 MHz

Fig. 7 Delay-frequency recovery result, from left to right: Real target, ISRJ ( K = 1 ), ISRJ ( K = 3)

Fig. 8 Delay-slice recovery result, Top (from left to right): Real target, ISRJ ( K = 1 ), ISRJ ( K = 3 ) Bottom (from 
left to right): Top view of the Delay-slice plane
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Figure  8 shows the delay-slice recovery results. Observing the delay-slice plane, the 
recovered target sub-pulses are concentrated in the same block. The performance is con-
tinuous distribution and similar amplitude, indicating that the SDR is close to 100%. For 
ISRJ in direct forwarding mode, the recovered jamming sub-pulses are all concentrated 
in a single block, the sub-pulse sequence numbers are discontinuous, and the JDR is 
equal to the jammer SDR of 50%. Due to the asynchronous operating characteristics of 
DRFM, the time-delay of this block is equal to the sum of the target delay, jammer mod-
ulation delay and jammer sampling pulse width. For ISRJ in repeated forwarding mode, 
the recovered jamming pulses are distributed in K = 3 blocks. Since the jamming pulses 
on each block originate from the same set of signal slices intercepted by the jammer, the 
sub-pulse sequence numbers of each block are the same. Thus, the JDR on each block is 
equivalent to the jammer SDR of 33%. In addition, the last K − 1 jamming blocks can be 
regarded as equal delay translations of the first jamming block, and their intervals are 
the jammer sampling pulse width.

Discussing the iteration stop conditions of BOMP is crucial. Since all jamming slices 
from the same forwarding are treated as a composite signal during the block recovery 
process, the block sparsity of ISRJ remains consistent across both block models, a fact 
that is validated in Figs. 7 and 8. For instance, for direct-forward jamming, a sharp peak 
can be recovered on the delay-Doppler plane, and a series of envelopes can be recovered 
on the delay-slice plane. For repeated-forward jamming (forwarding times = 3), three 
sharp peaks can be recovered on the delay-Doppler plane, and three series of envelopes 
can be recovered on the delay-slice plane. Based on this, we set a reasonable sparsity 
upper limit U , which should be greater than the total number of forwarding times by all 
jammers in the scene. If the number of iterations reaches U , the iteration stops. More-
over, since the preset sparsity limit exceeds the actual sparsity, some blocks recovered 
incorrectly containing only noise are identified in the last few iterations. Therefore, if the 
residual energy is lower than the noise energy En in the ith iteration, or if the number of 
iterations reaches the sparsity limit U , the iteration will stop.

4.2  Examples in three scenarios

In this section, we constructed three scenarios containing different jamming distribu-
tions and conducted a comparative analysis between our method and the Costas-SPC 
method proposed in [23] to verify the effectiveness and superiority of our method. It 

Table 2 Parameters settings of scenario 1

Parameter Value

Target

 Time-delay 1050 μs

 SNR −10 dB

Jammer 1

 Forwarding time 1

 Modulation delay 2 μs

 Modulation frequency 8 MHz

 JNR 20 dB
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is worth pointing out that the basic idea of Costas-SPC method is to decompose the 
broadband filter into a set of narrowband filters, remove the filter output of the signal 
fragment sampled by the jammer, and accumulate and process the output of the remain-
ing filters. This method has certain similarities with the method of this study in terms of 
waveform design. First, we considered a simple scenario containing a single target and 
a single jammer, with parameter settings as shown in Table 2. In this case, the SDR of a 
single jammer on the transmitted signal is 50%, and the JDR in the echo data is also 50%. 
As shown in Fig. 9a, on the delay-frequency plane, the jamming appears as a single peak 
with specific frequency modulation. However, the peak value of the target is very weak, 
so it is difficult to estimate the parameters of the target directly on this plane. Figure 9b, 
c and d shows the recovered delay-slice plane and the corresponding jamming identifica-
tion results, respectively. It can be seen that the ISRJ appears as a series of discontinuous 
envelopes with the same modulation time-delay on this plane. These envelopes have a 
50% duty ratio on the block with 1054µs and similar amplitudes. Figure 9e and f shows 
the jamming distribution before and after cancellation, respectively. The results show 
that the energy of the jamming before cancellation is much greater than the target signal, 
but 50% of the target signal is not covered by the ISRJ. After cancellation, the jamming 
intensity is effectively reduced to the same magnitude as the target echo. Therefore, the 
real target can be detected after PC at a time-delay of 1050µs.

