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1 Introduction
With the continuous advancement of communication technology, expectations for the 
next-generation mobile communication system, 6 G, are on the rise. 6 G is seen as the 
pinnacle of technological revolution, set to usher in higher data speeds, lower latency, 
and broader connectivity, reshaping various industries [1, 2] However, the widespread 
adoption and successful deployment of 6  G technology face a significant challenge-
spectrum scarcity. Spectrum scarcity has long been a challenging issue in the field of 
communication. With the explosive growth of wireless communication devices and the 

Abstract 

Cognitive radio (CR) systems have emerged as effective tools for improving spectrum 
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continuous emergence of mobile applications, existing spectrum resources have gradu-
ally become scarce, making it difficult to meet the growing communication demands. 
Therefore, the quest for innovative solutions to address the problem of spectrum scar-
city has become an urgent task in the field of communication.

Cognitive radio (CR) technology has already emerged as a key technology for address-
ing the issue of spectrum scarcity [3–7]. This technology enables secondary networks to 
intelligently share the spectrum resources of primary networks by real-time spectrum 
sensing, analysis, and management, thereby enhancing spectral efficiency and meeting 
communication demands. CR technology commonly operates under three paradigms: 
spectrum sharing [8–10], sensing-based spectrum sharing [11–13], and opportunistic 
spectrum access (OSA) [14–17]. In [8], the authors introduced a full-rate cooperative 
spectrum sharing protocol for bandwidth-efficient cognitive networks and discussed the 
enhancement of spectral efficiency through spectrum sharing techniques. Additionally, 
in [9], the authors proposed an intelligent reflecting surface-assisted cognitive radio sys-
tem. This literature also employs spectrum sharing techniques, aiming to maximize the 
achievable rates of secondary users (SUs) through the joint optimization of the transmis-
sion power of SUs and the reflectivity coefficients of intelligent reflectors while adhering 
to the maximum interference constraint of primary users. The aforementioned litera-
ture effectively enhances spectral efficiency. However, due to the lack of spectrum sens-
ing, the secondary network may introduce excessive interference to the primary users, 
consequently affecting the information transmission of the primary network. Simul-
taneously, the primary network can also interfere with the SUs, thereby impacting the 
achievable rates of SUs.

The above-mentioned techniques, based on sensing-driven spectrum sharing and 
OSA, are widely employed to address the aforementioned issues. In the literature [11], 
the authors have employed sensing-driven spectrum sharing techniques to enhance 
spectrum utilization efficiency. This approach typically consists of a sensing phase and 
a transmission phase. Initially, the secondary network needs to monitor the subcarrier 
usage by primary users (PUs). Subsequently, during the transmission phase, the second-
ary network adjusts its transmission power based on the sensing results. When an idle 
state is detected on a subcarrier, the secondary network can freely utilize that subcar-
rier for information transmission, thereby maximizing the achievable data rate for SUs. 
However, when activity is detected on a subcarrier, the SUs are required to implement 
interference management measures, such as reducing transmission power, to minimize 
interference with PUs. On the other hand, in the literature [14], authors have employed 
OSA techniques. This approach is similar to sensing-driven spectrum sharing but differs 
in that when the secondary network detects activity on a subcarrier, secondary users 
will refrain from using that subcarrier. This means that secondary users avoid selecting 
subcarriers that may interfere with PUs. The simulation results from the aforementioned 
literature consistently demonstrate that, compared to traditional spectrum sharing 
methods, these approaches outperform in terms of enhancing spectrum efficiency and 
reducing interference.

