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1  Introduction
At present, it is reported by World Health Organization (WHO) that lung or respira-
tory disease is still one of the most ordinary causes of death worldwide, especially in low 
income countries [1]. And it is estimated that more than 3 million people died of vari-
ous respiratory diseases each year [2]. Lung or breath sounds may change from normal 
to abnormal state because of lung or respiratory disease(s). Abnormal lung conditions 
can be screened out and intervened timely with the help of lung sounds auscultation. 
However, the diagnostic accuracy depends on the physician’s knowledge and experience 
heavily. An experienced physician may distinguish abnormal lung sounds from normal 
ones quickly and make further examination plans accurately. However, this is not the 
case for inexperienced physicians. If computers can be used to diagnose abnormal lung 
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sounds, it would be very helpful. With the development of computation and electronic 
technology, it is coming true. First of all, respiratory sounds can be recorded by elec-
tronic stethoscopes, and be stored as audio files for further processing. We can collect 
lots of normal and abnormal lung sounds by the electronic instrument. After accumu-
lating sufficient data, we can try to develop a model to classify normal/abnormal lung 
sounds, or even to diagnose lung diseases automatically.

Thanks to the development of machine learning, especially deep learning, computer-
aided lung sounds detection technology has made rapid progress. There have been 
many works about detecting abnormal lung sounds via machine learning or deep learn-
ing. Until 2015, the machine learning methods such as support vector machine (SVM), 
principal component analysis (PCA) had played major roles [3–8]. And later after this 
year, the deep learning model, especially convolutional neural network (CNN), had been 
introduced to this field and showed to be superior to machine learning on accuracy 
and generalization ability [9–14]. For machine learning, the so-called hand-crafted fea-
tures, namely the peculiar signatures of some abnormal/normal lung sounds, must be 
extracted as the input to the learning model in advance. Various features, such as skew-
ness and kurtosis of time signal or spectral density in frequency domain are extracted 
from sounds [8]. Machine learning does not require a large number of samples, but has 
one big drawback of the limited generalization ability.

Deep learning is an end-to-end approach and does not need the step of features extrac-
tion. The raw samples are fed to deep learning models (DLMs) directly. In recent years, it 
has been applied to speech recognition, object recognition, classification and other fields 
successfully [14]. In the field of biomedicine, Alpha Fold of Deep Mind can accurately 
predict the structure of the human proteome (a collection of all proteins encoded by the 
human genome), and the resulting dataset covers the structural positions of nearly 60% 
of the amino acids in the human proteome prediction, and the prediction results have a 
high degree of confidence [15]. On the other hand, deep learning is widely used in the 
field of diagnosis. As concluded by Fourcade et al. [16], DLMs “will contribute to opti-
mize routine tasks and thus have a potential positive impact on our practice.”

Through an investigation in the corresponding author’s hospital, we found that an 
electronic stethoscope able to make initial classification of lung sounds would be very 
welcome by physicians. It could get rid of some troubles of the traditional in-ear stetho-
scope by transferring the sounds to a computer, or even a mobile phone. The ability of 
lung sounds classification can lighten the burden of physicians to a great extent. An issue 
concerned universally by physicians is the accuracy and practicality.

Over the past 2 decades, there have been many works about lung sounds classification 
by using machine learning or deep learning. Lots of solutions with different parameters 
and performance levels were presented. The parameters were selected and set empiri-
cally in many works. There are few works discussing how the performance is affected 
by different parameters. In this paper, we will focus on this topic and try to discover the 
relationship between the parameters and performance.

The remainder of this paper is organized as follows. A detailed literature review is per-
formed, in which some representative works on automatic classification of lung sounds 
are reviewed. Then ICBHI 2017 dataset is introduced briefly, and the emphasis is put on 
data preprocessing and augmentation. The CNN model is discussed from the aspects 
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of architecture, features and parameters in detail. A comparative study of classification 
performance in the proposed work versus up-to-date ones is performed. The summary 
of the paper and outlook of future work is presented in the last section.

A CNN model includes many parameters, such as feature-related and model-related 
ones. Before training it, we have to select appropriate parameters for it. On one hand, 
the parameters can be designed by trial and error approach. On the other hand, we can 
inherit some existing parameters proved to be effective by other works. It would be very 
helpful for parameter selection if we clarify the relationship between the performance 
and parameters of the CNN. It is the aim of this work and has attracted few researchers’ 
attention. The length of lung sounds frame, overlap percentage (OP) of successive frames 
and feature types are picked as three typical parameters. And the relationship between 
these parameters and classification performance is explored in detail through experi-
ments. This is the main contribution of this study.

It must be pointed out that the CNN model used in this work had been validated by 
other work [17], and so the problem of tuning hyperparameters of the network such as 
number of filters and layers, activation function selection is out of scope of this work.

2 � Literature review
There have been lots of works about automatic lung sounds classification via DLMs. 
Several respiratory sound datasets have been used to train and test DLMs. The signals 
were collected from patients and healthy volunteers by using an electronic stethoscope 
or microphone. Some datasets are publicly available, while others are limited to personal 
use. To the best of the authors’ knowledge, we have collected some frequently used data-
sets shown in Table 1.