Fig. 9 Experiment results of scenario 1. a Delay-frequency plane. b Delay-slice plane. c Jamming 
identification result. d Top view of Jamming identification result. e Received jamming signal. f Received 
jamming after cancellation. g PC result of Costas-SPC. h PC result of the proposed method. i Range 
dimension sparse recovery result
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As shown in Fig. 9g and h, although both methods can accurately detect the target, 
the output signal interference-to-noise ratio (SINR) of the proposed method is signifi-
cantly higher than the Costas-SPC method. This is because at least 50% of the transmit-
ted signal segments are forwarded by the jammer, and the Costas-SPC method can only 
obtain at most 50% of the sub matched filter output for accumulation. In contrast, our 
method achieves effective stripping of jamming by accurately reconstructing the jam-
ming waveform, thereby achieving higher pulse compression gain. Figure 9i shows the 
robust sparse recovery results in the distance domain, and it can be observed that the 
target peak is more prominent in this profile. Compared with Fig. 9h, this further facili-
tates the detection of real targets.

In scenario 2, as shown in Table  3, there are two jammers with different forward-
ing times, which causes the JDR and synthesized SDR to further increase. As shown in 
Fig. 10a, three jamming peaks appear on the delay-frequency plane: two peaks with the 
same frequency-shift are generated by jammer 2, and the other peak is generated by jam-
mer 1. Figure 10b, c and d shows the recovered delay-slice plane and corresponding jam-
ming identification result, respectively. It can be seen that the ISRJ generated by jammer 
1 is located at the block with 1054 μs, and the duty ratio reaches 50% in this block. The 
ISRJ generated by jammer 2 is located on the blocks with delay of 1058 μs and 1060 μs, 
with a duty ratio of 33%. Since the signal slices forwarded twice are the same, the jam-
ming pulse sequence numbers on these two blocks are also the same.

Figure 10e and f shows the jamming distribution before and after jamming cancella-
tion, respectively, showing that the jamming energy before cancellation is much larger 
than the target signal, and most slices are covered by jamming. After the jamming is 
cancelled, the jamming intensity is reduced to a level comparable to the target echo. 

Table 3 Parameters settings of scenario 2

Parameter Value

Target 1

 Time-delay 1047 μs

 SNR −10 dB

Target 2

 Time-delay 1050 μs

 SNR −10 dB

Target 3

 Time-delay 1053 μs

 SNR −10 dB

Jammer 1

 Forwarding time 1

 Modulation delay 2 μs

 Modulation frequency 8 MHz

 JNR 30 dB

Jammer 2

 Forwarding time 2

 Modulation delay 8 μs

 Modulation frequency 16 μs

 Modulation sampling time 2 μs

 JNR 20 dB
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However, there is still a strong jamming residue near 1145  μs. This may be due to 
the large deviation in the estimation of the jamming slice intensity corresponding to 
this time-delay. Therefore, in the PC results in Fig. 10h, a small number of jamming 
harmonics appears near the targets. In comparison, the PC result of the Costas-SPC 
method in Fig. 10g is not ideal. Since most signal segments are intercepted by the jam-
mer, the number of narrowband filters available for accumulation is reduced, making 
target 1 and target 3 unrecognizable in the noise. Figure 10i shows the robust sparse 
recovery result of scenario 2, where the three targets are more clearly visible. This is 
because although a small number of strong jamming slices remain after cancellation, 
the JDR is greatly reduced and the integrity of the jamming waveform is destroyed. 
Therefore, the residual jamming is difficult to match the range waveform atoms and 
cannot accumulate output at the specified position.

In the more extreme scenario 3, as shown in Table 4, there are two jammers with 
the forwarding time K = 1 , and their sampling start times differ by one jammer sam-
pling pulse width. As shown in Fig.  11e, in this case, the target echo is completely 
covered by the jamming, almost all signal segments are captured by the two jammers, 
and the synthesized SDR is close to 100%. As can be seen from Fig. 11a, b and c, even 
in this case, the parameters of the jamming can be accurately estimated, and the jam-
ming slices can also be accurately identified in Fig. 11d. It is noteworthy that the two 

