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1 Introduction
Human emotion recognition plays an important role in human–computer interaction 
and has become an important research field in cognitive science, computer science, psy-
chology, and other fields [1]. It is also considered a hot topic in neuroscience and artifi-
cial intelligence research because emotions are affective states that accompany cognition 
and awareness and have a crucial role in human social interaction.
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Observing the external and internal reactions of humans can infer their emotional 
state, as different emotional states elicit different responses. At present, emotion recog-
nition research methods include non-physiological signals and physiological signals, and 
non-physiological signals include facial expressions [2], speech [3], and body movements 
[4]. Physiological signals include electrocardiogram (ECG) signals [5], electromyogram 
(EMG) [5] signals, electrooculogram (EOG) [6] signals, and electroencephalogram 
(EEG) [7] signals. Compared with non-physiological signals [4], physiological [4] signals 
are not easily affected by external factors and subjective intentions, thus increasing the 
reliability and objectivity of the experiment. In recent years, with the progress of sensor 
technology, it has become possible to monitor, record, and analyze multi-channel neuro-
physiological signals. EEG, as a non-invasive brain electrophysiological technology, only 
needs to place electrodes on the scalp, which is relatively safe and has a wide range of 
applications. At the same time, EEG signals are real-time and can monitor changes in 
the brain’s electrical activity in real-time, which makes EEG the focus of many research-
ers. Therefore, the potential application scenarios of emotion recognition have become a 
hot topic in the research field, and more and more people pay attention to them [8–11].

In the field of emotion recognition, the analysis of EEG signals is widely used to under-
stand an individual’s emotional state. Emotions are complex and multi-dimensional 
experiences, often manifested in dynamic changes in time and spatial features. Time-
domain features include frequency analysis, amplitude, and waveform shape, which can 
reflect the activity state of the brain at different time points. Alazrai et  al. [12] intro-
duced a novel emotion recognition method based on EEG, which uses an innovative 
time–frequency feature extraction technique. Specifically, the study uses a quadratic 
time–frequency distribution (QTFD) to establish a high-resolution representation of the 
time–frequency characteristics of EEG signals to effectively capture the spectral changes 
of EEG signals on the time axis, and experiments show that the average classification 
accuracy of their proposed method is between 73.8% and 86.2%. Li et al. [13] proposed 
an innovative approach a multi-domain adaptive graph convolutional network (MD-
AGCN) that utilizes differential entropy (DE) as a feature extraction method. It clev-
erly integrates knowledge from both the frequency domain and the time domain to fully 
explore complementary information within EEG signals. Extensive experiments demon-
strate that the introduced method consistently achieves excellent results across various 
experimental settings. Time-domain analysis is a key part of EEG research, and spatial 
information also provides valuable information for research. EEG signals are recorded 
on the scalp through an electrode array, forming a spatial topological structure. Each 
electrode corresponds to a specific region of the brain, so spatial features provide impor-
tant information about the distribution of emotions in the brain. For example, Li et al. 
[14] fully considered the spatial information of EEG. The method of hierarchical neu-
ral network is used to classify emotions, and the classification results are good. Song 
et  al. [15] proposed a novel dynamic graph convolutional neural network (DGCNN) 
to mine the spatial relationship of multi-channel EEG data. Tao et al. [16] proposed an 
attention-based convolutional recurrent neural network (ACRNN), which assigns differ-
ent weights to different channels to make full use of channel information and improve 
the accuracy of emotion recognition. Combining time-domain information can help to 
capture the changing trend of emotion in time while combining spatial information can 
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model the difference of emotion expression in different parts so that the model can bet-
ter adapt to the dynamic change of emotion expression. Zhang et al. [17] proposed a new 
deep learning framework called spatiotemporal recursive neural network (STRN). It 
captures remote context clues by traversing regions of space in different directions along 
each time slice. Subsequently, RNN layer learning is used to represent the time-depend-
ent discriminant features of the generated sequences. Experimental results on datasets 
show that the proposed method achieves high classification performance. Rudakov et al. 
[18] proposed an innovative emotion recognition model, the multitask convolutional 
neural network (MT-CNN), which takes brain maps generated from EEG as input and 
outputs emotion states related to arousal and valence. Experimental results demonstrate 
that the proposed approach achieves high classification performance.

