
Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/.

RESEARCH

Fan and Cai  
EURASIP Journal on Advances in Signal Processing         (2024) 2024:48  
https://doi.org/10.1186/s13634-024-01142-2

EURASIP Journal on Advances
in Signal Processing

A deep reinforcement approach 
for computation offloading in MEC dynamic 
networks
Yibiao Fan1*   and Xiaowei Cai1 

Abstract 

In this study, we investigate the challenges associated with dynamic time slot server 
selection in mobile edge computing (MEC) systems. This study considers the fluctuat-
ing nature of user access at edge servers and the various factors that influence server 
workload, including offloading policies, offloading ratios, users’ transmission power, 
and the servers’ reserved capacity. To streamline the process of selecting edge serv-
ers with an eye on long-term optimization, we cast the problem as a Markov Decision 
Process (MDP) and propose a Deep Reinforcement Learning (DRL)-based algorithm 
as a solution. Our approach involves learning the selection strategy by analyzing 
the performance of server selections in previous iterations. Simulation outcomes show 
that our DRL-based algorithm surpasses benchmarks, delivering minimal average 
latency.

Keywords: Edge servers, Dynamic users, Computation offloading, Dynamic tasks, 
Reinforcement learning

1 Introduction
Amidst the development of fifth generation (5G) networks and the rising popularity of 
mobile devices, applications such as artificial intelligence, big data processing, the bur-
geoning use of smartphones, augmented reality (AR) and natural language processing 
are generating an unprecedented volume of data streams [1–3]. These applications typi-
cally require substantial computational resources. Yet, mobile devices often have limited 
computing capabilities due to hardware constraints. Despite the advanced performance 
of contemporary devices, they fall short in addressing the needs of computation-heavy 
applications and the demand for low-latency, high-reliability communication.

To tackle the issue of inadequate computing resources on mobile devices, several 
solutions have emerged, with Mobile Cloud Computing (MCC) [4–7] being among 
the first. Cloud servers boast vast computational resources, which can effectively 
compensate for the limited capacity of mobile devices to handle intensive compu-
tational tasks. However, the use of MCC comes with its own set of challenges. For 
instance, the network topology of MCC means that cloud servers are typically situ-
ated at a considerable distance from mobile devices, necessitating a reliance on the 
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network for cloud connectivity. This can result in reduced efficiency and a degraded 
user experience due to factors such as mobile network bandwidth and latency. Fur-
thermore, MCC poses certain security risks; data and applications on mobile devices 
often contain sensitive information, creating a potential for data breaches during 
transmission to the cloud.

To mitigate these issues, Mobile Edge Computing (MEC) has gained traction [8–10]. 
The fundamental concept of MEC is to decentralize computational resources from the 
core network to the network’s edge, by outfitting edge devices like base stations (BSs) 
with high-speed computational servers. This shift provides users with computationally 
intensive applications access to computational support in closer proximity. It is pro-
jected that, in the future, up to 75% of data generated by enterprises are likely to undergo 
processing at the edge of the network [11].

In MEC networks, application providers capitalize on the mobility of mobile devices 
to gather users’ preferences and location data by tracking the devices’ trajectories. This 
enables the providers to dynamically select the most suitable MEC server for each user, 
thereby decreasing both task processing latency and energy consumption. For instance, 
literature [12] introduces services that accommodate the random movement and task 
arrivals of multiple mobile terrestrial users by integrating unmanned aerial vehicles 
(UAVs) into the MEC framework. In literature [13], the system’s profitability is opti-
mized by strategically managing the pricing of MEC computation services, the amount 
of data offloaded, and the selection of MEC servers while acknowledging the dynamic 
and unpredictable nature of user behavior. The study in [14] demonstrates how a UAV-
assisted MEC system can enhance overall stability and reduce both energy usage and 
computational delay by managing the UAVs’ flight paths and fine-tuning the offloading 
ratio.