Among these datasets, RespiratoryDatabase@TR and ICBHI 2017 are two of the most 
popular ones. The former was created by Altan et al. [20], including not only sound audio 
signals but the chest X-ray films and pulmonary function test (PFT) measurements of 
related subject. RespiratoryDatabase@TR has been widely used to assess the severity of 
chronic obstructive pulmonary disease (COPD) [26, 27]. The later was originally com-
piled to support the scientific challenge organized at Int. Conf. on Biomedical Health 

Table 1  Some frequently used lung sounds datasets

No. Dataset Year Number 
of records/
subjects

Publicly available Creator

1 ICBHI 2017 2017 920/126 Yes Rocha et al. [17]

2 SPRSound 2022 2683/292 Yes Zhang et al. [18]

3 HF_Lung_V2 2022 13964/300 Yes Hsu et al. [19]

4 Respiratory Database@TR 2021 3696/77 Yes Altan et al. [20]

5 R.A.L.E Lung Sounds 3.1 2004 ≥ 50/unknown Commercial use PixSoft and Medi-Wave [21]

6 Own generated 2023 1371/1371 No Aptekarev et al. [22]

7 Own generated 2021 1918/871 No Kim et al. [10]

8 Own generated 2022 301/103 No Fraiwan et al. [23]

9 Own generated 2022 287/47 No Tessema et al. [24]

10 Own generated 2020 17930/1630 No Aykanat et al. [11]

11 Own generated 2023 1021/126 No Choi et al. [25]
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Informatics and is freely available to everyone [17]. It has been used by many works to 
train and test DLMs and will be utilized in this work.

Based on these datasets, researchers have tried to distinguish between normal and 
abnormal lung sounds automatically via machine learning or deep learning. In recent 
years, deep learning models have been playing the major role. For comparison, we sort 
some works about lung sounds classification according to the datasets and classification 
models used, as shown in Table 2.

From Table  2, it can be seen that spectrogram-like features were used more widely, 
including but not limited to spectrogram, mel-spectrogram, log-spectrogram, scalo-
gram. Some works fused spectrogram and mel frequency cepstrum coefficients (MFCCs) 
as features for DLMs with the intention of improving classification performance. In 
addition, the quantity of deep learning-related works is far more than machine learning-
related ones.

When ICBHI 2017 was used as dataset to train and test a DLM, Acharya et al. [28] 
achieved a score of 71.81% on four-class classification by re-training a deep CNN-RNN 
(recurrent neural network) model with patient specific data. Chen et al. [29] trained a 
deep residual network (ResNet) for triple classification of respiratory sounds with the 
accuracy, sensitivity, and specificity up to 98.79%, 96.27% and 100%, respectively. It was 
reported that the proposed model outperformed CNN. Shuvo et  al. [30] used empiri-
cal mode decomposition (EMD) and the continuous wavelet transform (CWT) to train 
a lightweight CNN with the accuracy scores of 98.92% for three-class chronical classi-
fication and 98.70% for six-class pathological classification, respectively, which outper-
formed some larger network and other contemporary lightweight models. Petmezas 
et al. [12] made a four-class lung sounds classification using a hybrid CNN-LSTM (long 
short-term memory) network and spectrogram as feature. They achieved the scores as 
high as sensitivity 52.78%, specificity 84.26%, score 68.52% and accuracy 76.39%. Cinyo 
et al. [31] combined a CNN architecture with support vector machine (SVM)/softmax as 
an architecture to which various classifiers were incorporated. It was reported that the 
best classification accuracy was 83% with VGG16-CNN-SVM model. Jayalakshmy et al. 
[32] employed conditional generative adversarial networks and made four-class classi-
fication using a pre-trained CNN (ResNet-50) and scalogram as feature, achieving an 
accuracy of 92.5%. Asatani et al. [33] used an improved convolutional RNN as a quadru-
ple classifier of lung sounds and yielded the results of sensitivity 0.63, specificity 0.83 and 

Table 2  Summary of studies conducted on lung sounds classification

Dataset Classification model Features Refs.

ICBHI 2017 Deep learning Spectrogram mel-spectrogram scalogram, etc. [12, 28–33]

MFCCs [34–36]

Both the above [37, 38]

Machine learning Spectrogram mel-spectrogram scalogram, etc. [39, 40]

MFCCs [41]

Respiratory Data-
base@TR

Deep learning Spectrogram [27, 42]

Time-domain features [43, 44]

Machine learning Empirical wavelet transform [45]
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score 0.72. Some works used MFCCs as feature to train/test the deep learning network. 
Perna [34] used a deep CNN architecture with regularization to classify the breathing 
cycles into three classes: healthy, chronic and non-chronic, and obtained the scores of 
accuracy 82%, precision 87%, recall 83% and F1_score 84%. Dhavala et al. [35] made tri-
ple classification of lung sounds by employing a CNN and achieved test accuracy 86.25%. 
Saraiva et  al. [36] proposed a CNN to make a quadruple classification and obtained 
accuracy 74.3%. A feature-based fusion network with three features, i.e., spectrogram, 
MFCCs, and chromagram was proposed to classify lung sounds as six categories by 
Tariq et al. [37], leading to the highest accuracy 99.1%. Rishabh et al. [38] obtained the 
statistical features from MFCCs, mel-spetrogram, chroma STFT, etc. of lung sounds, 
and fed them to a CNN and got a quadruple-classification model with accuracy 75.04%. 
Tasar et al. [39] proposed a mixed model to generate features and applied decision tree 
(DT), SVM, and k nearest neighbors (KNN) to classify lung sounds. The results showed 
that KNN outperformed the other two classifiers. Ari et al. [40] used SVM as a quadru-
ple classifier lung sounds with the scalogram as feature, and achieved accuracy 72.69%. 
Jakovljević et al. [41] used MFCCs as feature and hidden Markov model with Gaussian 
mixture model as the quadruple classifier of lung sounds, and the best score 39.56% was 
reported.