In the emotion recognition problem, most of the existing methods are based on 
machine learning, commonly used are support vector machine (SVM) [19] and k-near-
est neighbors (KNN) [20]. With the increasing penetration of deep learning algorithms 
into various fields, deep learning has become a popular method for studying emotion 
recognition due to its superior performance and remarkable achievements. In recent 
years, several outstanding algorithms have been applied to emotion recognition, such as 
deep belief networks (DBN) [21], convolutional neural networks (CNN) [22], graph con-
volutional neural networks (GCNNs) [23], and capsule networks (CapsNet) [24]. Hwang 
et al. [25] compared with traditional LSTM networks, using information from the past 
and future biological signals to more effectively assign weights for emotion recognition 
under the current LSTM cell state, and integrating ant colony optimization (ACO) to 
find the optimal combination of features among many, thereby enhancing performance. 
Alhagry et al. [26] applied LSTM algorithms, extracting features from EEG signals, and 
finally performing classification through fully connected layers. Their method achieved 
average accuracies of 85.65% and 85.45% for arousal and valence classification, respec-
tively, on the DEAP dataset. Tripathi et  al. [27] ingeniously combined modern tech-
niques such as dropout and linear units with CNN and classified pre-processed EEG 
data. Through extensive experiments on the DEAP dataset, the results indicated classifi-
cation accuracies of 81.41% for emotion and 73.35% for arousal. Additionally, Song et al. 
[28] leveraged the significant advantages of CNN in graphics to classify multi-channel 
EEG signals for emotion recognition. By training and classifying using publicly available 
datasets, they achieved accuracies of 86.23% for valence, 85.54% for arousal, and 85.02% 
for dominant emotion classification.

From the literature, it is evident that applying deep learning for emotion recogni-
tion outperforms traditional machine learning methods. However, deep learning offers 
numerous advantages, two challenges need to be addressed. First, the common method 
of EEG classification processing is to extract features in the time domain, time–fre-
quency domain, and spatial domain, and then use machine learning or deep learning 
to classify. Applying CNN to time-domain data often reveals features related to the fre-
quency domain [29]. However, this method does not take into account the information 
characteristics of different frequency bands and the interrelationship of spatial infor-
mation between different electrode channels. Second, applying CNN to the temporal 
dimension for extracting temporal features allows simultaneous extraction of spatiotem-
poral features. However, long time-series data, containing a wealth of information, may 
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pose challenges for traditional CNN structures, as they are prone to issues such as van-
ishing or exploding gradients. There is limited research that effectively combines both 
aspects.

To better integrate spatiotemporal features, a method of EEG signal characteriza-
tion based on differential entropy feature matrix (DEFM) is proposed, and deep learn-
ing models will be used, especially the hybrid model combining 2D-CNN and LSTM. 
Two-dimensional-CNN is used for feature extraction in space to capture the relationship 
between different electrodes, while LSTM can effectively prevent the problem of gradi-
ent disappearance or gradient explosion. By combining these two structures, the model 
can better understand the overall context and more accurately identify patterns and laws 
in spatiotemporal sequences, reducing the number of parameters in the overall model 
and reducing the computational burden.

The main contributions of this paper are as follows:

• A new feature extraction method called differential entropy feature matrix (DEFM), 
based on differential entropy and spatial feature matrix, has been proposed. Accord-
ing to the relative positions of 32 electrodes in brain space, we construct a 9 × 9 fea-
ture matrix, which helps analyze the influence of electrode position on emotion. At 
the same time, we divided the 60-s EEG of each subject into 120 times windows of 
equal length of 0.5  s and calculated the DE of 32 electrodes in each time window. 
In this way, 2D images of each time window could be obtained, and the spatial and 
spectral information of the EEG signal could be captured by this method.

• We propose a 2D-CNN-LSTM network model for emotion classification. Two-
dimensional-CNN can automatically extract features from the above 2D images 
through convolution continuously, and finally input them into LSTM through the 
connection layer, and make use of LSTM’s advantages in learning time series for con-
tinuous training. Finally, emotion classification is carried out by the connection layer.

• To verify the effect of the proposed method on emotion classification, we conducted 
a large number of experiments on the DEAP dataset. The experimental results show 
that the average accuracy of valence and arousal is 91.92% and 92.31%, respectively. 
Therefore, our proposed method has a high classification effect in emotion classifica-
tion.

The rest of this paper is organized as follows. In Sect. 2, we introduce the datasets and 
proposed method in detail. In Sect. 3, we report experiments and results.

2  Materials and methods
2.1  The overall framework of the proposed methodology

The general framework of the proposed method is shown in Fig. 1 and is divided into 
three steps in total:

Step 1 Preprocessing of EEG signals. Identification and processing of outliers and noise 
in the data used.

Step 2 Feature extraction. According to the relative positions of the electrodes in 
the brain distribution, the one-dimensional EEG vector sequence is converted into a 
two-dimensional network matrix sequence, to better represent the spatial correlation 
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between the electrodes. Then, a whole EEG signal is divided into several equal time win-
dows using a sliding window, and the DE of each electrode in the time period is calcu-
lated, and the DEFM is obtained by combining the DE and the time window.