However, it is insufficient to only focus on user mobility; one must also account for 
the dynamic changes in the number of users accessing edge services. Most existing net-
work architectures inaccurately assume a constant number of user accesses within their 
mathematical models [15–19]. In multi-user MEC systems, the complexity increases due 
to intricate resource competition and potential interactions among mobile terminals, 
on top of the natural limitations imposed by finite computational and communication 
resources. The arrival of tasks is unpredictable, occurring at various times and involv-
ing variable sizes depending on the application. This unpredictability, combined with the 
variety in task sizes, makes accurate forecasting a challenge. Furthermore, the dynamic 
nature of users’ tasks, influenced by emergency procedures, mobility, and the uncer-
tain operational state of the mobile terminal-including random tasks and transmission 
state-poses substantial challenges for effectively offloading applications to fully benefit 
from MEC. Emergency procedures are primarily influenced by the type of device, the 
user’s sense of urgency or importance, and the critical nature of the computational task 
in emergency situations (e.g., myocardial infarction, heart attack, urgent applications, 
etc.). Users in such critical states should be given utmost priority, with their tasks being 
processed immediately. Hence, it is a significant challenge to incorporate the impact of 
user mobility, the stochastic nature of task arrivals, and the urgency of tasks into the 
modeling process.
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Within edge computing networks, the offloading of tasks is categorized into two 
approaches: partial offloading and binary offloading, which depend on whether a com-
putational task is divisible. In the binary offloading model, an indivisible task must be 
processed entirely either locally or on the MEC server [20–25]. With partial offloading, 
it is possible to offload portions of a task to the edge server by determining an optimal 
offloading ratio [26, 27]. Given the varying requirements of tasks, this study adopts the 
partial offloading approach. Given the variability of wireless channels, offloading all com-
putational tasks may not always be beneficial. Conversely, opportunistic offloading that 
adapts to the fluctuating channel conditions can yield substantial performance improve-
ments. The resulting challenge is that variations in backend application demands can 
alter the computational capacity available on edge servers. Therefore, developing a logi-
cal and efficient computational offloading strategy remains a formidable challenge.

Unlike cloud computing systems, edge servers typically possess constrained resources. 
Consequently, selecting the right edge server is a crucial component of the computa-
tion offloading process [28]. The research presented in literature [29] focuses on UAV-
assisted mobile edge computing with the objective of minimizing system latency by 
simultaneously optimizing UAV flight paths, time slot allocation, and compute resource 
distribution. Xing et al. introduced a computational offloading strategy in [30], aimed at 
reducing the user’s offloading latency through the combined optimization of offloading 
duration and task processing time. However, given that the coverage of edge servers is 
finite and users may move frequently, mobile users may transition across various edge 
server coverage zones. Inappropriate server selection can lead to increased latency and 
energy consumption, thereby degrading the user experience. The population of users 
accessing edge servers is constantly fluctuating. As a user offloads tasks, it escalates the 
workload of the corresponding edge server, impacting the computational costs for all 
other users connected to that server. This interdependence among users’ choices com-
plicates server selection further. The ongoing nature of user services, coupled with the 
dynamics introduced by user mobility, adds to the complexity of server selection. Thus, 
it becomes essential to estimate the long-term optimality of computation and communi-
cation expenses over a sequence of time slots within a dynamic setting.

Additionally, most existing research on time-variant challenges in MEC systems relies 
on conditions such as channel statistical data to precisely monitor and update net-
work-wide channel information, which incurs significant signaling overheads, like the 
time-slotting strategy discussed in literature [31–35]. However, in edge environments, 
minimizing delay is imperative. The primary difficulty in multi-user edge systems is the 
allocation of limited communication and computational resources. Each endpoint gen-
erates tasks unpredictably, which, if not managed promptly, may cause network bottle-
necks and queuing at the edge servers, ultimately diminishing system performance. To 
ensure timely task dispatch and execution among devices, our goal is to determine how 
to measure task state updates within the available time slots for mobile users with ran-
dom movement and data arrival patterns to deliver computational services effectively.

In edge computing frameworks, system state transitions are primarily induced by ele-
ments such as the randomness of user engagement with the system, server workload 
fluctuations, and unpredictable task generation. These variables are not known before-
hand, making it arduous to identify the optimal policy using conventional methods 
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[36–39]. To navigate these challenges, we employ deep reinforcement learning (DRL) 
techniques. DRL is capable of proposing the most appropriate action by processing 
vast amounts of high-dimensional raw data as input to the deep neural network, lever-
aging the deep neural network’s robust approximation capabilities. It is not necessary 
to foresee state transitions in advance, as DRL excels in managing control in stochas-
tic and dynamic environments. Instead, it directly assesses mobile user dynamics based 
on observed outcomes, in accordance with the current system state, to facilitate server 
selection.