In most cases, RespiratoryDatabase@TR was used to detect the severity of Chronic 
Obstructive Pulmonary Diseases (COPD). Roy et  al. [27] generated mel-spectrogram 
snippet representation as input feature and compared the performance of two classifiers 
for COPD severity detection. Yu et al. [42] extracted bispectrum of lung sounds as fea-
ture of the CNN classifier, to assist diagnosis of COPD. Altan et al. [43] applied the deep 
belief networks (DBN) to separate the lung sounds from different levels of COPD with 
extracting 3D second order difference plot in time domain as feature. In their another 
work [44], the statistical features of frequency modulations were extracted using Hil-
bert–Huang transform and then were fed to a DLM. Ahmet et al. [45] extracted statisti-
cal features using empirical wavelet transform (EWT) algorithm and then applied them 
to SVM, AdaBoost, random forest and J48 DT, respectively, in aid of diagnosis of COPD.

In some works, lung sounds were collected by physicians in field to generate private 
datasets, to see Table 1. It is inappropriate to compare the performance of these works 
because of these varied datasets, and they will not be reviewed in detail.

3 � Materials and methods
3.1 � Data preparation and preprocessing

The ICBHI 2017 database consists of about 5.5 h of data recording sampled from 126 
subjects totally, which contains 6898 respiratory cycles (i.e., from inspiratory to expia-
tory phase), from which 3642 contain normal sounds, 1864 contain crackles, 886 con-
tain wheezes, and 506 contain both crackles and wheezes can be extracted as shown in 
Table 3.

The audio samples in the dataset were sampled at frequencies of 4 kHz, 10 kHz and 
44.1 kHz using different instruments. There are differences in amplitudes of audio sig-
nals across instruments. Another challenge is that noise exists, such as rubbing sound of 
the stethoscope with the participant’s dress and ambient noise. In addition, lung sounds 
are always presented along with heartbeat sounds.
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The length of respiratory cycles in the dataset varies in a wide range from 0.3 to 12 s. 
In theory, a respiratory cycle takes 3–5 s. Such varieties in the data make it challenging 
to classify the lung sounds. Therefore, the raw signals in the dataset must be preproc-
essed before being brought to train/test a DLM.

3.1.1 � Resampling the signals

First of all, the audio signals are resampled at a frequency of 8 kHz to standardize the 
signal length. It is noted that the maximum frequency of lung sounds is not greater than 
3 kHz [46], so the resampling operation could not lead to important information loss of 
the audio sounds.

3.1.2 � Noise filtering

In order to mitigate the effect of ambient noise and heartbeat sounds, the lung sounds 
samples are filtered by a 10th Butterworth band-pass filter [38]. The transfer function 
H(z) of the filter is

The magnitude characteristic is shown in Fig. 1. It can be seen that the bandwidth of the 
filtered samples is about [25, 2500] Hz. For the frequency of heartbeat is far below 20 Hz, 
the heart sounds can be filtered out completely. In general, the frequency of background 

H(z) =

5

i=1

Hi(z); H1(z) =
0.6749+ 0.6749z−2

1− 1.9700z−1 + 0.9722z−2
;

H2(z) =
0.6749+ 0.6749z−2

1+ 0.3569z−1 + 0.5496z−2
; H3(z) =

0.5752+ 0.5752z−2

1− 1.9236z−1 + 0.9258z−2

H4(z) =
0.5752+ 0.5752z−2

1+ 0.2364z−1 + 0.1236z−2
; H5(z) =

0.5473+ 0.5473z−2

1− 0.8529z−1 − 0.0945z−2

Table 3  Distribution of classes in ICBHI 2017

Type Amount Ratio (%)

Normal 3642 52.80

Crackle 1864 27.02

Wheeze 886 12.84

Crackle + Wheeze 506 7.33

total 6899 100

Fig. 1  Magnitude characteristic of the band-pass filter
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or electronic noise is concentrated below 50 Hz, so they can be also eliminated by this 
filter. Some ambient noise above 2500 Hz can also be filtered out.

3.1.3 � Normalization

After the noises being filtered out, all signals are normalized to the range [−1, 1] for 
standardizing the data across different recording devices.

3.1.4 � Data segmentation

In accordance with the annotated respiratory cycle, each audio signal is segmented tim-
ing with a 5 s duration. If the time duration of one annotated respiratory cycle is not over 
5 s, the length of related audio clip will be extended to 5 s by sample padding. Accord-
ing to Fraiwan [23], it is appropriate to select 5 s as the cycle time, for it can cover both 
faster and slower breathing rates without adding extra complexity of the model.

3.1.5 � Transformation of time series to spectrogram‑like feature

It is not recommended to apply the lung sound samples to CNNs as feature directly. 
On one hand, there may be a significant difference in the waveforms of two time series 
with the same label, especially when the two series are disturbed by noise. On the other 
hand, the major disadvantage of CNNs on time series is the use of Euclidean kernels. 
The kernel considers only a continuous and short time series subsequence at a time. In 
order to extract more representative features, non-contiguous and longer time series 
samples must be analyzed. To overcome these drawbacks, the time series of lung sounds 
are transformed to spectrogram-like images as features to CNNs.