Step 3 Classification with 2D-CNN-LSTM. Two-dimensional-CNN-LSTM combines 
the advantages of CNN automatic feature extraction and LSTM which can better handle 
time series to achieve better classification results.

2.2  Dataset and preprocessing

This paper verifies the effectiveness of the proposed method based on the DEAP dataset 
[30]. The DEAP dataset is a large-scale open-source dataset containing physiological sig-
nals such as electroencephalography developed by a research team at Queen Mary Uni-
versity of London. The details of the DEAP are shown in Table 1. The dataset consisted 
of 32 brain electrical channels and eight channels that recorded other physiological sig-
nals caused by music videos of different emotional tendencies. In particular, 32 subjects 
watched 40 stimulus videos, recorded EEG signals at a sampling frequency of 512 Hz, 
and then down-sampled them to 128 Hz. After the viewing, 1–9 consecutive values were 
used to evaluate arousal, efficacy, preference, dominance, and familiarity. Forty of the 
stimulation videos were composed of three seconds of resting time and 60 s of video. In 
this paper, only EEG signals are used, so 32 channels of EEG data are selected to record. 

Fig. 1 The overall framework of the proposed methodology

Table 1 The details of the DEAP dataset

Attribute Description

Subject 32 (16 males and females)

Stimulant 40 one-minute videos

Trials of each subject 40 times

Length of each trial 63 s (3-s pre-trial and 60 trial)

Recorded EEG signals 32 electrode positions

Rating scales Arousal, valence, dominance, and liking

EEG data Array shape 40 × 32 × 8064
(trial × channel × data)

Labels Array shape 40 × 4
(trial × label)
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To better identify emotions, arousal and valence are selected. We choose a threshold of 
5, according to the evaluation value of these two indicators, if the evaluation value is 
greater than or equal to 5, it is marked as high arousal (HA) and high valence (HV), if it 
is less than 5, it is marked as low arousal (LA) and low valence (LV).

First, the EEG data are down-sampled, reducing the sampling rate to 128 Hz. To fur-
ther filter out noise and eliminate artifacts, EEG data are bandpass filtered and restricted 
to a frequency range of 4–45 Hz.

2.3  Feature extraction

Differential entropy (DE) [31] is a concept in information theory used to measure the 
uncertainty of a random variable. In EEG research, DE is used to analyze the complex-
ity and randomness of EEG signals, which has some advantages. At the same time, the 
one-dimensional EEG vector sequence is transformed into a two-dimensional network 
matrix sequence. Then, the whole EEG signal is divided into multiple time windows by 
sliding window. The DE of each electrode in the time window is calculated.

2.3.1  Differential entropy

DE is a method of measuring the uncertainty of random variables that can be used to 
describe the random nature of probability density functions. Similar to discrete entropy, 
differential entropy is also a non-negative real number, but it can be infinite, which is 
related to the infinity of continuous variables. Differential entropy has a wide range of 
applications in information theory, statistics, machine learning, and other fields, such 
as density estimation, source coding, channel coding, probability density estimation in 
machine learning, and other issues. For a continuous random variable x , its probability 
density function is p(x) , then its differential entropy calculated as shown in Eq. (1):

where p(x) represents the probability density function of the continuous signal [a, b] , it 
represents the interval of information value. For a signal of a specific length, the differ-
ential entropy calculation formula of an EEG with an approximate Gaussian distribution 
N σ 2  is shown in Eq. (2):

Since DEAP includes baseline data of 3 s, which do not record any information, the 
data of 3  s are removed to avoid the impact on the EEG signal. In this work, we de-
noised the 60-s EEG signals of 32 subjects, respectively, and then divided the EEG sig-
nals into 120 equal small time windows, each time period of 0.5 s. In our experiment, 
this 0.5-s time window was mainly studied. Then, the DE of the 0.5-s time window is 
calculated according to Eq. (2), and the DE calculated in each time window is taken as 
the feature to form a feature vector.
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2.3.2  Two‑dimensional EEG mesh feature conversion method based on DE

In order to better integrate the time-domain and spatial information of EEG signals, 
we will extract DE features from 32 channels to form a feature matrix, as shown in 
Fig.  2. Specifically, based on the relative distribution of 32 electrodes in the brain, 
we obtain a 9 × 9 feature matrix of the electrode distribution on a two-dimensional 
plane, where the positions of no electrodes are set to 0, and these 0’s do not play any 
role in our experiment. Then, we perform normalization calculation on the DE value 
and get the right-most two-dimensional color image, on the right side of the color 
image is a color bar, you can see the relationship between the values of DE and color, 
different DEs have different colors.