Recently, research on unmanned aerial vehicles (UAV) has also garnered widespread 
attention. Using UAV instead of traditional base stations offers several advantages [7]. 
Firstly, UAV can flexibly adjust their position and altitude to accommodate various 
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communication needs, overcoming signal blind spots and providing improved commu-
nication link conditions. This allows for better geographical coverage, thereby enhanc-
ing system performance. Secondly, UAV can be rapidly deployed in areas requiring 
temporary communication coverage without the need for time-consuming traditional 
infrastructure setup. In [18], the authors proposed a multi-UAV-assisted wireless com-
munication system. They jointly optimized the UAV’s trajectory, ground terminal sched-
uling, and power allocation to maximize the total throughput of ground terminals. In 
[19], a drone-assisted millimeter-wave communication system was introduced. They 
jointly optimized the UAV’s position and robust hybrid beamforming to maximize the 
user’s minimum achievable rate. In [20], a dual-drone scenario was presented, where one 
UAV transmitted confidential information to ground users, while the other UAV cooper-
ated in sending artificial noise to interfere with eavesdropping, ensuring data transmis-
sion security. Simulation results from these references indicate that UAV can enhance 
system performance.

Leveraging the advantages of UAV, integrating UAV with cognitive radio systems can 
further enhance spectral efficiency and system performance [7, 21–25]. In [21], the 
authors introduced an intelligent reflecting surface (IRS)-assisted drone-enhanced cog-
nitive radio system. They jointly optimized the trajectory of the UAV, the passive beam-
forming of the IRS, and the power allocation of the UAV to maximize the throughput of 
secondary users. In [23], the study investigated the impact of UAV-assisted interference 
in a secure cognitive radio network, validating its influence on security. In [24], research 
focused on the performance of a cognitive radio-supported UAV network configuration. 
In this network, UAVs are allowed to communicate with secondary ground terminals in 
the underlying mode of the licensed spectrum. The objective is to maximize the overall 
network throughput while meeting constraints related to interference with the primary 
network and the throughput of each secondary user.

The aforementioned references all employ traditional convex optimization algorithms 
for variable optimization. However, compared to traditional convex optimization meth-
ods, deep reinforcement learning (DRL) algorithms offer significant advantages. Firstly, 
DRL algorithms excel in addressing complex, high-dimensional, and nonlinear prob-
lems. They possess the capability of autonomous learning and strategy improvement 
without the need for prior knowledge or detailed system models, making them suitable 
for a wide range of complex real-world problems [7, 10, 26]. Secondly, DRL demon-
strates remarkable generalization abilities, enabling it to learn universal strategies that 
can be applied to multiple tasks, thereby reducing the complexity of modeling specific 
problems. The algorithm can handle various types of action spaces, including discrete 
and continuous actions, making it suitable for tasks across different domains. As a result, 
there is a growing trend in the industry toward the adoption of DRL algorithms [27–30]. 
The literature [27] investigates an IRS-assisted covert communication system for UAV. 
To optimize variables in high-dimensional data, the authors propose an optimization 
algorithm for UAV 3D trajectories and IRS phase shifts based on a Twin-Deep Q Net-
work (TAP-DDQN). In [29], the focus is on optimizing UAV base station trajectories 
for full-duplex communication. The article introduces a DRL-based method to optimize 
UAV-BS trajectories, enabling efficient full-duplex communication in disaster scenar-
ios. Another literature [30] explores a multi-user, multiple-input, single-output aerial 
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IRS-assisted communication system. The problem framework is optimized using the 
Deep Deterministic Policy Gradient (DDPG) algorithm. To enhance the action decision 
accuracy of the DDPG algorithm, a mapping function is proposed to mitigate the impact 
of noise variations on performance during the exploration process.

Based on the considerations of the aforementioned technologies, this paper investi-
gates a drone-assisted broadband cognitive radio network. We jointly optimize the tra-
jectories of the primary UAV, the trajectories of the secondary UAV, the beamforming 
of the secondary UAV, and the perception time to maximize the total achievable rate 
of secondary users. We employ the Dueling DQN-Soft Actor Critic (DDQN-SAC) algo-
rithm to address the optimization problem proposed in this study. The main contribu-
tions of this article are summarized as follows:

• This is the first article addressing resource allocation in UAV-assisted wideband 
cognitive radio networks based on OSA technology using DRL algorithms. The 
joint optimization of the primary UAV’s trajectory, the secondary UAV’s trajectory, 
the beamforming for the secondary UAV, subcarrier allocation, and sensing time is 
aimed at maximizing the total achievable rate of secondary users. The application 
of UAVs is crucial for enhancing the communication link, reducing signal attenua-
tion, and significantly improving performance in both the sensing and transmission 
phases.