A spectrogram is a two-dimensional image that shows the change of sound amplitude 
with frequency and time as shown in Fig. 2.

Fig. 2  An example of lung sound spectrogram
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The vertical and horizontal axes represent frequency and time, respectively. Not only 
does the spectrogram match our understanding of sounds through frequency decom-
position, but it also allows us to use 2-dimensional analysis architectures. The fact that 
spectrogram certainly is the best-suited representation of audio signals for analysis has 
become the common view.

3.2 � Data augmentation

As mentioned in Table 3, we have extracted 1864 cycles containing crackles, 886 con-
taining wheezes, 506 containing both crackles and wheezes, and 3643 containing normal 
sounds. Obviously, the number of different types of records is unbalanced, which may 
lead to overfitting during model training and poor generalization ability. So, the unbal-
ance must be corrected to keep the number of four types of records even. One straight-
forward solution is to delete some records from the type with greater number of records 
randomly, in order to make the number approach the type with less records. This will 
waste a lot of useful data. Another effective solution is to expand the capacity of data, 
which is very common in image processing, for example, to increase the sample capacity 
through image dithering, inversion, rotation, etc.

There are some popular ways for audio data augmentation, such as time stretching, 
pitch shifting and background noise inserting [47]. By time stretching, we can slow 
down or speed up the audio samples while keeping the pitch unchanged. On other 
hand, the pitch of the audio samples can be raised or lowered while keeping the dura-
tion unchanged. By mixing the audio samples with some background noise signal, we 
can get a new record of sample augmented [48]. We will use these three approaches to 
augment the lung sounds for balance. First of all, the white noise is selected and inserted 
to the lung sounds. White noise consists of some random sound samples with similar 
amplitude but various frequencies. The performance of speech emotion recognition can 
be increased by addition white noise to original sound [49]. Lung sounds are very weak, 
and the signal-to-noise ratios (SNRs) of many records are not high. So, the SNR should 
be controlled not to be too low when noise is inserted. Three SNRs of 10 dB, 15 dB and 
20 dB are determined by trail and error.

In order to achieve balance in the number of records labeled by the four labels, the 
number of records labeled by crackle should be expanded to be twice as the original 
number, and the number of wheeze records should be expanded to be four times, and 
then the number of records both with crackle and wheeze should be seven times. For the 
records with the two latter labels, the augmentation is a little exaggerated. To avoid it, we 
formulate a procedure for augmentation as follows: 

(1)	 Every time to train the CNN model, first of all, we select 400 from 506 records with 
both crackle and wheeze randomly and then to add noise to the 400 records under 
the SNRs of 10 dB, 15 dB and 20 dB, respectively. So we get 1200 “new” records 
meaning that the number of records with both crackle and wheeze is expanded to 
1700 approximately.

(2)	 Every time to train the CNN model, first of all, we select 750 from all the records 
with wheeze randomly and then to add noise to the 750 records under the SNRs of 
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10 dB, 15 dB and 20 dB, respectively. It means that the number of records labeled by 
wheeze is expanded to about 1600.

(3)	 Every time to train the CNN model, we select 180 records from crackle records 
randomly and divide them into three parts evenly, and then each part has 60 
records. The three parts are disturbed by noised under three SNRs of 10 dB, 15 dB 
and 20 dB, respectively. It means that the number of crackle records is expanded to 
about 2000.

(4)	 Every time to train the CNN model, 2000 records are selected from normal record 
randomly as training and test data. Finally, the distribution of augmented lung data 
is shown in Table 4. It can be seen that the unbalanced number of the four types of 
records has been corrected.

For the balanced dataset, time stretching and pitch shifting are performed succes-
sively. Each record in the balanced dataset is stretched by two factors: {0.93, 1.07} and 
pitch shifted by four values: {−1, 1} . Finally, we have four times as many number of each 
types of lung sounds in the augmented dataset as in Table 4.

3.3 � Architecture of deep learning model

A relatively simple CNN is introduced, including input layer, pooling layer, batch nor-
malization layer, max pooling layer and fully connected layers in sequence. There are 
two fully connected layers. Two dropout layers are inserted before and after the first one, 
respectively. The second fully connected layer is followed by the second dropout layer, 
and connected to output layer. This architecture shown in Fig. 3 has been validated by 
Rocha et al. [50]. The softmax function is adopted in the output layer, as shown in Fig. 3.

The hyperparameters of the CNN to be used are listed in Table 5. In order to ensure 
the consistency of the CNN architecture among different parameter settings, the hyper-
parameters are kept fixed and not to be tuned during the training stage.

Table 4  Distribution of classes in ICBHI 2017 after white noise addition

Type Amount Ratio (%)

Normal 8000 27.08

Crackle 8176 27.67

Wheeze 6544 22.15

Crackle + Wheeze 6824 23.10

Total 295,44 100

Fig. 3  The architecture of the CNN with one certain parameters setting
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3.4 � Generation of features

Two types of features, spectrogram and MFCCs, are consider in this paper. We cannot get 
them without fast Fourier transform (FFT). First of all, the sound samples of a respiratory 
cycle must be windowed to some successive frames on which FFTs are performed. The win-
dow length (Lwin) of FFT should not exceed 40 ms in general because of the nonstationarity 
of lung sound. In discrete domain, if the sampling frequency is fixed to 8 kHz, the window 
size or the frame length should not be above 320 points. There should be some overlap 
between successive frames in order to keep continuity. The overlap percentage (OP) is the 
ratio between the number of overlap points and frame length. For example, as in Fig. 4, the 
frame length is 4, and the overlap length 3, and then the overlap percentage is 3/4 = 75%.