To better describe the proposed method, we chose one of the subjects as an exam-
ple, and the whole process is shown in Fig. 3. Taking the Fp1 channel as an example, 
the 60-s EEG signal is divided into 120 time windows, and each time window is 0.5 s. 
Four frequency bands θ(4 ≤θ < 8  Hz), α(8 ≤α < 15  Hz), β(15 ≤β < 32  Hz), and γ(32 ≤
γ < 45  Hz) were, respectively, extracted from 120 time windows. At the same time, 
9 × 9 color graphs of four frequency bands were obtained according to the method 
shown in Fig. 2. Fp1 could obtain 120 × 4 sample numbers. Therefore, a sample fea-
ture matrix of dimension 32 × 32 × 120 × 4 is generated in this experiment. Where 

Fig. 2 Two-dimensional image flowchart

Fig. 3 Data processing flowchart
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the first 32 represents the number of subjects, the last 32 represents the number of 
electrodes, 120 represents the number of time windows, and 4 represents the number 
of frequency bands.

Since the calculation of DE can lead to the presence of outliers, which might affect the 
performance of the model, it is necessary to normalize the feature matrices for each par-
ticipant. These matrices should be scaled to a range between 0 and 1. The normalization 
is performed using Eq. (3) [32].

During this process, we first normalize the feature values using Eq. (3), where F rep-
resents the original feature value, Fmax and Fmin represent the maximum and minimum 
feature values, respectively, and F ′ represents the normalized feature value. After nor-
malization, we gather the features of 32 channels in the same frequency band for each 
sample and construct a submatrix following the mapping rule illustrated in Fig. 1. The 
submatrix contains the average DE values of each corresponding channel, while the ele-
ments that correspond to channels without corresponding electrodes are set to 0 by 
default.

The feature extraction method adopted in this paper combines time–frequency and 
spatial features to provide richer EEG change information, which can be used to clas-
sify emotional states. Time-domain information provides insights about the dynamic 
changes in emotions, while spatial information provides insights about how emotions 
are distributed in the brain. Therefore, the method can provide more comprehensive 
information on changes in EEG signals, which can better classify different emotional 
states.

2.4  Fusion model of 2D‑CNN and LSTM for emotion recognition

The overall architecture of CNNS and LSTMS for emotion recognition is shown in 
Fig. 4, it contains the CNN layer, LSTM layer, and dense layer. We employ a 2D-CNN to 
capture spatial features from each two-dimensional matrix of EEG data. Subsequently, 

(3)F
′

=
Fmax−F

Fmax−Fmin

Fig. 4 Two-dimensional-CNN-LSTM combined model
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these extracted spatial feature sequences are fed into an LSTM to further capture the 
temporal features of the EEG data. Following this, we utilize a fully connected layer to 
receive the output of the LSTM network at the last time step, thereby forming a feature 
vector. Lastly, this feature vector is passed through a dense connection layer (Dense) for 
the final emotion classification.

2.4.1  Two‑dimensional‑CNN

Two-dimensional-CNN refers to a 2D convolutional neural network. It is a deep learn-
ing neural network structure, which is widely used in computer vision tasks, such as 
image recognition, object detection, semantic segmentation, etc.

In a two-dimensional convolutional neural network, the input data are usually a two-
dimensional image or video, and each input datum is represented as a matrix or tensor. 
The neural network processes the input data through the structures of the convolutional 
layer, pooling layer, and full connection layer to learn and extract image features.

The convolutional layer is the core component of the two-dimensional convolutional 
neural network. It uses a set of learnable convolution checks to carry out convolution 
operations on input data, to extract different features. The calculation formula is shown 
in Eq. (4). The pooling layer is used to down-sample the feature graphs output by the 
convolutional layer to reduce the dimension and computation amount of feature graphs 
while preserving important features. The fully connected layer is used to flatten the fea-
ture map output by the pooling layer and match it with the label to get the final predic-
tion result.

where N is the output size, W is the input size, F is the convolution kernel size, P is the 
filling value size, and S is the step size.

The 2D-CNN structure has the advantages of hierarchical, automatic feature extrac-
tion, and multi-level feature learning, so it is widely used in computer vision tasks and 
has achieved excellent results in many application fields.

It should be noted that the calculation of these two stages is usually limited by the 
accuracy requirements, so we need to make certain adjustments and optimizations to 
improve the accuracy and efficiency of the algorithm.