Fig. 10 Experiment results of scenario 2. a Delay-frequency plane. b Delay-slice plane. c Jamming 
identification result. d Top view of Jamming identification result. e Received jamming signal. f Received 
jamming after cancellation. g PC result of Costas-SPC. h PC result of the proposed method. i Robust sparse 
recovery result
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columns of jamming slices recovered in Fig.  11d are staggered in order, which also 
demonstrates that all sub-pulses of the transmitted signal have been intercepted and 
forwarded by the two jammers. As shown in Fig. 11f, h and i, even after cancellation, 
the jamming intensity is still within the acceptable range, and the three targets can 
still be detected after PC or robust sparse recovery. In contrast, the narrowband fil-
tered output of the Costas-SPC method is completely contaminated by jamming data, 
which is equivalent to all-pass filtering of the jamming. Figure 11g shows that since 
the jamming echo is modulated by frequency, the ISRJ PC output under the agile fre-
quency waveform does not appear as a false target group similar to the real target, but 
presents an irregular, noise-like PC output, causing the target to completely indistin-
guishable. This verifies the effectiveness of the proposed method in complex scenarios 
with multiple targets, high JDR and high synthesized SDR.

4.3  Analysis of target detection performance

To investigate the effects of SNR and jammer-to-noise ratio (JNR) on target detection, 
we conducted a series of 1000 Monte Carlo simulations for each of the three distinct 
jamming conditions in the three scenarios. Through these comprehensive simulations, 
we were able to assess the effectiveness of jamming suppression by meticulously evaluat-
ing the target detection rate PA . PA represents the probability of successfully detecting 
the target on the PC profile or on the range domain recovery profile. A high detection 
rate indicates better jamming suppression performance. Furthermore, for the simple 
detector, we set a threshold that is half the square of the maximum value of the pulse 
compression results, which is 3dB lower than the maximum value of the PC results. For 

Table 4 Parameters settings of scenario 3

Parameter Value

Target 1

 Time-delay 1047 µs

 SNR −10 dB

Target 2

 Time-delay 1050 µs

SNR −10 dB

Target 3

 Time-delay 1053 µs

 SNR −10 dB

Jammer 1

 Forwarding time 1

 Modulation delay 2 µs

 Modulation frequency 8 MHz

 JNR 20 dB

Jammer 2

 Forwarding time 1

 Modulation delay 6 µs

 Jammer sampling start time 2 µs

 Modulation frequency 16 MHz

 JNR 20 dB
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Fig. 11 Experiment results of scenario 3. a Delay-frequency plane. b Delay-slice plane. c Jamming 
identification result. d Top view of Jamming identification result. e Received jamming signal. f Received 
jamming after cancellation. g PC result of Costas-SPC. h PC result of the proposed method. i Range 
dimension sparse recovery result

Fig. 12 PA versus SNR and JSR. a Scenario 1, PC. b Scenario 2, PC. c Scenario 3, PC. d Scenario 1, robust sparse 
recovery. e Scenario 2, robust sparse recovery. f Scenario 3, robust sparse recovery
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the sparse recovery results in the range domain, this threshold is half the square of the 
maximum value of the recovery results. As shown in Fig. 12 we could see that:

 (i) (i). In the analysis of PC results, when SNR ≥ −15 dB , the target detection rate 
PA in the three scenarios stably exceeds 90%. Even under lower SNR conditions, 
PA remains above 85%. The exceptional performance in this context can be attrib-
uted to the effective suppression of jamming, primarily dependent on the precise 
extraction of jamming parameters. A crucial element in ensuring this is maintain-
ing a high JNR. In comparison to scenario 1, the augmentation in the number of 
jammers in scenario 2 and scenario 3 results in an increased number of jamming 
slices. This increase could potentially result in more robust residual jamming. Con-
sequently, the target detection rate in scenario 2 and scenario 3 is marginally lower 
than that in scenario 1. Moreover, while the jamming encountered in scenario 3 is 
more intricate than in scenario 2, the target detection rates in both scenarios are 
comparable. This similarity arises from the distinct discernibility of the jamming 
slices when analyzed on the delay-slice plane.

 (ii) In the analysis of range domain sparse recovery results, the radar’s target detec-
tion capability remains remarkably stable, largely unaffected by increases in jam-
ming intensity or enhancements in JDR and SDR. This stability arises because, 
even though in certain cases, like when some jamming sub-pulses are not fully 
detected or eliminated, jamming harmonics may be generated post pulse compres-
sion, the energy of most jamming slices is effectively suppressed. The residual jam-
ming struggles to accumulate effectively on the sparse recovery’s distance profile. 
Furthermore, the chosen method of sparse recovery is robust, demonstrating sig-
nificant adaptability to low SNR. Therefore, target detection on the robust sparse 
recovery distance profile is more stable.