The number of frames of a respiratory cycle lasting for 5 s can be calculated as

when the sampling frequency is fs = 8 kHz.
For each frame x(n), n = 0, 1, . . . , Lwin− 1 , FFT is performed according to

(1)m =

⌊

40000− Lwin

Lwin× (1−OP)
+ 1

⌋

(2)X(k) =

Lwin−1
∑

n=0

x(n) exp

(

−j
2π

N
nk

)

, k = 0, 1, . . . , Lwin − 1

Table 5  The architecture of the CNN

K1 = m− 6 , K2 = n− 6 , K3 = K1− 1 , K4 = K2− 1 , J1 = m− 2 , J2 = n− 2 , J3 = J1− 1 , J4 = J2− 1

Parameter setting SpectroGram (SG) Mel frequency cepstrum coefficients 
(MFCCs)

Activations Parameters Activations Parameters

Input m× n× 1 – m× n× 1 –

2D Convolution K1× K2× 64 Convolution size: 7
Stride: 1
Padding: 0
Filters number: 64

J1× J2× 64 Convolution size: 3
Stride: 1
Padding: 0
Filters number: 64

Batch normalization K1× K2× 64 – J1× J2× 64 –

ReLU K1× K2× 64 – J1× J2× 64 –

Max Pooling K3× K4× 64 Pooling size: 2
Stride: 1

J3× J4× 64 Pooling size: 2
Stride: 1

Dropout K3× K4× 64 50% J3× J4× 64 50%

Fully connected 1× 1× 10 Size: 10 1× 1× 10 Size: 10

Dropout 1× 1× 10 50% 1× 1× 10 50%

Fully connected 1× 1× 4 Size: 4 1× 1× 4 Size: 4

Softmax 1× 1× 4 – 1× 1× 4 –

Fig. 4  The overlap points between successive frames
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where k is the index of frequency bin. The magnitude |(X(k))| is used to construct a spec-
trogram. Considering the conjugate symmetry of Fourier transform, it is only necessary 
to take the first half of the magnitudes of FFT. It means that we only keep a n-dimension 
vector n = Lwin/2+ 1 after performing one FFT. After all the frames are transformed 
by FFT, a n×m matrix, then the spectrogram is built, as shown in Fig. 2. The column 
vectors are corresponding to the FFT magnitudes of the frames of one respiratory cycle, 
respectively.

Another popular spectrogram-like feature employed in respiratory sounds classifi-
cation is MFCCs, which is also applied to speech recognition frequently. MFCCs are 
introduced to separate the speech signal spectrum S(z) into the source U(z) (periodic 
signal generated by opening and closing of the vocal folds which generates the pitch) 
and vocal tract filter H(z) which changes according to the word being spoken. The 
speech spectrum can be represented as

This equates to the convolution of the source with the vocal tract filter in time domain:

where s[n], u[n] and h[n] are the speech, source and filter responses, respectively.
MFCCs incorporate the fact that the human auditory system is more sensitive to 

changes at lower frequencies (linear below 1000 Hz) than at higher frequencies (loga-
rithmic above 1000 Hz). To model human pitch perception, a series of triangular filter 
banks are applied to the speech spectrum which are spaced linearly below 1000 Hz 
and logarithmically above 1000 Hz according to the mel scale which is given as

where fmel is the frequency converted in the mel scale and f is frequency in the linear 
domain.

There are four steps for calculating MFCCs as follows:
Step 1 To window the lung sound signal and perform STFT to the windowed frame, 

and get its spectrum Y (k) = X2(k), k = 0, 1, . . . ,N − 1 . N is the frame size or STFT 
length.

Step 2 Apply mel-scaled filter bank to the spectrum as shown in Fig. 5. In this bank 
with the same bank height, the number of filters is M = 20 , and the sampling fre-
quency is 8 kHz.

Step 3 Calculate the log of the summed filter bank energies:

Step 4 The discrete cosine transform (DCT) of the log values is calculated to give the 
coefficients as in Eq. (7):

(3)S(z) = U(z)×H(z)

(4)s(n) = u(n) ∗ h(n)

(5)fmel = 2595 ∗ log10(1+ f /700)

(6)mj = log

(

N−1
∑

k=0

Y (k) ∗Hj(k)

)

, 1 ≤ j ≤ M
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where L is the order of MFCCs and usually lies in interval [2,15]. We choose 15 for it 
considering the granularity of MFCCs. M is the number of filters in the bank.

Following the procedures above, we can get an example of MFCCs image for a seg-
ment of lung sound, to see Fig. 6. It should be noted that the size of MFCCs image 
depends on the signal duration and the order of MFCCs.

(7)ci =

√

2

M

M
∑

j=1

mj cos

[

iπ

M
(j − 0.5)

]

, i = 1, 2, . . . , L

Fig. 5  Mel-scale filter bank

Fig. 6  An example of MFCCs image
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3.5 � Platform and parameters setting

In this paper, the CNN for lung sounds classification is implemented with Pytorch in 
Python and tested on our workstation with a 64-bit Windows 10 with Intel i7-7800X 
3.50 GHz processor and an Nvidia GTX 3060 graphics card.

We attempt to discover the relationship between classification performance and 
parameters of the CNN. The Lwin, OP, feature type (spectrogram or MFCCs) are 
selected as comparative parameters, as shown in Table 6.