2.4.2  LSTM

Inspired by the human brain, the LSTM uses selective input and selective forgetting 
mechanisms, introducing three “gate” structures (forgetting gate, input gate, and output 
gate) to control the flow of information in the form of filters. Through this mechanism, 
LSTMs can selectively retain and update past information while also remembering cur-
rent information to better capture long-term dependencies in sequence data. The LSTM 
structure is shown in Fig. 5

The LSTM takes in three components as its input: the current moment input Xt , the 
previous moment’s output value h(t−1) of the LSTM, and the state of the unit C(t−1) . It 
provides two types of outputs: the current moment’s LSTM output value Ht and the cell 
state Ct . The input gate calculation as shown in Eq. (5), which controls the amount of 
input information, the forget gate controls the amount of historical information retained, 

(4)N = (W − F + 2P)/S + 1
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and the output gate calculation as shown in Eq. (6), which controls information from the 
current unit state is to be output to the current hidden state. The gates can be adjusted 
adaptively according to the network’s needs to achieve better results.

input door:

output door:

Among them, σ(·) is a sigmoid function that outputs a value between 0 and 1. If the 
value of f is close to 0, the information will be forgotten, and the information close to 1 
will be retained. When the LSTM network forgets part of the previous state informa-
tion, it needs to absorb new memory from the current memory to fill the blank, and 
this process is realized by the input gate. At this time, the input gate will filter the input 
information, select some current information to enter the current cell state with a cer-
tain probability, and together with the forgetting gate, it selectively updates the current 
cell state with a certain probability for the current information and the information at 
the previous time.

The LSTM network replaces the neuron in the ordinary recurrent neural network 
with the above gating structure and effectively saves the historical information to help 
the current decision-making. The emergence of the LSTM network effectively over-
comes the problems of gradient disappearance, gradient explosion, and other problems 
in the learning process of neural networks. The LSTM neural network is a logic unit 
with a “gate” structure added to each neuron, so that the error direction propagation can 
directly pass through the “gate,” thus avoiding the gradient disappearance and explosion 
in the error reverse propagation so that the gradient of the LSTM network in the trans-
mission process remains relatively stable and will not disappear completely.

2.4.3  Two‑dimensional‑CNN‑LSTM

The 2D-CNN-LSTM model structure was proposed in this paper, as shown in Fig.  4. 
To better extract EEG signal features, we input the DEFM features in the four bands 
of θ, α, β, and γ extracted in Sect. 2.3 into the network 2D-CNN-LSTM in the form of 

(5)it = σ(Wi · [ht−1, xt ]+ bi)

(6)ft = σ
(

Wf · [ht−1, xt ]+ bf
)

Fig. 5 LSTM unit
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N × 9 × 9 × 4, where N refers to the number of samples sent to the model each time, 
in our experiment, N selected the number of 10 samples, 9 × 9 refers to the size of the 
two-dimensional matrix, and 4 refers to the four frequency bands under study. These 
inputs contain temporal and spatial information of EEG data. Based on 2D-CNN fea-
ture extraction (time and space), LSTM is used to further extract time-series features. 
Finally, the output of the last time point of the LSTM network is received through the 
fully connected layer, and the feature vector is generated, and then, the feature vector is 
fed to the SoftMax layer for the final emotion classification. Combined with the tempo-
ral and spatial characteristics of EEG signals, this method improves the effect of emotion 
recognition.

Specifically, the 2D-CNN in the hybrid model is mainly composed of three convolu-
tion layers and three pooled layers, where each convolution layer has a convolution ker-
nel of 32, 64, and 128, respectively, and is optimized using the ReLu activation function 
and the Adam optimizer, with a learning rate of 0.0005. In the hybrid model, the LSTM 
model contains two hidden layers with 64 and 128 neurons, respectively, and finally, it 
has 0.1 dropouts to prevent overfitting, and finally a fully connected layer with 258 neu-
rons. The LSTM network is used to further calculate the relevant characteristics of EEG 
fragments in the time domain, making the features extracted by the model more objec-
tive and accurate.

2.5  Evaluation indices

To demonstrate the performance of the proposed method, there are several metrics 
commonly used to evaluate the quality of algorithms. Below are a few common and 
important evaluation metrics:

Accuracy is the most commonly used and intuitive metric, calculated as shown 
in Eq.  (7) [33]. Here, TP represents the number of samples correctly identified as low 
arousal/negative valence emotions by the classification model (referred to as positives); 
TN represents the number of samples correctly identified as high arousal/positive 
valence emotions by the classification model (referred to as negatives); FP represents the 
number of samples where negative valence emotions are incorrectly classified as posi-
tive valence emotions; and FN represents the number of samples where positive valence 
emotions are incorrectly predicted as negative valence emotions.