Based on the observations outlined previously, this study concentrates on the collabo-
rative optimization of offloading decisions and resource allocation for task execution in 
MEC with the objective of minimizing the latency across the entire MEC system. The 
key contributions of this study are summarized as follows:

• A mixed integer nonlinear programming model is presented to optimize task off-
loading and resource allocation decisions. We propose a time slot optimization 
scheme that accounts for a time-varying MEC system, characterized by dynamic and 
real-time changes. Mobile users initiate tasks with a certain probability that follows 
a uniform distribution. These tasks are unsynchronized, vary in size, and are gener-
ated by a constantly changing number of users. This study takes into account the sto-
chastic nature of application requests from mobile users, as well as the unpredictable 
states of MTs, which include operational states and mobility patterns.

• We facilitate dynamic optimization of joint resource allocation and task offloading 
decisions. Unlike most existing studies that are static and do not update resource 
allocation synchronously with the offloading decision, this study considers the off-
loading strategy for computational tasks, varying user priorities, and the resource 
demand of users with uncertain transmission power. We define the corresponding 
problem as a mixed integer nonlinear optimization challenge to simultaneously opti-
mize the offloading decisions of mobile users and their access to the network, aiming 
to minimize the long-term latency of the whole MEC system. We model the user’s 
server selection decision as a Markov decision process, considering short intra-
time slot resource optimization as well as long-time slot resource optimization. To 
address this, we propose a Deep Deterministic Policy Gradient (DDPG)-based algo-
rithm, which is designed to adapt to dynamically changing user conditions.

• We conduct experimental simulations to assess the performance of our proposed 
algorithm and benchmark its effectiveness against existing algorithms.

In the following sections, we will delve into the system model, the proposed DRL-based 
server selection algorithm, and the results of our experimental simulations in detail.

2  Problem statement and formulation
2.1  System model

We consider a MEC system consisting of edge servers and mobile users, contain-
ing N users and K MEC servers as shown in Fig.  1. The set of users is denoted as 
N = {1, 2, . . . , n} . To provide computing services to the users, the MEC servers are 
deployed at the access points (APs). Furthermore, the time model is discrete. The 
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length of each time slot is t, where t ∈ {0, 1, 2, . . . , τ } . In each time slot, each user 
will generate only one computationally intensive task. In the system model, random 
arrival of tasks and real-time dynamic processing are used. The allocation of system 
spectrum and computational resources is uniformly scheduled by the MEC server.

Without loss of generality, we characterize the computational tasks arriving on the 
user i ( i ∈ N  ) in time slot t. are characterized Nmax is the maximum number of users 
that the edge system can accommodate, with the number of access servers varying 
in each time slot, and denotes the task of the ith user at the moment of t, obeying a 
uniform distribution. Parameter elements Ui(t) = {Sit,Di(t),Pi,max(t), θi,max(t), �i(t)} 
represent The characteristics of the user i, where Si(t) represents the data size of 
the computational task, and Di(t) reflects the resources required to accomplish the 
task, i.e., the total number of CPU cycles required. Pi,max(t) is the maximum transmit 
power of the user. θi,max(t) denotes the maximum tolerable delay of the task. �i is the 
priority of the user i, which is computed by the type of the device, and the degree 
of urgency/importance of the user. With a larger �i denoting that the matter is more 
urgent (which can be categorized or prioritized thresholds, with a greater than the 
threshold of 1, and a smaller value being sorted by the weighted order).

The edge server k feature is denoted as parameter element Ck(t),C
r
k(t)  , where 

Ck(t) represents the server processing capability, which is constant as the basic 
parameter of the edge server. But at moment t, the computational capability that the 
edge server can provide to the user is variable and is denoted by Cr

k(t).
In the traditional time slot system scheme, the tasks generated by users in a certain 

time slot have to wait for all the users’ tasks to be processed before the resources are 
released together to process the tasks in the next time slot; and thus, the new tasks 
generated during this waiting period are in a waiting state. This greatly reduces the 
user experience and demand. To reduce the latency, a novel scheme is proposed for 
the time slot system. The new scheme is shown in Fig. 2. At the moment t1, user 1 and 
user 2 generate a new task Task1 and task2, respectively. On that basis, the proposed 
system is able to dynamically adjust the program of mobile user access server in real-
time. When ending the task of the previous time slot, if a new task arrives (generated 
by user 3), the server immediately releases the resources (of the previous time slot 

Fig. 1 System model
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to process user 1) to process the newly arrived task, thus satisfying the low latency 
requirements of the edge system users.