The parameters in Table 6 may have different value combinations. There are totally 18 
different combinations. As mentioned above, the image size of feature m× n depends 
on the parameter setting. For example, if Lwin = 128, OP = 75% and feature type is SG, 
we have m = 1247 and n = 65 . If feature type is MFCCs, m is still equal to 1247, but n is 
kept to be 15 no matter what the value of Lwin is.

Classification performance is evaluated with tenfold cross-validation. Ninety percent 
of the data is used for training and 10% for validation to avoid overfitting [26]. It is a 
common practice. We partition the dataset by patients and not by lung sounds. None of 
lung sounds from the same patient is used in both training and validation set. The vali-
dation set in each fold contains at least one class for every possible recording location.

At training stage, the CNN uses Adam optimizer with learning rate 2× 10−4 and gra-
dient decay factor of 0.5.

3.6 � Performance criteria

The following five typical performance criteria, including accuracy, specificity, sensitiv-
ity, precision and F1_score are selected to evaluate the CNN model:

where Ci,Ti, i = c,w, b, n refers to the number of correctly recognized instances of class 
i, and the total number of instances of class i in the test (or validation) set, respectively. 
The symbols c, w, b and n stand for the class of crackle (c), wheeze (w), c and w and nor-
mal, respectively [41].

Sensitivity (true-positive rate) refers to the probability of a positive test, conditioned 
on truly being positive. On the other side, specificity (true-negative rate) refers to the 
probability of a negative test, conditioned on truly being negative. Sensitivity is an indi-
cator of the ability to correctly identify those with disease, and specificity is used to indi-
cate the ability correctly identify those without disease. Accuracy is a measure of how 
well a binary classification test correctly determines whether a patient is healthy or not. 

Accuracy =
Cc + Cw + Cb + Cn

Tc + Tw + Tb + Tn
; Specificity =

Cn

Tn
; Sensitivity =

Cc + Cw + Cb

Tc + Tw + Tb
;

Precision =
Cc + Cw + Cb

Cc + Cw + Cb + Tn − Cn
; F1_score = 2 ∗

Precision× Sensitivity

Precision + Sensitivity

Table 6  Parameter and its possible values

Parameter Value

Window length (Lwin) 64 128 256

Overlap percentage (OP) 75% 50% 25%

Feature type Spectrogram (SG) MFCCs
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Precision reflects how reliable the model is in classifying samples as positive. F1_score is 
defined as the harmonic mean of precision and sensitivity, which combines the two met-
rics into a single metric, and works well on imbalance data particularly. These metrics 
are used most widely to characterize the performance of a classifier, such as CNN and 
SVM.

In the following, the process of training and test will be performed 100 times ran-
domly, and then the mean value and 95% confidence intervals (CIs) for these metrics will 
be derived.

4 � Results
The performance criteria and confusion matrices of the CNN are shown in Table 7 and 
Fig. 7, respectively, when spectrogram is used as feature. For simplicity, only five typical 
parameter combinations are presented in it. Under these combinations, the criteria of 
sensitivity, specificity, accuracy, precision and F1_score are shown. The confusion matri-
ces are exhibited only under the parameter combination of Lwin = 256, OP = 75%.

Table 7  Performance criteria with SG feature

The optimum values of performance criteria at stage of training and test are highlighted in bold and italics font respectively

Parameter 
combination

Performance criteria (%) Stage

Sensitivity (CI) Specificity (CI) Accuracy (CI) Precision (CI) F1_score (CI)

Lwin = 64
OP = 25%

62.3 (60.1–65.1) 64.5 (61.8–66.7) 62.9 (60.6–65.4) 82.4 (79.1–89.4) 71.0 (68.3–75.4) Training

56.6 (54.5–58.8) 50.5 (48.7–53.1) 55.0 (52.9–57.5) 76.3 (73.6–80.9) 65.0 (62.6–68.1) Test

Lwin = 64
OP = 50%

68.9 (65.9–70.8) 70.5 (68.8–72.6) 69.3 (66.9–71.2) 87.5 (80.1–90.0) 77.1 (72.3–79.3) Training

58.7 (56.1–60.9) 55.5 (53.2–58.1) 57.8 (55.3–60.2) 77.1 (75.9–81.3) 66.7 (64.5–69.7) Test

Lwin = 64
OP = 75%

76.5 (74.1–78.1) 75.5 (73.5–79.6) 76.2 (73.9–78.6) 87.9 (84.8–88.4) 81.8 (79.1–83.0) Training

59.2 (56.9–62.2) 56.0 (53.2–59.2) 58.3 (55.8–61.3) 77.5 (74.2–78.1) 67.1 (64.4–69.2) Test

Lwin = 128
OP = 75%

88.3 (86.1–91.1) 89.5 (87.1–92.3) 88.7 (86.5–91.2) 94.4 (90.9–99.2) 91.2 (88.4–95.0) Training

72.6 (69.8–73.9) 68.4 (66.2–71.4) 71.5 (68.6–73.3) 86.6 (80.5–89.1) 79.0 (74.8–80.8) Test

Lwin = 256
OP = 75%

88.8 (86.2–91.2) 87.5 (85.3–89.6) 88.4 (85.9–90.9) 94.1 (92.1–97.4) 91.4 (89.1–94.2) Training

79.7 (77.3–82.7) 70.5 (68.1–72.5) 76.6 (74.1–79.4) 84.2 (82.0–86.3) 81.9 (79.6–84.5) Test

Fig. 7  The confusion matrices with spectrogram feature
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The performance criteria and confusion matrices of the CNN are shown in Table 8 and 
Fig. 8, respectively, when MFCCs are used as feature. The same parameter combinations 
as in Table 7 are presented in the following table.