4.4  Analysis of parameters estimation performance

The estimation accuracy of parameters has a critical impact on the performance of the 
proposed method. As mentioned before, we focus on three jamming parameters: mod-
ulation delay, modulation frequency, and sub-pulse sequence number. Among them, 
although the estimation deviation of some sub-pulse sequence numbers may lead to 
inaccurate reconstruction of some sub-pulses in the jamming echo, this has a limited 
impact on the overall effect of jamming cancellation. However, errors in modulation 
frequency and modulation delay estimation will directly lead to a serious mismatch 
between the reconstructed jamming waveform and the actual waveform. This mismatch 
will significantly reduce the effect of jamming suppression. Therefore, we conducted a 
series of experiments under various JNR conditions to evaluate the estimation accuracy 
of these two parameters. Specifically, we conducted 1000 Monte Carlo simulations and 
assessed the parameter estimation accuracy by the probability of accurately recovering 
the modulation time delay and frequency-shift in these 1000 experiments.

As shown in Fig. 13, under the condition where JNR < 0 dB , the accuracy of parameter 
estimation is low, insufficient for accurate reconstruction of the jamming slices. How-
ever, when JNR reaches 0 or higher, the accuracy of estimating the jamming parameters 
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significantly improves, exceeding 90%, and approaches nearly 100% when JNR ≥ 5 dB . 
Considering that in practical scenarios the intensity of ISRJ is usually higher than the 
noise level, it can be inferred that the parameter estimation process is stable and reli-
able. Moreover, it is observed that at all JNR levels, the accuracy of estimating time-delay 
is consistently higher than that of frequency-shift. This phenomenon can be explained 
as follows: in the sparse recovery process of delay-frequency block model, the BOMP 
method first locates the time-delay blocks that may contain the jamming synthetic 
signal, and then further confirms the jamming frequency-shift within these potential 
blocks. Therefore, if the jamming time-delay blocks cannot be accurately located in the 
initial search phase, it becomes even more difficult to determine the exact frequency-
shift of jamming.

4.4.1  Analysis of jamming suppression performance

In this section, we will first discuss the impact of sub-pulse width on jamming sup-
pression effectiveness. The key to the proposed method lies in accurately identifying 
and reconstructing those sub-pulses that have been intercepted and modulated by the 
DRFM, in order to suppress jamming through a cancellation approach. An inappropri-
ate choice of sub-pulse width may lead to insufficient or excessive reconstruction of the 
jamming echo, thereby causing significant residual jamming. Therefore, the selection of 
sub-pulse width is directly related to the performance of jamming suppression. To quan-
tify the extent to which jamming is suppressed, we introduce the concept of the Interfer-
ence cancellation ratio (ICR), which is defined as the ratio of jamming input power to 
jamming output power. The simulation results are shown in Fig. 14.

It can be seen from Fig. 14 that as JNR increases, the ICR shows an upward trend. 
Moreover, under different JNR levels, the proposed method can cancel the jamming 

Fig. 13 Parameter estimation accuracy versus JNR
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to a level similar to the target intensity, showing stable jamming suppression capa-
bility. In addition, as the sub-pulse width decreases, the characteristic difference 
between the reconstructed jamming and the real jamming in the sub-pulse dimension 
is reduced, and the fit to the real jamming is improved, which is reflected in a higher 
ICR. Especially for jammers with a sampling pulse width of 2 µs , setting the sub-pulse 
pulse width to 2µs is enough to effectively cancel most of the jamming slices. There-
fore, in practical applications, the design of sub-pulse width should give priority to 
the sampling pulse width lower than that of the jammer to ensure efficient jamming 
suppression capabilities.

In our previous analysis, a key assumption was that the signal slices forwarded by 
the jammer contained one or several complete sub-pulses. However, in practical appli-
cations, due to potential delays in detection and sampling of radar signals by the jam-
mer, the actual forwarded jamming slices may not match the predefined sub-pulses. To 
thoroughly investigate the impact of this mismatch on the effectiveness of jamming, we 
adjusted the sampling start time of the jammer and introduced sampling mismatch ratio 
(SMR) to quantify the degree of mismatch. Specifically, SMR is defined as the ratio of the 
misalignment length between the sub-pulse forwarded by the jammer and the original 
transmitted sub-pulse to the width of the sub-pulse. In Fig. 15, we analyzed the impact 
of different SMR on jamming suppression capability under the jamming parameters for 
Scenario 1. The results show that when the SMR is below 20%, the proposed method 
still maintains the ICR within an acceptable range. As the misalignment of the pulses 
increases, the mismatch between the reconstructed jamming and the real jamming 
intensifies, leading to an increase in residual jamming energy and a significant decline in 
the ICR. In such situations, using pulse compression for target identification is severely 
affected by the irregular peaks caused by residual jamming. As illustrated in Fig.  16, 