2.2  Communications model

In the edge server system model, since edge servers are densely deployed, the coverage 
areas of various edge servers often overlap with each other, and a mobile user can be 
covered by multiple edge servers exhibit the capability of covering a mobile user at the 
same time. When user i device handles its computing tasks locally, the processing time is 
determined by computing capability of the user, which differs from users.

In practical environments, the task characteristics and computational capabilities of 
an edge server may be time-varying due to the changing environment. To compute task 
Ai(t) , user i offloads a portion ρi,k of the task Ai(t) to the edge server k over a wireless 
link, where 0 ≤ ρi,k ≤ 1 . All edge server k return the computation results to the user 
over dedicated feedback links. An offload vector of tasks for the user i is expressed as 
ρi = [ρi,0, ρi,1, . . . , ρi,k ] , where ρi,0 is local computation and ρi,k is the proportion of tasks 
offloaded by the user i on the edge server k.

The user’s transmit power affects the transmission data rate, on that basis, the user’s 
transmit power should be optimized. pi = [pi,0, pi,1, . . . , pi,k ] denotes the vector of the 
user’s transmit power.

In this study, we study the problem of minimizing the delay in the communication and 
computation process to measure the system cost within each time slot. The uplink trans-
mission rate from user i to the edge server k on the wireless link can be expressed as

where B is the bandwidth of the edge server channel, σ 2 is the noise power, Ii(t) is the 
interference caused to the user i by other users in the channel, hki (t) is the channel gain 
between the mobile user i and the edge server k at time slot t, and pi(t) is the uplink 
power of the user.

(1)Ri,k(t) = Blog2(1+
pi(t)h

k
i (t)

Ii(t)+ σ(t)2
), ∀t, i,

Fig. 2 Dynamic time slot allocation scheme
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2.3  Calculation model

When tasks are offloaded from the user to the MEC, the complete task execution latency 
covers the communication latency between the user and the MEC as well as the compu-
tation latency at the MEC servers. Since each MEC server always handles other compu-
tational tasks simultaneously, the background workload may overload the MEC servers. 
Drawing upon the help of multiple MEC servers, users can select the associated MEC serv-
ers to minimize the computation delay. Thus, MEC server selection serves as a new dimen-
sion that reduces task execution latency and user’s energy consumption. The computational 
tasks can be executed locally by the user or by computational offloading in a certain ratio 
ρi,k on the MEC servers, and the latency is given as follows, respectively.

2.3.1  Locally computed delay

When user device i processes its computational tasks locally, the processing time is deter-
mined by its own computing capability, which is various for various users, the computa-
tional capability of the user is f loci (t) , and the computational capability of the edge server is 
expressed as by f mec

k (t) . In each time slot the tasks are randomly generated, following the 
mean distribution Aj(t) ∼ U().Subsequently the user local computation time can satisfy:

where Di(t) denotes the resources required to accomplish computational task Si(t).

2.3.2  Calculate offloading delay

When the user i offloads the computation task to the MEC server, the delay mainly consists 
of the uplink transmission time, MEC server task execution time, and the time for the out-
put result to be transmitted from the MEC back to the user (which is negligible), then the 
uplink transmission time is

The total delay for the MEC to process the offloading task for user i is

where ξi,k(t) represents the computing power allocated by the edge server k for the user 
i thereof.

For the entire edge system, the total delay for all users can be expressed as

(2)Tloc
i =

Di(t)

f loci (t)
,

(3)T
up
i (t) =

Si(t)ρi,k

Ri,k(t)
,

(4)Tm
i (t) = Tmec

i (t)+ T
up
i (t) =

(

Di(t)

ξi,k(t)f
mec
k (t)

+
Si(t)

Ri,k(t)

)

ρi,k .

(5)

Tmec,loc
i (t) =

Nmax
∑

i=1

max
{

Tloc
i ,Tm

i (t)
}

=

N
∑

i=1

max

{

Di(t)
(

1− ρi,k
)

f loci (t)
,

Di(t)ρi,k

ξi,k(t)f
mec
k (t)

+
Si(t)ρi,k

Ri,k(t)

}

.
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2.4  Problem formulation

To simultaneously safeguard the task processing latency and computational cost, for 
the edge server collaborative computing system, the objective function is

where �i denotes the priority of the user accessing the server, and the larger the value of 
� , the higher the priority of the user. f

(

Tmec,loc
i (t), θi,max(t)

)

 is the reward function. Our 

proposed optimization problem can be completely expressed as

where C1 denotes the user’s task offloading server selection, assuming that the user’s 
task can only select one server. C2 denotes the offloading vector of user i. C3 ensures the 
constraint of uplink power, and C4 determines the computational resource allocation 
strategy. The optimization problem proposed in this study is a hybrid nonlinear pro-
gramming challenge that is nonconvex and NP-hard. To address this problem, we need 
to determine the offloading decision vector for each time slot, which encompasses the 
choice of server for offloading, the offloading ratio, and the user’s transmission power, all 
aimed at minimizing the total delay cost of the system while adhering to a specified delay 
constraint.