The above results show that the larger Lwin and OP, and the better the performance for 
lung sounds classification. The larger Lwin, the greater the frequency resolution. And the 
larger the OP, the greater the time resolution. It means that a larger frequency and time 
resolution is beneficial to improve the classification performance of the CNN. However, 
when the frequency resolution reaches a specific value, the improvement on classifica-
tion performance is no longer significant. When the OP is kept at 75% and the window 
length increases from 128 to 256, either at training or test stage, no significant improve-
ment on classification performance has been found at all, and some performance criteria 
have even begun to decrease. In addition, the larger Lwin, the higher the requirements 
for computation and storage resources for FFT. There should be a compromise between 
the requirements of performance improvement and computation or storage capacity, 
and select appropriate Lwin and OP. From Tables 7 and 8, it can be concluded that Lwin 
128 and OP 75% are a relatively optimum parameter combination.

Table 8  Performance criteria with MFCCs feature

The optimum values of performance criteria at stage of training and test are highlighted in bold and italics font respectively

Parameter 
combination

Performance criteria (%) Stage

Sensitivity (CI) Specificity (CI) Accuracy (CI) Precision (CI) F1_score (CI)

Lwin = 64
OP = 25%

59.3 (57.1–61.5) 59.1 (56.7–61.1) 59.2 (56.9–61.3) 59.2 (56.9–61.3) 59.2 (57.0–61.4) Training

53.3 (50.1–55.2) 49.5 (47.2–52.0) 52.3 (49.2–54.7) 74.7 (67.8–86.1) 62.2 (57.6–67.3) Test

Lwin = 64
OP = 50%

62.6 (59.3–64.7) 62.1 (60.1–65.2) 62.5 (59.6–64.8) 86.9 (71.2–88.1) 72.8 (64.7–74.6) Training

55.8 (54.1–58.1) 49.5 (47.2–51.8) 54.1 (52.3–56.6) 74.9 (74.4–79.4) 64.0 (62.6–67.1) Test

Lwin = 64
OP = 75%

65.0 (62.9–67.3) 69.1 (67.3–72.1) 66.1 (64.2–68.2) 85.2 (82.1–91.3) 73.7 (71.2–77.5) Training

57.4 (54.8–59.6) 50.1 (48.2–52.3) 55.4 (52.6–57.7) 75.3 (67.9–78.0) 65.1 (60.7–67.6) Test

Lwin = 128
OP = 75%

73.7 (70.9–75.6) 69.9 (67.1–72.3) 72.2 (69.2–74.4) 79.0 (72.7–82.7) 76.2 (71.8–79.0) Training

64.3 (62.1–66.5) 65.0 (62.9–67.4) 64.5 (62.5–66.7) 82.1 (62.6–87.7) 72.1 (62.3–75.6) Test

Lwin = 256
OP = 75%

76.7 (74.2–78.9) 73.1 (70.0–75.3) 75.5 (72.6–77.8) 85.1 (80.1–87.9) 80.7 (77.0–83.2) Training

72.1 (69.8–74.9) 64.5 (62.1–66.5) 69.3 (66.9–72.2) 77.7 (75.3–82.5) 74.8 (72.4–78.5) Test

Fig. 8  The confusion matrices with MFCCs feature
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By comparing the data between Tables  7 and 8, and Figs.  7 and 8, it can be seen 
that under the same parameter combination, at both training and test stage, the per-
formance criteria of the CNN with spectrogram feature are significantly better than 
the criteria of the CNN with MFCCs feature. The reason may lie in the fact that the 
resolution of MFCCs is weaker than that of spectrogram. When the machine learn-
ing models, such as SVM with MFCCs feature are used to classify lung sounds, they 
may show advantages over DLMs. However, as a hand-crafted feature, MFCCs may be 
more biased in the generation process, resulting in incomplete feature representation. 
This might be one of the reasons for its slightly worse performance in DLMs.

The receiver operating characteristic (ROC) curves are shown in Fig. 9, under four 
different parameter combinations. As shown in it, the best performance is achieved 
under the parameter combination of Lwin 256, OP 75% and spectrogram feature. 
However, under the spectrogram feature and OP 75%, there is no significant improve-
ment on performance compared to the performance with Lwin 128. The AUCs (area 
under ROC curve) are 0.93 and 0.95 under the two settings, showing no difference 
almost.

In summary, it can be seen that with the sampling frequency of 8 kHz, the param-
eter combination of Lwin 128, OP 75% and the spectrogram feature can achieve 
superior performance to the same combination but MFCCs feature. With this com-
bination, the time complexity of the CNN is O(1241 ∗ 59 ∗ 7 ∗ 7 ∗ 64) = O(229614784) 
without considering the activation layer.

Fig. 9  ROC curves under four different parameter combinations
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5 � Discussion
The results show that using spectrogram feature input will achieve better perfor-
mance than using MFCCs feature. And under the same feature the classification 
performance may be affected by feature-related parameters heavily. Generally speak-
ing, the longer the frame length and the larger the overlap percent of two successive 
frames, the better the classification performance.