The precision is calculated as shown in Eq. (8) [33]:

The recall is calculated as shown in Eq. (9) [33]:

The F-score, also known as the F1-score, is a harmonic average of precision and recall 
used to comprehensively evaluate the performance of a classification model, especially 
in unbalanced datasets. The F-score is calculated as shown in Eq. (10) [34]:

(7)Acc = TP+TN
TP+TN+FP+FN

(8)Precision =
TP

TP+FP

(9)Recall = TP
TP+FN
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Precision represents accuracy, while recall indicates the recall rate. As seen from the 
calculation formula, the F1-score ranges between 0 and 1. The closer it is to 1, the better 
the model’s performance, showcasing superior classification effectiveness. Furthermore, 
when precision and recall simultaneously achieve higher values, the corresponding 
F1-score also increases. The role of the F1-score is to strikingly balance precision and 
recall. This is particularly crucial when dealing with uneven sample distributions, where 
the impact of the F1-score becomes more pronounced.

The Kappa coefficient primarily measures the effectiveness of a classifier using statisti-
cal methods. Its characteristic lies in its thorough consideration of the model’s random-
ness and continuous enhancement of the accuracy of random classification. It can be 
employed to assess the consistency of classification tasks. The calculation method for 
Kappa is shown in Eq. (11) [35]:

Po refers to the observed accuracy, which can be obtained by summing the diagonal 
elements of the confusion matrix. Pe refers to the accuracy of random classification in a 
completely random state. It can be calculated by summing the product of the true label 
frequency and the predicted label frequency for each category in the confusion matrix. 
From the calculation formula, it is evident that when the Kappa coefficient is closer to 1, 
the model’s classification performance is better.

3  Results and discussion
3.1  Experiments results

In this study, each subject had 120 × 40 samples, 120 being the time window and 40 
being the stimulus video, so there are a total of 4800 samples per subject. The network 
model is cross-verified by tenfold.

The 9th subject was selected to adjust the network parameters because subject 9 had 
a more uniform distribution of labels. We used the 2D-CNN-LSTM network to inves-
tigate the effect of the number of 2D-CNN convolutional layer and LSTM hidden layer 
cells on emotion classification. Through experiments, we find that the number of con-
volutional kernels has the greatest influence on the network model compared with the 
number of hidden layer cells. When the number of hidden layer cells is 2 and the num-
ber of convolutional kernels is 3, the accuracy of the network model is the highest. The 
network model parameter of 2D-CNN-LSTM is shown in Table 2.

To better assess the model’s performance, tenfold cross-validation [36] is chosen 
for evaluation. In tenfold cross-validation, the dataset is divided into ten subsets, and 
the model is trained and evaluated ten times. In each iteration, nine subsets are used 
for training, and the remaining subset is used for validation. This process repeats 
to ensure that each subset serves as the validation set exactly once. Ultimately, the 
model’s performance evaluation is the average of these ten validation results. This 
approach is effective in better assessing the model’s generalization ability, reduc-
ing the risk of overfitting or underfitting, and identifying optimal hyperparameter 

(10)F − score = 2×Precision×Recall
Precision+Recall

(11)Kappa =
Po−Pe
1−Pe
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settings. According to the above parameter settings, 32 subjects were tested, respec-
tively, and the results are shown in Table 3.

As shown from Table  3, the classification result of our proposed method is rel-
atively high. The average accuracy of 32 subjects in the arousal classification was 
92.31%; the average accuracy of 32 subjects in the valence classification was 91.92%; 
the average F-score of 32 subjects in the arousal classification was 90.75%; and the 
average F-score of 32 subjects in the valence classification was 92.31%;

The average Kappa of 32 subjects in the arousal classification was 91.76%; the aver-
age Kappa of 32 subjects in the valence classification was 92.36%.

Accuracy is the most intuitive index to measure the performance of the model, and 
it is also the most important index. As shown in Fig. 6, in the 2D-CNN-LSTM model 
proposed in this paper, as the number of iterations increases, the training accu-
racy of arousal and valence classification accuracy to 97.2% and 96.8%, respectively. 
Meanwhile, the test accuracy also keeps improving, and finally, the test accuracy of 
arousal and valence classification accuracy to 92.31% and 91.92%, respectively. The 
results show that the proposed method has good flexibility and is effective in the 
field of emotion recognition.

The confusion matrix is an indicator to evaluate the model results and is part of 
the model evaluation. In addition, a confusion matrix is often used for judgment 
classifiers and is suitable for data models of different types. Figure 7 shows the con-
fusion matrix of arousal and valence. From the results of the confusion matrix, about 
7.6% of the valence was wrongly classified, and about 7.2% of the arousals were 
wrongly classified. The overall classification effect was good.