• Due to the action space containing both continuous and discrete variables, we pro-
pose a DDQN-DDPG algorithm. Furthermore, in addition to addressing the chal-
lenges of mixed-action spaces, this algorithm significantly reduces computational 
complexity, enhances training speed, and improves stability compared to traditional 
optimization algorithms.

• The simulation results indicate that, compared to the baseline approach, our pro-
posed drone-assisted broadband cognitive radio network significantly enhances the 
system’s perceptual performance and the total achievable rate of secondary users.

The remaining sections of this paper are as follows. Section 2 presents the system model 
of the proposed UAV-assisted broadband cognitive radio network and its problem 
framework. Section 3 describes the algorithms used for optimizing the variables. Sec-
tion 4 provides simulation results. Section 5 concludes the entire paper.

2  System model and problem formulation
In this study, we propose a UAV-assisted wideband cognitive radio network, as illus-
trated in Fig.  1. The system comprises a primary UAV, a secondary UAV, Q PUs, and 
K SUs. In the system, the primary UAV is equipped with a single antenna, while the 
secondary UAV is equipped with N antennas. Both primary and secondary users are 
equipped with a single antenna. Let Q = {1, . . . ,Q} , K = {1, . . . ,K} , and C = {1, . . . ,C} 
represent the sets of PU, SU, and subcarrier, respectively.

2.1  Channel model

In this study, we introduce an assumption that the primary UAV and the second-
ary UAV consistently maintain a fixed altitude H during their flight. Simultaneously, 
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we predefine sets of stop points (SPs) for the primary UAV and the secondary UAV, 
denoted as Qp = [q1, . . . , qp, . . . , qP] and Qs = [q1, . . . , qs, . . . , qS] , respectively. These 
sets of hover points represent the potential hover locations that the primary UAV and 
the secondary UAV may choose at different time instances. The coordinates of the SP 
qp for the primary UAV can be represented as qp = (xp, yp, zp) , and the coordinates 
of the SP qs for the secondary UAV can be represented as qs = (xs, ys, zs) . The coordi-
nates of the primary user q are represented as qRq = (xRq , y

R
q , 0) , and the coordinates of 

the secondary user k are represented as qRk = (xRk , y
R
k , 0) . Based on the aforementioned 

information, we can represent the distances between the primary UAV at stopping 
point qp and the secondary UAV at stopping point qs , the UAV at stopping point qi 
and the primary user q and the UAV at stopping point qi and the secondary user k 
using the concept of Euclidean distance can be, respectively, expressed as 

 where i ∈ {p, s}.
In the system under investigation in this study, it is assumed that both the percep-

tion and transmission phases take place in a mmWave communication environment. 
So, the channel gains from the primary UAV to the secondary UAV, from the UAV at 
stopping point qi to the PU q and from the UAV at stopping point qi to the SU k on 
subcarrier c are 

(1a)d
qp ,qs
ps = (xp − xs)

2 + (yp − ys)
2 + (zp − zs)

2,

(1b)d
qi
iq =

√
(xi − xRq )

2 + (yi − yRq )
2 + zi2,

(1c)d
qi
ik =

√
(xi − xRk )

2 + (yi − yRk )
2 + zi2,

Fig. 1 A UAV-aided wideband cognitive radio network
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 respectively, where α is the path loss at a reference distance d0 = 1 m, and β is the path 
loss exponent.