The spectrogram is a visual representation of the spectrum of frequencies of a sig-
nal as it varies with time. When applied to an audio signal, spectrogram is some-
times called voiceprint or voicegram. It has been used as the indicator of speaker and 
applied to speaker recognition. And it has been accepted as a widely used feature to 
classify normal/abnormal lung sounds. For a segment of lung sound, the larger the 
frame length, the higher the frequency resolution, and but the lower the time resolu-
tion. So we must make a compromise between the two resolutions. From the experi-
mental results, it can be concluded that frequency resolution contributes more to the 
classification performance than the counterpart does. The reason may lie in the fact 
that the lower frequency resolution will lead to a coarse voiceprint to some extent. It 
is natural to say that we cannot achieve more accurate from some coarse voiceprints.

MFCCs are commonly used as features in speech recognition systems and work 
relatively well. Unfortunately, they do not get a score high enough as expected in this 
work. Because the maximum order of MFCCs is fixed, the granularity of MFCCs fea-
ture is limited. The difference of features of the four types of lung sounds may not be 
represented significantly. So there exists difficulty for the CNN to classify lung sounds 
accurately.

We make a comparative study with similar up-to-date works. In order to ensure com-
parability, comparative study was limited to the similar works using spectrogram-like 
features and ICBHI 2017 dataset. The number of classes varies between these classifiers, 
such as 2-types (healthy/non-healthy, normal/abnormal), 3-types (wheeze/crackle/nor-
mal, healthy/non-chronic/chronic diseases, crackle/rhonchi/normal), 4-types (normal/
crackle/wheeze/crackle and wheeze) and 6-types (healthy/bronchiectasis/Bronchiolitis/
COPD/Pneumonia/URTI). Among them, only the works performing 4 types of classi-
fication were selected for comparison. The performance metrics for these works along 
with the proposed one are provided in Table 9. Among these works, our proposed classi-
fier with recommended parameters can achieve relatively better performance.

Table 9  Performance comparison between the proposed work (Lwin = 128, OP = 75%, SG feature) 
and state-of-the-art works as quadruple classifiers based on ICBHI 2017

The optimum values of performance criteria are highlighted in bold

Acc accuracy, Sen sensitivity or recall, Pre precision, Spe specificity

Works Sen (%) Spe (%) Pre (%) Acc (%) F1_score (%)

Petmezas et al. [12] 52.78 84.26 – 76.39 68.52

Acharya et al. [28] 48.63 84.4 – – –

Jayalakshmy et al. [32] – – – 92.5 –

Asatani et al. [33] 63 83 – – 72

Rishabh et al. [38] 67.22 82.87 – – 75.04

Jakovljević et al. [41] – – – – 39.56

proposed work 88.3 87.5 94.4 88.7 91.2
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Sometimes, we focus on the responsible section of the image rather than classifica-
tion accuracy, especially in clinic analysis [51]. Unlike medical images such as X-rays and 
CT images, lung sounds are acoustic signal in. Physicians are trained to make diagnosis 
by auscultation. In order to use CNNs for lung sounds classification, we must convert 
acoustic signals into spectrogram-like images. These images are intermediate results and 
cannot be shown to physicians directly. Even the responsible section is marked by some 
method such as GradCam, it has little significance in guiding the diagnosis of lung dis-
eases for the difficulty in perception [25]. So this part is not included in this paper.

6 � Conclusions and outlook
The performance of the deep learning model, namely CNN, under different param-
eter combinations and two types of features are investigated in detail by experiments. 
Combined with the two types of features, two parameters of frame length and overlap 
percentage (OP) of successive frames are emphasized. The spectrogram and MFCCs 
of lung sounds are used as features to the CNN, respectively. The training and test 
results show that there is significant difference on performance under varied param-
eter combinations and features. From the results, we can see that OP is a performance 
sensitive parameter. The higher OP, the better overall performance. Meanwhile, more 
computation and storage resource is needed for higher OP. So OP is restricted to 
maximum of 75% for practical purpose. We fix the sampling frequency to 8 kHz with-
out loss of important characteristics of lung sounds, because the maximum frequency 
of lung sounds is not above 3 kHz. When the frame size increases to 128 or more, the 
improvement on the performance is slight. We can hardly see significant difference 
between the performance metrics between the CNN with frame size of 128 and 256. 
However, when the frame size decreases from 128 to 64 or even less, the performance 
of the CNN degrades rapidly. It can also see that the CNN with spectrogram feature 
shows more excellent performance than the one with MFCCs feature under the same 
parameter combination. So it is concluded that frame size 128, OP 75% and spectro-
gram input is the optimum parameter setting, under which a compromise between 
performance and resources requirement can be reached.

In future, on one hand, we will evaluate the performance by considering more param-
eters or another deep learning model. For example, some other features and data aug-
mentation methods would be tried. The background noise recorded from the hospital 
will be inserted in the audio samples, instead of white noise. And the log-scale spectro-
gram is another choice for the feature. In addition, we could compare the performance 
of CNN with another deep learning model, such as RNN. We will also try to combine 
more open respiratory databases, such as RespiratoryDatabase@TR [20] for CNN train-
ing and test. On the other hand, the CNN is running on the GPU platform presently. 
For practical purpose, the model should be simplified in order to be transferred to the 
embedded platform. The most ideal implementation is to train and test a lightweight 
CNN [30, 51] and run it on a electronic stethoscope, which will help the physician to 
distinguish normal/abnormal lung conditions as quickly as possible.
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