It is important to note that the offloading decision variables ai,k , ρi,k and pi variables 
are dynamic. The system must gather information to ensure that offloading strategies 
and resource allocation decisions are informed by an overarching awareness of the 
network state. Furthermore, we explore a more realistic scenario where the pattern 
of task requests over time is not known in advance. Given the dynamic nature of the 
problem at hand, conventional optimization methods fail to deliver swift decisions in 
a constantly changing state, and the complexity of the algorithms scales up exponen-
tially with the system model’s expansion. Hence, we propose a DRL-based method to 
tackle the problem presented in this study.

3  Approach design
In this section, we conceptualize the challenge of minimizing service delay as a 
Markov decision process (MDP). Initially, we define the state, action, and reward 
functions within the MDP framework. Subsequently, we employ the DDPG algorithm 
to resolve the problem.

3.1  Markov decision process model

For each discrete time slot t, the agent ascertains the presence of a new user and the gen-
eration of a new task. Upon the creation of a new task, the agent collects environmental 

(6)
T
∑

t=1

Nmax
∑

i=1

�if
(

Tmec,loc
i (t), θi,max(t)

)

,

(7)

min
T
∑

t=1

Nmax
∑

i=1

�if
(

Tmec,loc
i (t), θi,max(t)

)

s.t. C1 : ai,k ∈ {0, 1}, ∀i ∈ N , k ∈ K
C2 : 0 ≤ ρi,k ≤ 1, ∀i ∈ N
C3 : 0 <pi ≤ Pmax

C4 : ξi,k(t) ∈ (0, 1]
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information such as the allocatable computing capacity of the MEC node, the data 
being transmitted by users currently accessing the service, and the power and state 
of the environment. The agent then selects an action following the relevant strategy, 
interacts with the environment to acquire an updated state, and receives a reward signal 
generated by the environment. The agent iteratively refines its strategy in response to 
the reward, accumulating rewards after each action until the strategy stabilizes. Given 
that the agent must consider both immediate and future rewards, the principal learning 
objective is to maximize cumulative rewards through the continuous refinement of its 
strategy. In our model, one of the users is designated as the intelligent agent; while, all 
other components of the edge computing system constitute the environment. Below, we 
provide a detailed account of the state space, action space, and reward function.

3.1.1  State space

The state in MDP is a space reflecting the environment, encompassing user state and 
edge computing server state. The state space is represented by Z(t) = {U(t),C(t), I(t)} , 
where the user state is U(t) =

{

U1(t),U2(t), · · · ,Un(t)Nmax

}

 , Nmax represent the maxi-
mum number of users that the edge system can accommodate.

User state: The state characteristics of the ist user can be expressed as 
Ui(t) = {Si(t),Di(t),Pi,max, θi(t), �i(t)} , where 0 < i ≤ Nmax , Si(t) represent the data 
size of the computational task, Di(t) indicate the resources required to complete the 
task, Pi,max is the maximum transmit power of the user. θi(t) is the delay requirement, 
the maximum tolerable time of the task. �i is the priority system of the user i which is 
determined by the type of the device, the degree of urgency/importance of the user, and 
the larger �i the greater the urgency, the greater the urgency of the matter. For instance, 
when user i has no access or access but no new task is generated, then there is Si(t) = 0 , 
Di(t) = 0 , Pi,max = 0 , θi,max(t) = 0 , �i(t) = 0.

The state characteristics of an edge computing server can be represented as 
C(t) =

{

Cr
1(t),C

r
2(t), . . . ,C

r
K (t)

}

 . Ck denotes the computing capability of the edge server 
k, Cr

k(t) is the computing capability that the edge server k can provide to the user at time 
slot t. Cused

k (t) is the computing capability of the edge server k that has been assigned 
other tasks at time slot t, and Cr

k(t) = Ck − Cused
k (t).

Interference with other users when the environment user sends data is I(t).