2.2  Spectrum sensing

Spectrum sensing serves the purpose of assessing the spectral condition of the Primary 
Network and categorizing it into one of two states: “idle” ( Hc

0 ) or “occupied” ( Hc
1 ). In the 

event that the spectrum is identified as “idle,” the Secondary Network is able to make use of 
it for transmitting information. Conversely, should the spectrum be detected as “occupied,” 
the SN abstains from active operation to prevent any interference with the PUs. The expres-
sions for the two scenarios mentioned above are, respectively, given as 

 where ns ∼ CN (0, σ 2
s ) is indicative of the additive white Gaussian noise (AWGN) pre-

sent at the secondary UAV. The variable h
qp ,qs
s,c  denotes the baseband equivalent channel 

from the stopping point qp of the primary UAV to the stopping point ps of the secondary 
UAV. Furthermore, P stands for the transmission power at the primary UAV, while x rep-
resents the complex baseband signal emitted by the primary UAV.

The system operates during a frame duration T, which is divided into a sensing period τ 
and an information transmission period T − τ for the Secondary Network. The detection 
probability and false alarm probability for subcarrier c using energy detection are provided 
as follows 

 where fs represents the sampling frequency, while γ c = h
qi ,qj
s,c

P
σ 2
s
 denotes the received 

signal-to-noise ratio (SNR) from the primary UAV at qi to the secondary UAV at qj in the 
subcarrier c, and Q(·) is the right tail function of the standard normal distribution, 

Q(x) =
∫∞
x

1√
2π

e
t2

2 dt . Additionally, ηc is the detection threshold in the subcarrier c, 

which can be expressed as

(2a)h
qp ,qs
ps =

√
α

(
d
qp ,qs
ps

)−2
,

(2b)h
qi
iq,c =

√
α

(
d
qi
iq

)−2
,

(2c)h
qi
ik,c =

√
α
(
d
qi
ik

)−2
,

(3a)H0
c : ys,c = ns,

(3b)H1
c : ys,c = h

qp ,qs
s,c

√
Px + ns,

(4a)Pd,c = Q

(
ηc − σ 2

c (N + γc)

(σ 2
c /

√
τ fs)

√
2γc + N

)
,

(4b)Pf ,c = Q

(
ηc − σ 2

c N

(σ 2
c /

√
τ fs)

√
N

)
,
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where Pd  is the target detection probability.

2.3  Secondary network information transmission

When the secondary UAV detects that the spectrum is in an idle state, it utilizes the avail-
able idle spectrum for information transmission. However, the detection results of the 
secondary UAVs are not always perfectly accurate, and two scenarios can occur. The first 
scenario is when the secondary UAV successfully detects the idle spectrum subcarrier c. In 
this case, the secondary UAV uses subcarrier c to transmit the signal to the secondary user 
k, which can be represented as

where hqssk,c ∈ C
1×N represents the baseband equivalent channel from the SP q2s  of the 

secondary UAV to the SU k on subcarrier c. Let TP = {q1p, q2p, q3p} and TS = {q1s , q2s , q3s } 
represent the trajectories of the primary UAV and secondary UAV, where q0 denotes 
the starting point, q1 represents the trajectory of the UAV during the spectrum sens-
ing phase, and q2 represents the trajectory of the UAV during the information trans-
mission phase. f ck ∈ C

L×1 is the beamforming vector of the kth SU in the subcarrier c, 
sck ∼ CN (0, 1) represents the complex baseband modulated signal transmitted to sec-
ondary user k on subcarrier c, and nk ∼ CN (0, σ 2

k ) is indicative of the AWGN present 
at the SU k. Furthermore, ρk ,c represents the subcarrier allocation status, where ρk ,c = 1 
indicates that the secondary UAV employs subcarrier c to transmit information to SU k, 
while ρk ,c = 0 signifies that the SU k does not utilize subcarrier c.