Fig. 14 ICR versus sub-pulse width
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although an increase in SMR reduces the ICR and decreases the target detection rate 
through pulse compression, the waveform difference between residual jamming and real 
target remains considerable. During the sparse recovery process, this can be considered 
as color noise. In the range profile obtained through robust recovery using the AReSl0, 
the target detection rate remains relatively high. It should be noted that the impact 
of incomplete interception can be further mitigated by reducing the sub-pulse width. 

Fig. 15 Impact of incomplete interception on jamming suppression

Fig. 16 Impact of incomplete interception on target detection
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However, this approach may lead to an increase in the synthesized bandwidth, thereby 
raising the requirements for the radar’s sampling frequency.

4.5  convergence experiments

In this section, we analyzed the convergence curves of the robust sparse recovery algo-
rithm. We considered a scenario with a single target (SNR = − 10 dB), while examining 
the impact of two key parameters: the final iteration value σmin and the iteration step 
size µ , on the performance of the algorithm. Herein, we selected SINR as the vertical 
axis metric. Here, SINR represents the ratio of target power to noise power in the sparse 
recovery’s range unit. Initially, we set different values of σmin to assess the algorithm’s 
convergence performance. Since σmin directly influences the fitting degree of the objec-
tive function to the l0 norm at the end of the outer loop, it is decisive for the algorithm’s 
ultimate convergence accuracy. Figure 17a indicates that as σmin decreases, the objective 
function can fit the l0 norm more precisely, leading to an upward trend in SINR, reach-
ing as high as 35 dB. Furthermore, under different σmin values, the algorithm’s conver-
gence SINR significantly surpasses that of traditional pulse compression methods. It is 
noteworthy that there is a lower limit to reducing σmin , mainly for two reasons: firstly, 
if σmin is too small, it may cause the objective function to be insufficiently smooth in 
the initial phase of the outer loop, leading to the final result falling into local optima; 
secondly, in our experiments, we found that the best recovery effect occurs when σmin 
is reduced to 1 to 2 times the noise level. Further reduction would lead the algorithm to 
“learn” the noise values, deviating from the true solution, which aligns with the conclu-
sion of Mohimani [35].

The choice of iteration step size µ also affects the algorithm’s convergence behavior. 
Specifically, if µ is too large, the gradient solutions obtained in the early phase of the 
outer loop might skip the optimal solution interval, causing fluctuations in output SINR 
in the early iterations, as shown in Fig. 17b. This figure also reveals that the final SINR 
reaches its highest level at a certain µ = 2 . Moreover, we observed that the SINR of the 
last few iterations seems superior to that of the final iteration when µ takes other values, 
suggesting that the optimal σmin may vary with different µ.

Fig. 17 Convergence curves of robust sparse recovery. a Different σmin . b Different µ
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5  Conclusion
This article presents a novel method for the suppression of ISRJ. Through a detailed 
analysis of ISRJ generation, we have developed two sparse models: the delay-fre-
quency model and the delay-slice model. These models are capable of sparsely rep-
resenting both targets and ISRJ. Targeting these models, we specifically designed a 
frequency-agile waveform that satisfies the RIP condition. Subsequently, we employed 
a block sparse recovery algorithm to identify ISRJ and estimate its three key param-
eters, thereby reconstructing the jamming slices to cancel ISRJ. Moreover, we intro-
duced a new method based on robust sparse recovery that achieves more stable target 
identification compared to traditional PC. We have also optimized the method with 
an adaptive update mechanism for regularization parameters, enhancing its effec-
tiveness and adaptability. Experimental results indicate that the proposed method 
can stably suppress ISRJ in various scenarios. Especially in scenarios with high JDR 
and high SDR, this method demonstrates stable anti-jamming capabilities and tar-
get detection abilities. However, the method currently faces limitations in addressing 
situations where there are changes in the frequency modulation of the jamming slices 
by the jammer, presenting a potential area for future research and improvement.
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