3.1.2  Action space

An agent aims to choose the offloading tactics for various users throughout each time 
slot. The offloading strategy A(t) = {X(t), ρ(t),P(t), ξ(t)} can be divided into four parts: 

1. X(t) indicates that the user task offload selection. Here, we assume that user i’s task 
can only select one server, and 

 where 
∑K

j=1 xi,j(t) =

{

1, user i has a task and the task is offloaded to edge server j
0, else

(8)X(t) =









x1,1(t) x1,2(t) · · · x1,k(t)
x2,1(t) x2,2(t) · · · x2,k(t)

...
... · · ·

...
xNmzx ,1(t) xNmzx ,2(t) · · · xNmzx ,K (t)









,
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2. ρ(t) indicates the percentage of user tasks offloaded. ρ(t) =
(

ρ1(t), ρ2(t), · · · , ρNmax
(t)

) , 
ρi(t) ∈ [0, 1] indicates the proportion of user i’s data and computation tasks uploaded 
to the edge computing server. When ρi(t) = 0 , indicates that user i’s tasks are com-
pleted locally, and ρi(t) = 1 indicates that user i’s tasks are completed locally.

3. P(t) indicates the transmit power of the user. P(t) =
(

P1(t),P2(t), · · · ,PNmax (t)
)

 , 
Pi(t) <= Pi,max denotes the task transmit power for user i, and Pi,max denotes the 
maximum transmit power.

4. The computational capability allocated by the edge server to user tasks can be repre-
sented by matrix ξ(t) , i.e., 

ξ(t) must fulfill the following conditions: a) Cr
j (t) = ξ0,j(t)+

∑i=Nmax
i=1 xi,j(t)ξi,j(t) , 

where ξ0,j(t) is very critical. It indicates the computational capability reserved by the 
edge server for future tasks which can be compared by simulation with or without 
reservation. For example, a set of data ξ0,j(t) = 0 and another set of normal train-
ing. b) f Mec

i (t) =
∑j=K

j=1 xi,j(t)ξi,j(t) , f Mec
i (t) denotes the computational capability 

obtained by user i.

3.1.3  Reward space

The reward function is pivotal as it delineates the overarching objective of the agent’s 
learning journey. With each action completed, the agent garners a reward from the envi-
ronment. This reward reflects the benefit of executing said action within the current 
state and, through sustained interaction, ultimately steers the agent toward refining its 
strategy to maximize cumulative gain. In light of the optimization challenge proposed, 
our aim is to minimize latency across the entire MEC system. Reinforcement learning 
endeavors to realize this by maximizing the sum of discounted rewards over time. As 
with any learning algorithm, during the training phase, once an action is taken, the cor-
responding reward is conveyed to the agent at time slot t. Based on the received reward, 
the agent updates its policy (π) toward the optimal policy-that is, the policy that con-
sistently yields high rewards for actions taken across various environmental states. The 
reward issued to the agent is denoted by r : Z × A → R.

In this study, we design the following reward function

When the reward function is ri(t) , the system optimizes the objective function to 
minimize the service delay and increase the proportion of tasks that satisfy the delay 
qualification.

(9)ξ(t) =









ξ0,1(t) ξ0,2(t) · · · ξ0,K (t)
ξ1,1(t) ξ1,2(t) · · · ξ1,K (t)

...
...

...
...

ξNmax,1(t) ξNmax,2(t) · · · ξNmax,K (t)









.

(10)ri(t) =







0, when log2

�

θi(t)
Ti(t)

�

> 0

log2

�

θi(t)
Ti(t)

�

, else
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3.2  Deep reinforcement learning model design

and-error interactions with the environment, where state transitions and rewards 
are initially unknown. DRL-based server selection relies on gradient-based strategy 
learning. Within the context of this study, we need to ascertain whether long-term 
planning can be effectively executed in dynamic environments and how to manage 
high-dimensional state spaces efficiently. Subsequently, we will outline the resolution 
to these challenges. For neural network training, we have utilized the DDPG algo-
rithm. This deterministic policy framework does not produce the likelihood of an 
action; instead, it outputs the specific numerical value of each dimension that cor-
responds to the action, thereby obviating the need for action sampling. Given that the 
training data is time-dependent, it can sometimes lead to slow convergence or even 
a lack of convergence in neural network training. To counteract this, we implement 
experience replay, a technique that disrupts temporal correlations to expedite con-
vergence. In reinforcement learning, samples are sequentially correlated, presenting 
challenges, as neural networks function optimally with samples that are independent 
and identically distributed. Experience replay addresses the correlation issue inherent 
in sequential decision-making and enhances sample efficiency. Once the experience 
pool reaches a predetermined size, the oldest data is typically removed to ensure that 
the pool remains current. Algorithm 1 presents the proposed computational offload-
ing algorithm for dynamic MEC networks based on deep reinforcement learning. The 
DDPG network structure is illustrated in Fig. 3.