The second scenario is when the secondary UAV experiences a missed detection during 
spectrum sensing. In this case, the interference signal from the primary UAV to the SU k is 
given by 

 where h
q2p
pk ,c ∈ C denotes the baseband equivalent channel from the SP q2p of the primary 

UAV to the SU k on subcarrier c. The transmission power of the primary UAV is P, and 
ρq,c represents the subcarrier allocation status. In the two aforementioned scenarios, the 
received signal-to-interference-plus-noise ratio (SINR) at SU k on subcarrier c can be 
expressed as SINR0

k ,c and SINR1
k ,c , respectively, and they can be written as 

(5)ηc = (Q−1(Pd)

√
2γc + N

τ fs
+ γc + N )σ 2

s ,

(6)yk ,c = ρk ,ch
qs
sk,c fk ,cs

c
k + nk ,

(7a)Ik ,c = ρq,ch
q2p
pk,c

√
Px,

(8a)SINR0
k ,c =ρk ,c

|hq
2
s

sk,cfk ,c|
2

σ 2
k

,

(8b)SINR1
k ,c =ρk ,c

|hq
2
s

sk,cfk ,c|
2

∑Q
q=1 ρq,c|h

q2p
pk,c|2P + σ 2

k

,
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The probabilities of the two aforementioned scenarios occurring are 

 where Pr(H0
c ) represents the probability of subcarrier c being in an idle state, and 

Pr(H1
c ) represents the probability of subcarrier c being in an occupied state. Therefore, 

the achievable rate of the kth SU in the cth subcarrier can be written as

Based on the above scenarios, the total achievable rate of the secondary network can be 
expressed as 

2.4  Problem formulation

The problem of system average rate maximization by jointly optimizing Tp , Ts , 
F = {fk ,c}∀k∈K,c∈C , τ and ρ = {ρk ,c}∀k∈{K,Q},c∈C , in the SN of UAV-assisted wideband CR 
system can be modeled as 

(9a)ψ0
c = Pr(H0

c)(1− Pf,c),

(9b)ψ1
c = Pr(H1

c)(1− Pd,c),

(10)Rk ,c =
T − τ

T
ρk ,c[ψ0

c log(1+ SINR0
k ,c)+ ψ1

c log(1+ SINR1
k ,c)],

(11a)Rs =
∑c

c=1

∑K

k=1
Rk ,c.

(12a)P1: max
Tp ,Ts ,F ,τ ,ρ

Rs

(12b)s.t.Pd,c ≥ P̃d ,

(12c)Pf ,c ≤ P̃f ,

(12d)
T − τ

T

C∑

c=1

K∑

k=1

ρk ,c(ψ
0
c + ψ1

c )||fk ,c||
2 ≤ PT , ∀c ∈ C , ∀k ∈ K ,

(12e)
C∑

c=1

Rk ,c ≥ Rth, ∀c ∈ C ,

(12f )
T − τ

T

C∑

c=1

K∑

k=1

ρk ,cρq,cψ
1
c |h

qs
sq,cfk ,c|2 ≤ PI

q , ∀q ∈ Q,

(12g)0 ≤ τ ≤ T ,

(12h)ρi,c ∈ {0, 1}, ∀i ∈ {K ,Q},
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 where Pf  represents the maximum allowable false alarm probability, PT is the maximum 
transmission power of the secondary UAV, PI

q is the maximum interference to the PU q 
caused by the secondary UAV, and Smax is the maximum distance covered by a UAV in 
a single move. Equation (12b) represents the minimum detecting probability constraint. 
Equation  (12c) represents the maximum tolerable false alarm probability constraint. 
Equation (12d) represents the maximum transmission power constraint for the second-
ary UAV. Equation (12e) represents the minimum achievable rate constraint for second-
ary user k. Equation (12f ) represents the maximum interference constraint imposed by 
the secondary UAV on the primary user q. Equation (12g) represents the sensing time 
constraint. Equation  (12h) denotes the subcarrier allocation scenario. Equation  (12i) 
indicates that each subcarrier can be allocated to at most one user for information trans-
mission. Equation (12j) represents the maximum UAV movement distance constraint.