The ROC curve, also known as the receiver operating characteristic curve, is a 
popular visual metric used to evaluate the performance of binary classification mod-
els. It typically plots the true-positive rate (TPR) on the y-axis and the false-positive 
rate (FPR) on the x-axis. The TPR represents the proportion of actual positive cases 
that the model correctly identifies, while the FPR represents the proportion of actual 
negative cases that are incorrectly classified as positive. The shape of the ROC curve 
reflects the overall performance of the model, with curves closer to the upper-left 
corner indicating better performance. The classification accuracy of the model pro-
posed in this paper is relatively high, as shown from Fig. 8.

Table 2 Parameter settings

2D‑CNN‑LSTM model parameters Values

The number of LSTM hidden layer cells 2

The number of 2D-CNN convolution layer 3

Model error threshold e 0.8

Model learning rate γ 0.0005

2D-CNN activation function type Sigmoid

LSTM activation function type Sigmoid

Cross verification Tenfold
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3.2  Recognition performance of different time windows

Since the length of the EEG signal determines the different emotional information it 
contains, this section will focus on the influence of different time windows on emo-
tion recognition performance. We select four different time window periods, namely, 
N ∈ [0.5,0.2,0.8,1.0]. The table shows the classification results of emotion recognition for 
valence and arousal under four different time windows. Table 4 shows that the recogni-
tion performance of the CNN-LSTM model is optimal when the time window is 0.5 s. 
The average recognition rates of valence and arousal classification were 91.9% and 92.3%, 
respectively. Compared with the other three times windows, when N is 0.5 s, the classi-
fication accuracy is increased by 4.19%, 5.99%, and 3.31% compared with 0.2 s, 0.4 s, and 
1.0 s, respectively.

Table 3 Two-dimensional-CNN-LSTM classification result

Subject Binary classification of valence Binary classification of arousal

Accuracy (%) F‑score (%) Kappa (%) Accuracy (%) F‑score (%) Kappa (%)

01 92.16 89.73 88.89 90.23 90.36 91.33

02 90.14 90.56 91.02 90.58 91.22 91.27

03 91.33 89.77 90.59 91.36 90.88 92.47

04 90.65 90.25 91.76 91.27 91.88 88.87

05 91.58 90.27 91.01 89.77 90.28 89.67

06 89.89 90.21 91.02 92.11 91.29 92.02

07 91.35 91.89 92.03 90.23 91.22 90.78

08 91.54 92.32 92.01 86.54 89.67 88.73

09 91.39 92.86 90.89 91.36 92.24 91.69

10 91.11 92.25 92.42 91.50 93.51 92.61

11 91.58 92.19 92.54 91.54 90.32 91.29

12 90.51 91.40 91.12 90.38 90.88 90.71

13 91.15 92.89 91.25 90.33 90.58 91.58

14 89.91 92.43 90.78 92.38 90.05 91.11

15 92.63 91.97 92.18 92.56 91.78 92.82

16 90.91 91.88 91.61 92.24 91.89 92.99

17 91.58 91.54 92.56 92.69 91.38 91.72

18 91.56 92.69 92.65 92.58 93.11 92.89

19 91.67 91.91 92.68 90.78 91.32 91.96

20 90.94 91.37 91.82 91.84 92.77 92.65

21 93.01 91.56 92.22 92.49 91.88 91.84

22 89.68 90.28 92.28 91.64 91.56 91.77

23 91.37 91.36 91.28 91.21 91.85 91.29

24 89.89 91.76 92.88 91.59 90.68 91.21

25 90.16 91.58 90.36 90.71 91.36 92.21

26 90.83 92.49 91.34 90.88 90.21 91.06

27 91.56 90.99 91.56 89.78 89.88 90.09

28 90.81 91.21 92.02 90.36 91.26 91.28

29 92.02 91.25 92.45 91.03 91.45 91.17

30 91.06 90.85 91.49 90.88 90.87 92.85

31 91.33 91.54 92.55 91.02 90.65 88.68

32 90.88 91.09 92.35 91.36 90.88 89.75

Average 91.92 91.85 92.36 92.31 90.75 91.76
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3.3  Compared with other methods

To better show the superior performance of our proposed method, Table 5 lists the com-
parison between the 2D-CNN-LSTM network model proposed in this paper and other 

Fig. 6 Arousal classification accuracy (left) and valence classification accuracy (right)

Fig. 7 Arousal confusion matrix (left) and valence confusion matrix (right)

Fig. 8 Arousal ROC curve (left) and valence ROC curve (right)