Fig. 3 DDPG network
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Algorithm 1 Deep reinforcement learning-based computational offloading algorithm for MEC dynamic 
networks

The DDPG algorithm comprises four neural networks: the Actor network µθ(t) , the 
Critic network µQ(t) , the Target Actor network µθ1(t) , and the Target Critic network 
µQ1(t) . The workflow of the DDPG algorithm operates as follows: 

1. Initialization: The Actor and Critic networks are initialized along with their respec-
tive target networks.

2. Sampling: The Actor network generates actions for a given environmental state, 
which are then executed in the environment to observe rewards and subsequent 
states.

3. Storage: The experiences, consisting of states, actions, and rewards, are stored in a 
replay buffer for future learning.

4. Training the Critic Network: A mini-batch of experiences is randomly sampled from 
the replay buffer. The Critic network evaluates these experiences, the Temporal Dif-
ference (TD) error is computed, and the network’s parameters are updated through 
backpropagation to minimize this error.

5. Training the Actor Network: The gradient of the error calculated by the Critic net-
work is used to update the parameters of the Actor network via backpropagation.

6. Updating the Target Networks: The parameters of the target networks are gradually 
adjusted toward the parameters of their respective current networks, using a soft 
update approach.



Page 13 of 19Fan and Cai  EURASIP Journal on Advances in Signal Processing         (2024) 2024:48  

7. Loop: Steps 2–6 are repeated, continuously refining the network parameters until the 
algorithm converges.

DDPG, being a deterministic policy-based approach, requires sampling fewer data 
points, making the algorithm efficient. However, it may struggle with generalizing to 
unseen actions. To compensate for the action exploration ability sacrificed by the intelli-
gent body, a random noise N is added to the selected action A at the strategy network to 
enhance the generalization. Ultimately, the expression for an action A that interacts with 
the environment is

where n(t) is Gaussian white noise.
Next is the loss function for DDPG. For the Critic current network, the loss function is 

the mean square error, i.e.,

In terms of the Actor current network, the loss function is

Building upon the DQN algorithm, the DDPG algorithm introduces three significant 
enhancements:

First, DDPG improves the stability of learning by adopting the dual neural network 
architecture from DQN. This architecture involves two sets of neural networks-the 
primary networks for evaluation and the target networks for occasional updates of the 
parameters. DDPG distinguishes itself by employing a soft update method for the target 
networks, providing a more stable learning process.

Second, to address the issue of correlated and nonuniformly distributed samples, 
DDPG utilizes the experience replay mechanism, a concept borrowed from DQN. This 
mechanism preserves the data generated during the agent’s interaction with the environ-
ment in a structured memory known as the experience replay buffer. During the learning 
phase, the algorithm samples a batch of experiences at random from the buffer to train 
the model. This method ensures a diversified learning experience, which is essential for 
the robust development of the policy.

The third enhancement addresses the exploration-exploitation dilemma, a fundamen-
tal challenge in reinforcement learning where the agent must balance the act of explor-
ing new possibilities with leveraging existing knowledge. DDPG introduces exploration 
noise to this end. By adding stochastic noise, which often follows a Gaussian or uniform 
distribution, to the selected actions, the algorithm equips the agent with better explora-
tion capabilities. This noise enables the agent to investigate uncharted areas of the state 
and action space more effectively, facilitating the discovery of optimal strategies.

A(t) = µ(z(t))+ n(t),

(11)J (w) =
1

T

T
∑

i=1

(

y(t)− Qw(z(t),A(t))
)2
.

(12)J (θ) = −
1

T

T
∑

i=1

Qw(z(t),A(t)).
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4  Simulations and discussions
4.1  Simulation setup

In this section, extensive simulations are conducted to evaluate the performance of the 
proposed DDPG algorithm, and this algorithm is compared with benchmark algorithms.