3  Resource optimization scheme
In this section, we utilize the DDQN-SAC algorithm to optimize the variables in prob-
lem P1. In comparison with traditional optimization algorithms, this algorithm offers 
significant advantages. Firstly, it effectively handles mixed-action spaces, addressing 
optimization problems with both continuous and discrete variables simultaneously. Sec-
ondly, it combines the strengths of DDQN and SAC algorithms, providing improved sta-
bility and convergence. Additionally, it significantly reduces computational complexity, 
enhances training efficiency, and reduces resource requirements compared to traditional 
optimization algorithms. Lastly, it doesn’t necessitate detailed prior knowledge or pre-
cise system models, making it suitable for a wide range of complex real-world problems.

3.1  Problem transformation

We consider our formulated optimization problem as a reinforcement learning prob-
lem. In reinforcement learning, the UAV-assisted broadband cognitive radio network is 
regarded as an environment, and the central controller is seen as an agent. Besides the 
environment and the agent, reinforcement learning also encompasses elements such as 
state space, action space, transition probabilities, and reward functions (Fig. 2).

State space The state space consists of all possible states in the environment, which 
includes information relevant to the agent for making decisions based on the current 
state. At time slot t, the state space includes the action space of the previous time slot 
a(t−1) , the channel state information of the current time slot H(t) , and the achievable rate 
of the secondary network from the previous time slot R(t−1)

ave  . So, the state space at time 

slot t can be represented as s(t) =
{
a(t−1),H(t),R

(t−1)
ave

}
.

Action space The action space defines the set of all possible actions available to an 
intelligent agent. The composition of the action space is contingent upon the inherent 

(12i)
C∑

c=1

ρi,c ≤ 1,

(12j)||qi − qRl || ≤ S2
max

, qi ∈ {Qp,Qs}, l ∈ {Q,K },
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characteristics of the problem and the specific application context, and it may mani-
fest as continuous, discrete, or hybrid. In the context of this paper, the action space at 
at time slot t is configured as a hybrid action space. It encompasses a discrete action 
space atd that encapsulates trajectory optimization for the primary UAV, trajectory 
optimization for the secondary UAV, and subcarrier allocation. Furthermore, it incor-
porates a continuous action space atc dedicated to beamforming at the secondary UAV 
and perception time. These distinct actions collectively constitute the hybrid action 
space, succinctly denoted as at = {atd , a

t
c}.

Transition probability The transition probability Pr(s(t+1)|s(t), a(t)) represents the 
probability of transitioning from state s(t) to state s(t+1) by taking action a(t) . In this 
paper, the transition probability follows the changes of channel information.

Reward function The reward function in DRL is a function used to evaluate the 
goodness of the actions taken by the intelligent agent in its interaction with the 
environment. In this paper, the reward function is composed of the total rate of the 
secondary network and the maximum interference constraint on the primary user, 
represented as

where α1 and α2 are constants, and δ is a penalty term, which can be represented as

where χ is a negative constant, and PI ,q represents the interference caused by the sec-
ondary network to the primary user q, which can be expressed as

(13)r = α1Rs + α2δ,

(14)δ =
{
0, if PI ,q ≤ PT , ∀q ∈ Q,
χ , otherwise,

Fig. 2 The framework of the proposed DDQN-SAC algorithm
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3.2  Problem optimization based on DDQN‑SAC

Using the DDQN algorithm to handle a discrete action space In order to more accu-
rately estimate the values of different actions in various states, improve training 
stability and efficiency, and decompose the Q values into state-value functions and 
action-advantage functions, the Q value can be obtained by

where θ represents the weight parameters of the neural network used to approximate 
the Q value function, α represents the weight parameters of the state-value function, and 
β represents the weight parameters of the action-advantage function. Furthermore, |A| 
represents the number of possible actions in the action space.