Page 16 of 19Wang et al. EURASIP Journal on Advances in Signal Processing         (2024) 2024:49 

network models. It can be seen from the experimental results that the proposed method 
has higher classification accuracy than other models. This is due to the comprehensive 
consideration of the spatial positioning of electrodes and its effect on emotion recogni-
tion; at the same time, time, space, and frequency information are extracted from EEG 
signals, where CNN learns the spatial characteristics of the two-dimensional grid data at 
each sampling point. LSTM further captures the global temporal dynamics between the 

Table 4 Two-dimensional-CNN-LSTM performance in different time windows (%)

N Valence Arousal

0.2 87.23 ± 1.52 85.11 ± 2.7

0.8 85.43 ± 2.36 86.32 ± 4.3

1.0 88.11 ± 1.2 87.97 ± 2.3

0.5 91.9 ± 0.43 92.3 ± 0.6

Table 5 Emotion recognition performance of different models

Reference index Feature extraction 
methods

Classifier used Database Accuracy(%)

Yoon et al. [37] FFT-based spec-
tral power features 
extracted from EEG 
rhythms

Bayesian DEAP Arousal: 0.709
Valence: 0.701

Arnau-González et al. 
[38]

Spectral power, energy, 
and connectivity 
features

SVM DREAMER Arousal: 0.862
Valence: 0.854

Gupta et al. [39] Information potential 
feature extracted in the 
FAWT domain of EEG 
signal

Random forest DEAP Arousal: 0.714
Valence: 0.799

Gupta et al. [40] Graph–theoretic-based 
EEG features

RVM DEAP Arousal: 0.67
Valence: 0.69

Cheng et al. [41] 3D cube evaluated from 
EEG segment

CNN DEAP Arousal: 0.894
Valence: 0.904

Soleymani et al. [42] EEG power SVM MAHNOB-HCI Arousal: 0.52
Valence: 0.57

S. Katsigiannis, et al. [43] Power spectral 
density-based features 
extracted from EEG 
signal

SVM DREAMER Arousal: 0.624
Valence: 0.621

Zhang et al. [44] Temporal slices 
obtained from each 
channel EEG signal

Recurrent attention 
model

DREAMER/DDEAP Arousal: 0.855
Valence: 0.836

Yin et al. [45] EEG’s differential 
entropy

ERDL DEAP Arousal: 0.848
Valence: 0.852

Topic et al. [46] TOPO-FM CNN + SVM DEAP Arousal: 0.806
Valence: 0.857

Liu et al. [47] DE, statistical features DCAA DEAP Arousal: 0.843
Valence: 0.856

Yang et al.[48] Row signals PCRNN DEAP Arousal: 0.913
Valence: 0.908

Gao et al.[49] Time domain and 
frequency domain

SVM DEAP Arousal: 0.752
Valence: 0.805

Our method EEG’s differential 
entropy

2D-CNN-LSTM DEAP Arousal: 0.919
Valence: 0.923
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continuous sampling points in EEG samples, thus realizing the potential value of feature 
exploration and achieving higher recognition accuracy in binary classification. There-
fore, the proposed feature fusion method has a strong spatiotemporal representation. 
The temporal and spatial characteristics of fusion significantly improved the accuracy 
of emotion recognition in EEG, and the accuracy of arousal and valence was more than 
91%.

4  Conclusion
In this paper, we propose a method of EEG emotion recognition based on DEFM and 
2D-CNN-LSTM. DEFM is a DE feature vector method for EEG signal characteriza-
tion, which considers the time, space, and frequency of the EEG signal. The method 
converts the original one-dimensional chain channel information into two-dimensional 
grid spatial information, corresponding to the brain region distribution of EEG elec-
trode positions, and effectively characterizes the spatial correlation between multiple 
adjacent electrodes in the physics of EEG signal. A time window is used to segment the 
two-dimensional grid sequence into equal-length time segments, which is a new data 
representation integrating the spatiotemporal correlation of EEG. In addition, an end-
to-end, trainable hybrid deep neural network model for EEG emotion recognition is 
proposed, which combines 2D-CNN and LSTM networks to capture the spatial correla-
tion of data between physically adjacent electrodes and the temporal dependence of EEG 
data streams. The model was evaluated for potency and arousal using 32 subjects in a 
large-scale DEAP dataset to evaluate the performance of the EEG spatiotemporal feature 
representation and the proposed hybrid deep learning model. The experimental results 
show that the average accuracy in valence and arousal is 91.92% and 92.31%, respec-
tively, which is significantly better than the most advanced methods. Although our pro-
posed method effectively combines the spatiotemporal correlation of EEG and improves 
the accuracy and robustness of EEG emotion recognition, it also has certain limitations, 
such as significant differences between EEG signals and other spatiotemporal informa-
tion between different individuals. Future research can further carry out cross-para-
digm, cross-device, and cross-population research on EEG emotion recognition.
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