A small cell with a radius of 0.3× 0.3 km in a 5G mobile environment is considered, 
where there is K AP with MEC servers, and N mobile users with computation tasks 
exhibit random dispersion in the coverage area of the AP. We consider various users 
with various computational capabilities and the computing power exhibits a uniform 
distribution between 0.5 and 2  GHz. The MEC system is capable of leveraging the 
DSA technique for the allocation of the channel resources according to the demand of 
the terminals. Other simulation parameters are listed in Table 1.

4.2  Performance comparison

Figure  4 illustrates the convergence of the proposed DDPG-based learning method 
when the system accommodates 20 user terminals. Initially, the cumulative reward 
experiences minimal fluctuation. This is attributed to the user’s lack of environmen-
tal knowledge at the outset, resulting in nearly random action selection. As the user 
aggregates sufficient samples over time, these samples are used to train the network. 
Overall, the DDPG-based method demonstrates robust performance, stabilizing after 
approximately 50 training sessions. It is evident that with an increasing number of 
training sessions, the system’s cumulative reward swiftly escalates, enabling the effec-
tive learning of computational offloading strategies through ongoing interactions.

For a comparative analysis of performance, we introduce four benchmark algo-
rithms: (a) A brute-force search to ascertain an approximate optimal solution 
(denoted as “Exhaustion”). (b) A strategy that prioritizes the offloading of tasks to 
MEC servers, distributing all communication and computation resources equally 
among users (denoted as “Offloading”). (c) A user-centric approach that favors local 

Table 1 Simulations parameters

The notation Physical meaning Value

N Mobile user 20

K Edge server 4

fmec
k Server capacity (CPU cycles) [10, 100] GHz

f locm
User computing capacity (CPU cycles) [0.5, 2] GHz

D Amount of user-generated task data [1, 5] Mbits

B System Bandwidth 20 MHz

Pmax Maximum uplink transmit power 0.2 W

σ 2 Background noise power −100 dBm

hki (t) Channel gain 127+ 30log(L) [41, 42]

t Time slot 3 ms

θi(t) The maximum tolerable delay 3 s

C Capacity of empirical replay buffer 500

U Capacity of the small batch of samples 32

ε Learning rate 0.1

φ Reward 0.9 ms
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task execution with maximum tolerated latency (denoted as “Local”). (d) An opti-
mization of offloading decisions that does not factor in the optimization of resource 
allocation (denoted as “Offloading Decision”).

Figure  5 presents a comparison of the proposed algorithm’s performance against 
these benchmarks in terms of average latency with more users. The latency for all 
algorithms escalates with the addition of more users. The exhaustive method serves 
as a benchmark for peak performance. The proposed DDPG-based method delivers 
performance closely aligned with this exhaustive approach. Notably, with eight users, 
the proposed algorithm significantly diminishes average latency by 20%, 33% and 55% 

Fig. 4 Convergence of the proposed DDQN-based method

Fig. 5 Average delay versus the number of users
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compared to the other three methods, respectively. Furthermore, the typical latency 
associated with the DDPG algorithm is also lower than those of the benchmark algo-
rithms, suggesting the effectiveness of our proposed strategy.

The various tasks are categorized into three priorities based on the value of prior-
ity system �i . 0.75 < �i ≤ 1 for high priority, 0 < �i ≤ 0.75 for medium priority and 
0.1 < �i ≤ 0.4 for low priority. The number of users is set to N = 20 and the input data 
are fixed to an average value of 200 kB.

Figure 6 depicts the latency of three priority tasks under varying computational task 
loads. As the computational load intensifies, the latency for all priority levels increases, 
with the high priority tasks experiencing the least latency and the low priority tasks the 
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most. The average system latency exceeds that of high-priority tasks, indicating that 
reducing latency for high-priority tasks incurs increased latency for lower-priority ones. 
Figure 7 presents the average task utility for the three levels of prioritized tasks under 
various computational burdens. Our proposed approach not only ensures reduced sys-
tem latency but also stratifies task priority effectively, allowing urgent tasks to be com-
pleted more swiftly by users with pressing needs.

5  Conclusions
In this study, we address the server selection problem within dynamic time slot schemes 
in MEC. To tackle the NP-hard challenges stemming from dynamic factors, we model 
the ongoing server selection issue as a MDP and introduce an algorithm based on DRL. 
Our DRL-based server selection algorithm accounts for user states, inter-user interfer-
ence, and the processing capabilities of edge servers. We incorporate historical data and 
the dynamic nature of these elements through neural network encoding. Our simulation 
results indicate that the DDPG algorithm, developed as part of this study, consistently 
outperforms established benchmarks by delivering the lowest average latency.
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