Furthermore, the target Q value is estimated through the Bellman equation, repre-
senting the Q value that the agent expects to achieve. Using the mean squared error 
loss function, the error between the actual Q value and the target Q value can be 
measured, i.e., the loss function, which is expressed as

where N represents the tuple size extracted from the experience replay buffer, and θ− 
represents the weight parameters of the target neural network.

Using the SAC algorithm to handle a continuous action space The network structure 
of SAC consists of five neural networks, namely the actor network, two critic net-
works, and two target value networks, with their network parameters being θa , θc1 , 
θc2 , θ tc1 , and θ tc2 , respectively.

Sample small batches of tuples N from the experience replay buffer in order to cal-
culate the policy loss. SAC algorithm utilizes maximum entropy reinforcement learn-
ing, with the policy loss function which can be expressed as

where θa and θci correspond to the actor network parameters and critic network param-
eters, respectively. Additionally, α′ represents the temperature parameter used to con-
trol exploration. And the above equation includes a minimization operation designed to 
address the issue of network overestimation.

The target Q value for any tuple n sampled from the experience replay buffer can be 
expressed as

(15)PI ,q =
T − τ

T

C∑

c=1

K∑

k=1

ρk ,cρq,cψ
1
c |h

qs
sq,cfk ,c|2, ∀q ∈ Q.

(16)Q(s, a; θ ,α,β) = V (s; θ ,α)+ (A(s, a; θ ,β)−
1

|A|
∑

a′

A(s, a′; θ ,β)),

(17)L(θ) =
1

N

N∑

i=1

(Q(si, ai; θ)− (r + γ max
a′

Q(si+1
′, a′; θ−))2,

(18)L(θa) =
1

N

N∑
n=1

[α′logπ(an|sn; θa)− min
i=1,2

Qi(sn, an; θci)].
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where γ represents the discount factor ( γ ∈ (0, 1) ). Furthermore, θ tci represents the param-
eters of the target critic network. By comparing the estimated Q values generated by the 
current policy with the target Q values, the loss function provides a signal to guide policy 
improvement for the system to achieve higher rewards. The loss function can be given as:

In summary, the algorithm starts with the initialization of neural network parameters 
for both DDQN and SAC. Next, the UAV-assisted broadband cognitive radio network 
is taken as input, and the generated actions are applied to the environment, resulting 
in rewards and the next state. These experiences are stored as tuples in the experience 
replay buffer. After accumulating a certain number of tuples in the replay buffer, small 
batches of tuples are randomly sampled. Formulas (16) and (18) are then used to cal-
culate the loss function for updating the value network parameters. In the case of the 
SAC algorithm, KL divergence is calculated using Formula (17) and the actor network 
parameters are updated. Detailed steps of the DDQN-SAC algorithm are provided in 
Algorithm 1, outlining the specific optimization process.

Algorithm 1 Optimization of UAV-assisted wideband cognitive radio network based on DDQN-SAC.

(19)
yn = rn + γ [min

i=1,2
Qi(sn+1, an+1; θ tci)

− α′ log π(an+1|sn+1; θa)],

(20)L(θ tci) =
1

N

N∑
n=1

(yn − Q(sn, an; θci))2,
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4  Simulation results
In this section, we present simulation results to assess the performance of the UAV-
assisted wideband cognitive radio system proposed in this study. The simulation experi-
ments were conducted on a simulation platform using Python 3.9 and PyTorch 1.10.2. 
The simulation parameters were configured based on references [11, 15].

The secondary UAV is equipped with N = 6 antennas, and there are Q = 6 primary 
users and K = 6 secondary users. The UAV flies at a fixed altitude of H = 50 m. In addi-
tion, the AWGN at the secondary UAV and SU k locations has σ 2

s = σ 2
k = 0.01 , the sam-

pling frequency is fs = 6 MHz, and the transmit power of the primary base station is 
P = 30 dBm. The target detection probability is Pd = 0.9 , and the maximum allowable 
false alarm probability is Pf = 0.1.

In the simulation section, we introduce two benchmark schemes to assess the per-
formance of the method proposed in this paper. Benchmark 1: The beamforming at the 
secondary UAV is fixed at a constant value, with all other parameters kept identical to 
those in the proposed method. Benchmark 2: The number of channels is constrained to 
1, maintaining consistency with all other aspects specified in the proposed method.

Figure  3 illustrates the convergence of the optimization of the UAV-assisted cog-
nitive radio network using the DDQN-SAC algorithm proposed in this work. From 
Fig. 3, it is evident that our proposed algorithm performs in a total round of 14,000 
iterations and started to converge around the 8000 iterations. Furthermore, apart 
from the initial fluctuations, it can be observed that as the number of iterations 
increased, the algorithm’s rewards steadily increased, eventually reaching conver-
gence. It is that the proposed algorithm exhibits excellent convergence ability and sta-
bility, this is due to the powerful exploration capability of the DRL.

Figure  4 illustrates the trajectory movements of unmanned aerial vehicles (UAVs) 
at different stages, namely during the perception phase and the transmission phase. 
After the information transmission is complete, the UAVs will return to their initial 
positions. It is worth noting that the movement direction of the main UAV during the 
perception phase may be influenced by the trajectory of the secondary UAV. This is 
done to minimize potential instances of false detection or false alarms during the per-
ception phase. Furthermore, during the information transmission phase, the second-
ary UAV moves away from the location of the primary user to ensure that there is no 
interference with the primary user, thus meeting the communication requirements. 
In this manner, the UAV system can effectively balance the demands of perception 
and communication, reduce interference with the primary user, and enhance the sys-
tem performance.

Figure 5 illustrates the impact of varying secondary UAV transmission power on the 
average achievable rate of the secondary users. The observations reveal a substantial 
increase in the average achievable rate of secondary users in all schemes as the trans-
mission power of the secondary UAV increases. It is noteworthy that our proposed 
method demonstrates significantly enhanced system performance when compared 
to the other benchmark approaches. As analyzed numerically, our proposed method 
obtains the rate improvement up to 316 % compared to the benchmark 2 and up to 
47% compared to benchmark 1, which vividly demonstrates the superior performance 
of our propose method.
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Figure  6 illustrates the impact of varying sensing time on the average achievable 
rate of secondary users in different scenarios. According to the graph, it can be 
observed that with an increase in perception time, the average achievable rate of sec-
ondary users shows an initial increase followed by a decrease. This phenomenon can 
be explained by the fact that, as perception time increases, the system’s perceptual 
performance gradually improves, resulting in a reduction in missed detections and 
false alarms. However, when the perceptual performance reaches a certain threshold, 
further increasing the perception time no longer significantly enhances perceptual 
performance. Instead, it consumes additional information transmission time in the 
secondary network, leading to a decrease in the average achievable rate of secondary 
users. Furthermore, it is evident from the graph that, in comparison with the baseline 

Fig. 3 The convergence of the proposed algorithm

Fig. 4 The flight trajectory of the UAVs
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approach, the solution proposed in this paper consistently demonstrates superior 
performance across various scenarios.

5  Conclusion
In this study, we proposed a UAV-assisted broadband cognitive radio network 
scheme. The objective of this scheme was to jointly optimize the trajectories of the 
primary UAV and secondary UAV, the beamforming patterns of secondary UAV, and 
the subcarrier allocation to maximize the achievable rate of secondary users while 
adhering to maximum interference constraints on the primary user. To address 
the challenge of dealing with a hybrid action space problem, we employed the 

Fig. 5 The average achievable rate of the SUs versus the transmit power of the secondary UAV

Fig. 6 The average achievable rate of the SUs versus sensing time



Page 16 of 17Yan et al. EURASIP Journal on Advances in Signal Processing         (2024) 2024:43 

DDQN-SAC algorithm for problem optimization. Through the presentation of simu-
lation results, we observed a significant improvement in system performance com-
pared to the baseline approaches.
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